Problem Solving with { ++

« S

0\

| \‘ 1\‘5\ . _

WALTER SAVITCH

- -

-

- -

Ninth Edition

PROBLEM SOLVING With C++

This page intentionally left blank

Ninth Edition

PROBLEM SOLVING Ay I I

Walter Savitch

UNIVERSITY OF CALIFORNIA, SAN DIEGO

CONTRIBUTOR

Kenrick Mock
UNIVERSITY OF ALASKA, ANCHORAGE

PEARSON

Boston Columbus Indianapolis New York San Francisco Upper Saddle River
Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto
Delhi Mexico City Sao Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

Editorial Director: Marcia Horton

Acquisitions Editor: Matt Goldstein

Program Manager: Kayla Smith-Tarbox
Editorial Assistant: Kelsey Loanes

Marketing Coordinator: Kathryn Ferranti
Production Director: Erin Gregg

Managing Editor: Scott Disanno

Senior Operations Supervisor: Vincent Scelta
Operations Specialist: Linda Sager

Cover Designer: Joyce Wells

Permissions Manager: Timothy Nicholls

Image Permissions Manager: Karen Sanatar
Media Producer: Renata Butera

Media Project Manager: Wanda Rockwell
Full-Service Vendor: Hardik Popli, Cenveo® Publisher Services
Composition: Cenveo Publisher Services
Printer/Binder: Courier/Westford

Cover Printer: Lehigh-Phoenix Color/Hagerstown

Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook
appear on appropriate page within text.

Microsoft® and Windows® are registered trademarks of the Microsoft Corporation in the U.S.A. and other coun-
tries. Screen shots and icons reprinted with permission from the Microsoft Corporation. This book is not spon-
sored or endorsed by or affiliated with the Microsoft Corporation.

Copyright © 2015, 2012, 2009, 2007, 2005, 2003 Pearson Education, Inc. All rights reserved. Manufactured in
the United States of America. This publication is protected by Copyright, and permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any
form or by any means, electronic, mechanical, photocopying, recording, or likewise. To obtain permission(s) to
use material from this work, please submit a written request to Pearson Education, Inc., Permissions Department,
501 Boylston Street, Suite 900, Boston, Massachusetts 02116.

Many of the designations by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations
have been printed in initial caps or all caps.

Library of Congress Cataloging-in-Publication Data

Savitch, Walter J., 1943-
Problem solving with C++ / Walter Savitch ; contributor, Kenrick Mock. -- Ninth edition.
pages cm
Includes index.
ISBN-13: 978-0-13-359174-3 (alkaline paper)
ISBN-10: 0-13-359174-3 (alkaline paper)
1. C++ (Computer program language) 2. Problem solving. I. Mock, Kenrick. II. Title.
QA76.73.C153829 2014
005.13'3--dc23
2013048487

10987654321—CW—1514131211
ISBN 10: 0-13-359174-3
www.pearsonhighered.com ISBN 13: 978-0-13-359174-3

PEARSON

—

www.pearsonhighered.com

Preface

This book is meant to be used in a first course in programming and computer
science using the C++ language. It assumes no previous programming experi-
ence and no mathematics beyond high school algebra.

If you have used the previous edition of this book, you should read the
following section that explains the changes to this ninth edition and then
you can skip the rest of this preface. If you are new to this book, the rest of
this preface will give you an overview of the book.

Changes to the Ninth Edition

This ninth edition presents the same programming philosophy as the eighth
edition. All of the material from the eighth edition remains, but with the fol-
lowing enhancements:

B End-of-chapter programs are now split into Practice Programs and Program-
ming Projects. Practice Programs require a direct application of concepts
presented in the chapter and solutions are usually short. Practice Programs
are appropriate for laboratory exercises. Programming Projects require ad-
ditional problem solving and solutions are generally longer than Practice
Programs. Programming Projects are appropriate for homework problems.

B Introduction to C++11 in the context of C++98. Examples of C++11 content
includes new integer types, the auto type, raw string literals, strong enumera-
tions, nullptr, ranged for loop, conversion between strings and integers,
member initializers, and constructor delegation.

® Additional material on sorting, secure programming (e.g., overflow, array
out of bounds), and inheritance.

® Correction of errata.
B Twenty-one new Practice Programs and ten new Programming Projects.
® Ten new VideoNotes for a total of sixty-four VideoNotes. These VideoNotes
walk students through the process of both problem solving and coding to help
reinforce key programming concepts. An icon appears in the margin of the
book when a VideoNote is available regarding the topic covered in the text.
If you are an instructor already using the eighth edition, you can continue to
teach your course almost without change.

Flexibility in Topic Ordering

This book was written to allow instructors wide latitude in reordering the
material. To illustrate this flexibility, we suggest two alternative ways to order

vi

PREFACE

the topics. There is no loss of continuity when the book is read in either of
these ways. To ensure this continuity when you rearrange material, you may
need to move sections rather than entire chapters. However, only large sec-
tions in convenient locations are moved. To help customize a particular order
for any class’s needs, the end of this preface contains a dependency chart, and
each chapter has a “Prerequisites” section that explains what material needs to
be covered before each section in that chapter.

Reordering 1: Earlier Classes

To effectively design classes, a student needs some basic tools such as control
structures and function definitions. This basic material is covered in Chapters
1 through 6. After completing Chapter 6, students can begin to write their own
classes. One possible reordering of chapters that allows for such early coverage
of classes is the following:

Basics: Chapters 1, 2, 3, 4, 5, and 6. This material covers all control struc-
tures, function definitions, and basic file I/O. Chapter 3, which covers ad-
ditional control structures, could be deferred if you wish to cover classes
as early as possible.

Classes and namespaces: Chapter 10, Sections 11.1 and 11.2 of Chapter 11,
and Chapter 12. This material covers defining classes, friends, overloaded
operators, and namespaces.

Arrays, strings and vectors: Chapters 7 and 8

Pointers and dynamic arrays: Chapter 9

Arrays in classes: Sections 11.3 and 11.4 of Chapter 11
Inheritance: Chapter 15

Recursion: Chapter 14 (Alternately, recursion may be moved to later in the
course.)

Pointers and linked lists: Chapter 13
Any subset of the following chapters may also be used:
Exception handling: Chapter 16
Templates: Chapter 17
Standard Template Library: Chapter 18

Reordering 2: Classes Slightly Later but Still Early

This version covers all control structures and the basic material on arrays be-
fore doing classes, but classes are covered later than the previous ordering and
slightly earlier than the default ordering.

Basics: Chapters 1, 2, 3, 4, 5, and 6. This material covers all control struc-
tures, function definitions, and the basic file 1/O.

Arrays and strings: Chapter 7, Sections 8.1 and 8.2 of Chapter 8

Classes and namespaces: Chapter 10, Sections 11.1 and 11.2 of Chapter 11,
and Chapter 12. This material covers defining classes, friends, overloaded
operators, and namespaces.

Pointers and dynamic arrays: Chapter 9
Arrays in classes: Sections 11.3 and 11.4 of Chapter 11
Inheritance: Chapter 15

Recursion: Chapter 14. (Alternately, recursion may be moved to later in the
course.)

Vectors: Chapter 8.3
Pointers and linked lists: Chapter 13
Any subset of the following chapters may also be used:
Exception handling: Chapter 16
Templates: Chapter 17
Standard Template Library: Chapter 18

Accessibility to Students

It is not enough for a book to present the right topics in the right order. It is not
even enough for it to be clear and correct when read by an instructor or other
experienced programmer. The material needs to be presented in a way that is
accessible to beginning students. In this introductory textbook, I have endeav-
ored to write in a way that students find clear and friendly. Reports from the
many students who have used the earlier editions of this book confirm that
this style makes the material clear and often even enjoyable to students.

ANSI/ISO C++ Standard

This edition is fully compatible with compilers that meet the latest ANSI/ISO
C++ standard. At the time of this writing the latest standard is C++11.

Advanced Topics

Many “advanced topics” are becoming part of a standard CS1 course. Even if
they are not part of a course, it is good to have them available in the text as
enrichment material. This book offers a number of advanced topics that can
be integrated into a course or left as enrichment topics. It gives thorough cov-
erage of C++ templates, inheritance (including virtual functions), exception
handling, and the STL (Standard Template Library). Although this book uses
libraries and teaches students the importance of libraries, it does not require
any nonstandard libraries. This book uses only libraries that are provided with
essentially all C++ implementations.

PREFACE

vii

viii

D

VideoNote

PREFACE

Dependency Chart

The dependency chart on the next page shows possible orderings of chapters
and subsections. A line joining two boxes means that the upper box must be
covered before the lower box. Any ordering that is consistent with this partial
ordering can be read without loss of continuity. If a box contains a section
number or numbers, then the box refers only to those sections and not to the
entire chapter.

Summary Boxes

Each major point is summarized in a boxed section. These boxed sections are
spread throughout each chapter.

Self-Test Exercises

Each chapter contains numerous Self-Test Exercises at strategic points. Com-
plete answers for all the Self-Test Exercises are given at the end of each chapter.

VideoNotes

VideoNotes are designed for teaching students key programming concepts and
techniques. These short step-by-step videos demonstrate how to solve problems
from design through coding. VideoNotes allow for self-paced instruction with
easy navigation including the ability to select, play, rewind, fast-forward, and
stop within each VideoNote exercise.

Online Practice and Assessment with MyProgrammingLab

MyProgrammingLab helps students fully grasp the logic, semantics, and syn-
tax of programming. Through practice exercises and immediate, personalized
feedback, MyProgrammingLab improves the programming competence of be-
ginning students who often struggle with the basic concepts and paradigms of
popular high-level programming languages.

A self-study and homework tool, a MyProgramminglLab course consists
of hundreds of small practice problems organized around the structure of this
textbook. For students, the system automatically detects errors in the logic and
syntax of their code submissions and offers targeted hints that enable students
to figure out what went wrong—and why. For instructors, a comprehensive
gradebook tracks correct and incorrect answers and stores the code inputted by
students for review.

MyProgrammingLab is offered to users of this book in partnership with
Turing's Craft, the makers of the CodelLab interactive programming exer-
cise system. For a full demonstration, to see feedback from instructors and
students, or to get started using MyProgramminglLab in your course, visit
www.myprogramminglab.com.

www.myprogramminglab.com

DISPLAY P.1

Dependency Chart

PREFACE

ix

*Chapter 16 contains
occasional references
to derived classes,

Chapter 1 | Chapter2 Chapter 4 »| Chapter5
Introduction C++ Basics Functions 1 Functions 2
\i
Chapter 3
More Flow e G
I/O Streams
of Control
y A
CTpter 4 |5 | Chapter 14 Chapter 10
rrays .
Recursion Classes 1
7.1-7.3
gzaf;jl';z Chapter 11 *Chapter 16
. - Classes 2 > Exception
Dimensional .
11.1-11.2 Handling
Arrays
v
Chapter 8 Chapter 11 C?:p;cre;t;Z
Strings and 11.3 Classes & Comp -
Vectors Arrays & NarrF:espaces
\/ . v
Chapter 9 Chapter 11
Pointers and 11.4 Classes & > Chapter =
- >) Pointers and
Dynamic Dynamic Uik (s
Arrays Arrays

Chapter 17 | ¢ A

Templates

'

but those references

can be omitted

Chapter 18 |

Ine

Chapter 15
Inheritance

STL

PREFACE

Support Material

There is support material available to all users of this book and additional
material available only to qualified instructors.

Materials Available to All Users of this Book

® Source Code from the book
® PowerPoint slides
® VideoNotes

To access these materials, go to:
www.pearsonhighered.com/savitch

Resources Available to Qualified Instructors Only

Visit Pearson Education’s instructor resource center at www.pearsonhighered
.com/irc to access the following instructor resources:

B Instructor’s Resource Guide—including chapter-by-chapter teaching hints,
quiz questions with solutions, and solutions to many programming projects

® Test Bank and Test Generator
B PowerPoint Lectures—including programs and art from the text
® Lab Manual

Integrated Development Environment (IDE) Resource Kits

Instructors who adopt this text can order it for students with a kit containing
five popular C++ IDEs (Microsoft® Visual Studio 2013 Express Edition, Dev
C++, NetBeans, Eclipse, and CodelLite) and access to a Web site containing
written and video tutorials for getting started in each IDE. For ordering infor-
mation, please contact your campus Pearson Education representative.

Contact Us

Your comments, suggestions, questions, and corrections are always welcome.
Please e-mail them to savitch.programming.cpp@gmail.com

Acknowledgments

Numerous individuals and groups have provided me with suggestions, discus-
sions, and other help in preparing this textbook. Much of the first edition of
this book was written while I was visiting the Computer Science Department
at the University of Colorado in Boulder. The remainder of the writing on the
first edition and the work on subsequent editions was done in the Computer
Science and Engineering Department at the University of California, San Diego
(UCSD). I am grateful to these institutions for providing a conducive environ-
ment for teaching this material and writing this book.

www.pearsonhighered.com/savitch
www.pearsonhighered.com/irc
www.pearsonhighered.com/irc

I extend a special thanks to all the individuals who have contributed
critiques or programming projects for this or earlier editions and drafts of this book.
In alphabetical order, they are: Alex Feldman, Amber Settle, Andrew Burt, Andrew
Haas, Anne Marchant, Barney MacCabe, Bob Holloway, Bob Matthews, Brian
R. King, Bruce Johnston, Carol Roberts, Charles Dowling, Claire Bono, Cynthia
Martincic, David Feinstein, David Teague, Dennis Heckman, Donald Needham,
Doug Cosman, Dung Nguyen, Edward Carr, Eitan M. Gurari, Ethan Munson,
Firooz Khosraviyani, Frank Moore, Gilliean Lee, Huzefa Kagdi, James Stepleton,
Jeff Roach, Jeffrey Watson, Jennifer Perkins, Jerry Weltman, Joe Faletti, Joel Cohen,
John J. Westman, John Marsaglia, John Russo, Joseph Allen, Joseph D. Oldham,
Jerrold Grossman, Jesse Morehouse, Karla Chaveau, Ken Rockwood, Larry Johnson,
Len Garrett, Linda F. Wilson, Mal Gunasekera, Marianne Lepp, Matt Johnson,
Michael Keenan, Michael Main, Michal Sramka, Naomi Shapiro, Nat Martin, Noah
Aydin, Nisar Hundewale, Paul J. Kaiser, Paul Kube, Paulo Franca, Richard Borie,
Scot Drysdale, Scott Strong, Sheila Foster, Steve Mahaney, Susanne Sherba, Thomas
Judson, Walter A. Manrique, Wei Lian Chen, and Wojciech Komornicki.

I extend a special thanks to the many instructors who used early editions
of this book. Their comments provided some of the most helpful reviewing
that the book received.

Finally, I thank Kenrick Mock who implemented the changes in this
edition. He had the almost impossible task of pleasing me, my editor, and his
own sensibilities, and he did a superb job of it.

Walter Savitch

PREFACE

Xi

This page intentionally left blank

BREAKTH@UGH

To improving results
— |
‘Il I - —

get with the programming

Through the power of practice and immediate personalized

feedback, MyProgramminglLab improves your performance.

™

Programming

Learn more at www.myprogramminglab.com

ALWAYS LEARNING PEARSON

www.myprogramminglab.com

Brief Contents

Xiv

Table of Location of VideoNotes

Chapter 1

Chapter 2
Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7
Chapter 8
Chapter 9
Chapter 10

Chapter 11

Inside front cover and inside back cover

Introduction to Computers and
C++ Programming 1

C++ Basics 39

More Flow of Control 111

Procedural Abstraction and Functions That
Return a Value 181

Functions for All Subtasks 251

1/0 Streams as an Introduction to Objects
and Classes 305

Arrays 377

Strings and Vectors 451

Pointers and Dynamic Arrays 507

Defining Classes 541

Friends, Overloaded Operators, and Arrays
in Classes 619

Chapter 12
Chapter 13
Chapter 14
Chapter 15
Chapter 16
Chapter 17
Chapter 18

Appendices

AV h WN=

0 N

Index 1034

BRIEF CONTENTS

Separate Compilation and Namespaces 703

Pointers and Linked Lists 739

Recursion 789

Inheritance 833

Exception Handling 893

Templates 925

Standard Template Library 957

C++ Keywords 1015

Precedence of Operators 1016
The ASCII Character Set 1018
Some Library Functions 1019
Inline Functions 1026
Overloading the Array Index
Square Brackets 1027

The this Pointer 1029
Overloading Operators as Member
Operators 1032

XV

Contents

Table of Location of VideoNotes
Inside front cover and inside back cover

Chapter 1 Introduction to Computers and C++
Programming 1

1.1 COMPUTER SYSTEMS 2
Hardware 2

Software 7

High-Level Languages 8
Compilers 9

History Note 12

1.2 PROGRAMMING AND PROBLEM-SOLVING 12
Algorithms 12

Program Design 15

Object-Oriented Programming 16

The Software Life Cycle 17

1.3 INTRODUCTION TO C++ 18

Origins of the C++ Language 18

A Sample C++ Program 19

Pitfall: Using the Wrong Slash in\n 23

Programming Tip: Input and Output Syntax 23

Layout of a Simple C++ Program 24

Pitfall: Putting a Space Before the include File Name 26
Compiling and Running a C++ Program 26

Pitfall: Compiling a C++11 program 27

Programming Tip: Getting Your Program to Run 27

1.4 TESTING AND DEBUGGING 29
Kinds of Program Errors 30
Pitfall: Assuming Your Program Is Correct 31

XVi

Chapter Summary 32

Answers to Self-Test Exercises 33
Practice Programs 35
Programming Projects 36

Chapter 2 c++Basics 39

2.1 VARIABLES AND ASSIGNMENTS 40
Variables 40

Names: Identifiers 42

Variable Declarations 44

Assignment Statements 45

Pitfall: Uninitialized Variables 47
Programming Tip: Use Meaningful Names 49

2.2 INPUT AND OUTPUT 50

Output Using cout 50

Include Directives and Namespaces 52

Escape Sequences 53

Programming Tip: End Each Program with a \n or end1
Formatting for Numbers with a Decimal Point 55
Input Using cin 56

Designing Input and Output 58

Programming Tip: Line Breaks in 1/0 58

2.3 DATA TYPES AND EXPRESSIONS 60
The Types int and double 60

Other Number Types 62

C++11 Types 63

The Type char 64

The Type bool 66

Introduction to the Class string 66
Type Compatibilities 68

Arithmetic Operators and Expressions 69
Pitfall: Whole Numbers in Division 72
More Assignment Statements 74

2.4 SIMPLE FLOW OF CONTROL 74
A Simple Branching Mechanism 75
Pitfall: Strings of Inequalities 80
Pitfall: Using = in place of == 81
Compound Statements 82

55

CONTENTS

XVii

Xviii CONTENTS

Simple Loop Mechanisms 84

Increment and Decrement Operators 87
Programming Example: Charge Card Balance 89
Pitfall: Infinite Loops 90

2.5 PROGRAM STYLE 93
Indenting 93

Comments 93

Naming Constants 95

Chapter Summary 98

Answers to Self-Test Exercises 98
Practice Programs 103
Programming Projects 105

Chapter 3 More Flow of Control 111

3.1 USING BOOLEAN EXPRESSIONS 112

Evaluating Boolean Expressions 112

Pitfall: Boolean Expressions Convert to int Values 116
Enumeration Types (Optional) 119

3.2 MULTIWAY BRANCHES 120

Nested Statements 120

Programming Tip: Use Braces in Nested Statements 121
Multiway 7f-else Statements 123

Programming Example: State Income Tax 125

The switch Statement 128

Pitfall: Forgetting a break in a switch Statement 132
Using switch Statements for Menus 133

Blocks 135

Pitfall: Inadvertent Local Variables 138

3.3 MORE ABOUT C++ LOOP STATEMENTS 139
The while Statements Reviewed 139

Increment and Decrement Operators Revisited 141
The for Statement 144

Pitfall: Extra Semicolon in a for Statement 149
What Kind of Loop to Use 150

Pitfall: Uninitialized Variables and Infinite Loops 152
The break Statement 153

Pitfall: The break Statement in Nested Loops 154

CONTENTS

3.4 DESIGNING LOOPS 155
Loops for Sums and Products 155
Ending a Loop 157

Nested Loops 160

Debugging Loops 162

Chapter Summary 165

Answers to Self-Test Exercises 166
Practice Programs 172
Programming Projects 174

Chapter 4 Procedural Abstraction and Functions
That Return a Value 181

4.1 TOP-DOWN DESIGN 182

4.2 PREDEFINED FUNCTIONS 183

Using Predefined Functions 183

Random Number Generation 188

Type Casting 190

Older Form of Type Casting 192

Pitfall: Integer Division Drops the Fractional Part 192

4.3 PROGRAMMER-DEFINED FUNCTIONS 193

Function Definitions 193

Functions That Return a Boolean Value 199

Alternate Form for Function Declarations 199

Pitfall: Arguments in the Wrong Order 200

Function Definition-Syntax Summary 201

More About Placement of Function Definitions 202

Programming Tip: Use Function Calls in Branching Statements 203

4.4 PROCEDURAL ABSTRACTION 204

The Black-Box Analogy 204

Programming Tip: Choosing Formal Parameter Names 207
Programming Tip: Nested Loops 208

Case Study: Buying Pizza 211

Programming Tip: Use Pseudocode 217

4.5 SCOPE AND LOCAL VARIABLES 218
The Small Program Analogy 218
Programming Example: Experimental Pea Patch 221

Xix

XX

CONTENTS

Global Constants and Global Variables 221

Call-by-Value Formal Parameters Are Local Variables 224
Block Scope 226

Namespaces Revisited 227

Programming Example: The Factorial Function 230

4.6 OVERLOADING FUNCTION NAMES 232
Introduction to Overloading 232

Programming Example: Revised Pizza-Buying Program 235
Automatic Type Conversion 238

Chapter Summary 240

Answers to Self-Test Exercises 240
Practice Programs 245
Programming Projects 247

Chapter 5 Functions for All Subtasks 251

5.1 void FUNCTIONS 252

Definitions of void Functions 252

Programming Example: Converting Temperatures 255
return Statements in void Functions 255

5.2 CALL-BY-REFERENCE PARAMETERS 259

A First View of Call-by-Reference 259

Call-by-Reference in Detail 262

Programming Example: The swap_values Function 267
Mixed Parameter Lists 268

Programming Tip: What Kind of Parameter to Use 269
Pitfall: Inadvertent Local Variables 270

5.3 USING PROCEDURAL ABSTRACTION 273
Functions Calling Functions 273

Preconditions and Postconditions 275

Case Study: Supermarket Pricing 276

5.4 TESTING AND DEBUGGING FUNCTIONS 281
Stubs and Drivers 282

5.5 GENERAL DEBUGGING TECHNIQUES 287
Keep an Open Mind 287
Check Common Errors 287

CONTENTS

Localize the Error 288
The assert Macro 290

Chapter Summary 292

Answers to Self-Test Exercises 293
Practice Programs 296
Programming Projects 299

Chapter 6 1/0 Streams as an Introduction to Objects
and Classes 305

6.1 STREAMS AND BASIC FILE 1/0 306

Why Use Files for I/0? 307

File 1/0 308

Introduction to Classes and Objects 312
Programming Tip: Check Whether a File Was Opened
Successfully 314

Techniques for File /0 316

Appending to a File (Optional) 320

File Names as Input (Optional) 321

6.2 TOOLS FOR STREAM I/O 323

Formatting Output with Stream Functions 323
Manipulators 329

Streams as Arguments to Functions 332
Programming Tip: Checking for the End of a File 332
A Note on Namespaces 335

Programming Example: Cleaning Up a File Format 336

6.3 CHARACTER I/O 338

The Member Functions get and put 338

The putback Member Function (Optional) 342
Programming Example: Checking Input 343
Pitfall: Unexpected '\n' in Input 345
Programming Example: Another new_T7ne Function 347
Default Arguments for Functions (Optional) 348
The eof Member Function 353

Programming Example: Editing a Text File 355
Predefined Character Functions 356

Pitfall: toupper and tolower Return Values 358

XXi

XXii CONTENTS

Chapter Summary 360

Answers to Self-Test Exercises 361
Practice Programs 368
Programming Projects 370

Chapter 7 Arrays 377

7.1 INTRODUCTION TO ARRAYS 378

Declaring and Referencing Arrays 378

Programming Tip: Use for Loops with Arrays 380

Pitfall: Array Indexes Always Start with Zero 380
Programming Tip: Use a Defined Constant for the

Size of an Array 380

Arrays in Memory 382

Pitfall: Array Index Out of Range 383

Initializing Arrays 386

Programming Tip: C++11 Range-Based for Statement 386

7.2 ARRAYS IN FUNCTIONS 389

Indexed Variables as Function Arguments 389
Entire Arrays as Function Arguments 391

The const Parameter Modifier 394

Pitfall: Inconsistent Use of const Parameters 397
Functions That Return an Array 397

Case Study: Production Graph 398

7.3 PROGRAMMING WITH ARRAYS 411

Partially Filled Arrays 411

Programming Tip: Do Not Skimp on Formal Parameters 414
Programming Example: Searching an Array 414
Programming Example: Sorting an Array 417

Programming Example: Bubble Sort 421

7.4 MULTIDIMENSIONAL ARRAYS 424
Multidimensional Array Basics 425
Multidimensional Array Parameters 425
Programming Example: Two-Dimensional

Grading Program 427

Pitfall: Using Commas Between Array Indexes 431

CONTENTS

Chapter Summary 432

Answers to Self-Test Exercises 433
Practice Programs 437
Programming Projects 439

Chapter 8 strings and Vectors 451

8.1 AN ARRAY TYPE FOR STRINGS 453

C-String Values and C-String Variables 453

Pitfall: Using = and == with C Strings 456

Other Functions in <cstring> 458

Pitfall: Copying past the end of a C-string using strcpy 461
C-String Input and Output 464

C-String-to-Number Conversions and Robust Input 466

8.2 THE STANDARD string CLASS 472
Introduction to the Standard Class string 472

I/0 with the Class string 475

Programming Tip: More Versions of getline 478
Pitfall: Mixing cin >> variable; and getline 479
String Processing with the Class string 480
Programming Example: Palindrome Testing 484
Converting Between string Objects and C Strings 487
Converting Between Strings and Numbers 488

8.3 VECTORS 489

Vector Basics 489

Pitfall: Using Square Brackets Beyond the Vector Size 492
Programming Tip: Vector Assignment Is Well Behaved 493
Efficiency Issues 493

Chapter Summary 495

Answers to Self-Test Exercises 495
Practice Programs 497
Programming Projects 498

Chapter 9 Pointers and Dynamic Arrays 507

9.1 POINTERS 508
Pointer Variables 509
Basic Memory Management 516

XXiii

XXiv CONTENTS

Pitfall: Dangling Pointers 517
Static Variables and Automatic Variables 518
Programming Tip: Define Pointer Types 518

9.2 DYNAMIC ARRAYS 521

Array Variables and Pointer Variables 521
Creating and Using Dynamic Arrays 522

Pointer Arithmetic (Optional) 528
Multidimensional Dynamic Arrays (Optional) 530

Chapter Summary 532

Answers to Self-Test Exercises 532
Practice Programs 533
Programming Projects 534

Chapter 10 Defining Classes 541

10.1 STRUCTURES 542

Structures for Diverse Data 542

Pitfall: Forgetting a Semicolon in a Structure Definition 547
Structures as Function Arguments 548

Programming Tip: Use Hierarchical Structures 549
Initializing Structures 551

10.2 CLASSES 554

Defining Classes and Member Functions 554

Public and Private Members 559

Programming Tip: Make All Member Variables Private 567
Programming Tip: Define Accessor and Mutator Functions 567
Programming Tip: Use the Assignment Operator

with Objects 569

Programming Example: BankAccount Class—Version 1 570
Summary of Some Properties of Classes 574

Constructors for Initialization 576

Programming Tip: Always Include a Default Constructor 584
Pitfall: Constructors with No Arguments 585

Member Initializers and Constructor Delegation in C++11 587

10.3 ABSTRACT DATA TYPES 588
Classes to Produce Abstract Data Types 589
Programming Example: Alternative Implementation of a Class 593

CONTENTS

10.4 INTRODUCTION TO INHERITANCE 598
Derived Classes 599
Defining Derived Classes 600

Chapter Summary 604

Answers to Self-Test Exercises 605
Practice Programs 611

Programming Projects 612

Chapter 11 Friends, Overloaded Operators, and
Arrays in Classes 619

11.1 FRIEND FUNCTIONS 620

Programming Example: An Equality Function 620
Friend Functions 624

Programming Tip: Define Both Accessor Functions and Friend
Functions 626

Programming Tip: Use Both Member and Nonmember
Functions 628

Programming Example: Money Class (Version 1) 628
Implementation of digit_to_int (Optional) 635
Pitfall: Leading Zeros in Number Constants 636

The const Parameter Modifier 638

Pitfall: Inconsistent Use of const 639

11.2 OVERLOADING OPERATORS 643
Overloading Operators 644

Constructors for Automatic Type Conversion 647
Overloading Unary Operators 649

Overloading >> and << 650

11.3 ARRAYS AND CLASSES 660

Arrays of Classes 660

Arrays as Class Members 664

Programming Example: A Class for a Partially Filled Array 665

11.4 CLASSES AND DYNAMIC ARRAYS 667
Programming Example: A String Variable Class 668
Destructors 671

Pitfall: Pointers as Call-by-Value Parameters 674

XXV

XXVi CONTENTS

Copy Constructors 675
Overloading the Assignment Operator 680

Chapter Summary 683

Answers to Self-Test Exercises 683
Practice Programs 693
Programming Projects 694

Chapter 12 Separate Compilation and Namespaces 703

12.1 SEPARATE COMPILATION 704

ADTs Reviewed 705

Case Study: DigitalTime —A Class Compiled Separately 706
Using #ifndef 715

Programming Tip: Defining Other Libraries 718

12.2 NAMESPACES 719

Namespaces and using Directives 719

Creating a Namespace 721

Qualifying Names 724

A Subtle Point About Namespaces (Optional) 725
Unnamed Namespaces 726

Programming Tip: Choosing a Name for a Namespace 731
Pitfall: Confusing the Global Namespace and the Unnamed
Namespace 732

Chapter Summary 733

Answers to Self-Test Exercises 734
Practice Programs 736
Programming Projects 738

Chapter 13 Pointers and Linked Lists 739

13.1 NODES AND LINKED LISTS 740
Nodes 740

nullptr 745

Linked Lists 746

Inserting a Node at the Head of a List 747
Pitfall: Losing Nodes 750

Searching a Linked List 751

CONTENTS

Pointers as Iterators 755

Inserting and Removing Nodes Inside a List 755
Pitfall: Using the Assignment Operator with Dynamic
Data Structures 757

Variations on Linked Lists 760

Linked Lists of Classes 762

13.2 STACKS AND QUEUES 765

Stacks 765

Programming Example: A Stack Class 766
Queues 771

Programming Example: A Queue Class 772

Chapter Summary 776

Answers to Self-Test Exercises 776
Practice Programs 779
Programming Projects 780

Chapter 14 Recursion 789

14.1 RECURSIVE FUNCTIONS FOR TASKS 791
Case Study: Vertical Numbers 791

A Closer Look at Recursion 797

Pitfall: Infinite Recursion 799

Stacks for Recursion 800

Pitfall: Stack Overflow 802

Recursion Versus Iteration 802

14.2 RECURSIVE FUNCTIONS FOR VALUES 804
General Form for a Recursive Function That Returns a Value 804
Programming Example: Another Powers Function 804

14.3 THINKING RECURSIVELY 809

Recursive Design Techniques 809

Case Study: Binary Search—An Example of Recursive Thinking 810
Programming Example: A Recursive Member Function 818

Chapter Summary 822

Answers to Self-Test Exercises 822
Practice Programs 827
Programming Projects 827

XXVii

XXViii CONTENTS

Chapter 15 Inheritance 833

15.1 INHERITANCE BASICS 834

Derived Classes 837

Constructors in Derived Classes 845

Pitfall: Use of Private Member Variables from the Base Class 848
Pitfall: Private Member Functions Are Effectively Not Inherited 850
The protected Qualifier 850

Redefinition of Member Functions 853

Redefining Versus Overloading 856

Access to a Redefined Base Function 858

15.2 INHERITANCE DETAILS 859

Functions That Are Not Inherited 859

Assignment Operators and Copy Constructors in Derived Classes 860
Destructors in Derived Classes 861

15.3 POLYMORPHISM 862

Late Binding 863

Virtual Functions in C++ 864

Virtual Functions and Extended Type Compatibility 869
Pitfall: The Slicing Problem 873

Pitfall: Not Using Virtual Member Functions 874

Pitfall: Attempting to Compile Class Definitions Without
Definitions for Every Virtual Member Function 875
Programming Tip: Make Destructors Virtual 875

Chapter Summary 877

Answers to Self-Test Exercises 877
Practice Programs 881

Programming Projects 884

Chapter 16 Exception Handling 893

16.1 EXCEPTION-HANDLING BASICS 895

A Toy Example of Exception Handling 895

Defining Your Own Exception Classes 904

Multiple Throws and Catches 904

Pitfall: Catch the More Specific Exception First 908
Programming Tip: Exception Classes Can Be Trivial 909
Throwing an Exception in a Function 909

CONTENTS

Exception Specification 911
Pitfall: Exception Specification in Derived Classes 913

16.2 PROGRAMMING TECHNIQUES FOR
EXCEPTION HANDLING 914

When to Throw an Exception 914

Pitfall: Uncaught Exceptions 916

Pitfall: Nested try-catch Blocks 916

Pitfall: Overuse of Exceptions 916

Exception Class Hierarchies 917

Testing for Available Memory 917

Rethrowing an Exception 918

Chapter Summary 918

Answers to Self-Test Exercises 918
Practice Programs 920
Programming Projects 921

Chapter 17 Templates 925

17.1 TEMPLATES FOR ALGORITHM ABSTRACTION 926
Templates for Functions 927

Pitfall: Compiler Complications 931

Programming Example: A Generic Sorting Function 933
Programming Tip: How to Define Templates 937

Pitfall: Using a Template with an Inappropriate Type 938

17.2 TEMPLATES FOR DATA ABSTRACTION 939
Syntax for Class Templates 939
Programming Example: An Array Class 942

Chapter Summary 949

Answers to Self-Test Exercises 949
Practice Programs 953
Programming Projects 953

Chapter 18 standard Template Library 957

18.1 ITERATORS 959
using Declarations 959
Iterator Basics 960

XXiX

XXX

CONTENTS

00 N O V1 A WIN —

Programming Tip: Use auto to Simplify Variable Declarations
Pitfall: Compiler Problems 964

Kinds of Iterators 966

Constant and Mutable Iterators 970

Reverse Iterators 971

Other Kinds of Iterators 972

18.2 CONTAINERS 973

Sequential Containers 974

Pitfall: lterators and Removing Elements 978
Programming Tip: Type Definitions in Containers 979
Container Adapters stack and queue 979

Associative Containers set and map 983
Programming Tip: Use Initialization, Ranged For,

and auto with Containers 990

Efficiency 990

18.3 GENERIC ALGORITHMS 991
Running Times and Big-O Notation 992
Container Access Running Times 995
Nonmodifying Sequence Algorithms 997
Container Modifying Algorithms 1001
Set Algorithms 1003

Sorting Algorithms 1004

Chapter Summary 1005

Answers to Self-Test Exercises 1005
Practice Programs 1007
Programming Projects 1008

APPENDICES

C++ Keywords 1015

Precedence of Operators 1016

The ASCII Character Set 1018

Some Library Functions 1019

Inline Functions 1026

Overloading the Array Index Square Brackets 1027
The this Pointer 1029

Overloading Operators as Member Operators 1032

INDEX 1034

964

Introduction to
Computers and
C++ Programming

1.1 COMPUTER SYSTEMS 2
Hardware 2

Software 7

High-Level Languages 8
Compilers 9

History Note 12

1.2 PROGRAMMING AND
PROBLEM-SOLVING 12

Algorithms 12

Program Design 15

Object-Oriented Programming 16

The Software Life Cycle 17

1.3 INTRODUCTION TO C++ 18
Origins of the C++ Language 18
A Sample C++ Program 19

Chapter Summary 32
Answers to Self-Test Exercises 33

Pitfall: Using the Wrong Slash in\n 23
Programming Tip: Input and Output
Syntax 23
Layout of a Simple C++ Program 24
Pitfall: Putting a Space Before the include
File Name 26
Compiling and Running a C++ Program 26
Pitfall: Compiling a C++11 Program 27
Programming Tip: Getting Your Program
toRun 27

1.4 TESTING AND DEBUGGING 29
Kinds of Program Errors 30
Pitfall: Assuming Your Program Is Correct 31

Practice Programs 35
Programming Projects 36

The whole of the development and operation of analysis are now capable of
being executed by machinery. . . . As soon as an Analytical Engine exists, it
will necessarily guide the future course of science.

CHARLES BABBAGE (1792-1871)

INTRODUCTION

In this chapter we describe the basic components of a computer, as well as
the basic technique for designing and writing a program. We then show you a
sample C++ program and describe how it works.

1.1 COMPUTER SYSTEMS

A set of instructions for a computer to follow is called a program. The
collection of programs used by a computer is referred to as the software
for that computer. The actual physical machines that make up a computer
installation are referred to as hardware. As we will see, the hardware for a
computer is conceptually very simple. However, computers now come with
a large array of software to aid in the task of programming. This software
includes editors, translators, and managers of various sorts. The resulting
environment is a complicated and powerful system. In this book we are
concerned almost exclusively with software, but a brief overview of how the
hardware is organized will be useful.

Hardware

There are three main classes of computers: PCs, workstations, and mainframes.
A PC (personal computer) is a relatively small computer designed to be used
by one person at a time. Most home computers are PCs, but PCs are also
widely used in business, industry, and science. A workstation is essentially a
larger and more powerful PC. You can think of it as an “industrial-strength”
PC. A mainframe is an even larger computer that typically requires some
support staff and generally is shared by more than one user. The distinctions
between PCs, workstations, and mainframes are not precise, but the terms
are commonly used and do convey some very general information about a
computer.

A network consists of a number of computers connected so that they may
share resources such as printers and may share information. A network might
contain a number of workstations and one or more mainframes, as well as
shared devices such as printers.

For our purposes in learning programming, it will not matter whether you
are working on a PC, a mainframe, or a workstation. The basic configuration
of the computer, as we will view it, is the same for all three types of computers.

1.1 Computer Systems

The hardware for most computer systems is organized as shown in
Display 1.1. The computer can be thought of as having five main components:
the input device(s), the output device(s), the processor (also called the CPU,
for central processing unit), the main memory, and the secondary memory. The
processor, main memory, and secondary memory are normally housed in a
single cabinet. The processor and main memory form the heart of a computer
and can be thought of as an integrated unit. Other components connect to the
main memory and operate under the direction of the processor. The arrows in
Display 1.1 indicate the direction of information flow.

An input device is any device that allows a person to communicate
information to the computer. Your primary input devices are likely to be a
keyboard and a mouse.

An output device is anything that allows the computer to communicate
information to you. The most common output device is a display screen,
referred to as a monitor. Quite often, there is more than one output device. For
example, in addition to the monitor, your computer probably is connected
to a printer for producing output on paper. The keyboard and monitor are
sometimes thought of as a single unit called a terminal.

DISPLAY 1.1 Main Components of a Computer

| Processor (CPU) |

Input
device(s)

Output

- Main memory |8 lice(s)

W
5

Secondary
memory

CHAPTER 1/ Introduction to Computers and C++ Programming

In order to store input and to have the equivalent of scratch paper for
performing calculations, computers are provided with memory. The program
that the computer executes is also stored in this memory. A computer has two
forms of memory, called main memory and secondary memory. The program that
is being executed is kept in main memory, and main memory is, as the name
implies, the most important memory. Main memory consists of a long list of
numbered locations called memory locations; the number of memory locations
varies from one computer to another, ranging from a few thousand to many
millions, and sometimes even into the billions. Each memory location
contains a string of 0s and 1s. The contents of these locations can change.
Hence, you can think of each memory location as a tiny blackboard on which
the computer can write and erase. In most computers, all memory locations
contain the same number of zero/one digits. A digit that can assume only
the values 0 or 1 is called a binary digit or a bit. The memory locations in
most computers contain eight bits (or some multiple of eight bits). An eight-
bit portion of memory is called a byte, so we can refer to these numbered
memory locations as bytes. To rephrase the situation, you can think of the
computer’s main memory as a long list of numbered memory locations called
bytes. The number that identifies a byte is called its address. A data item, such
as a number or a letter, can be stored in one of these bytes, and the address of
the byte is then used to find the data item when it is needed.

If the computer needs to deal with a data item (such as a large number)
that is too large to fit in a single byte, it will use several adjacent bytes to hold
the data item. In this case, the entire chunk of memory that holds the data
item is still called a memory location. The address of the first of the bytes that
make up this memory location is used as the address for this larger memory
location. Thus, as a practical matter, you can think of the computer’s main
memory as a long list of memory locations of varying sizes. The size of each of
these locations is expressed in bytes and the address of the first byte is used as
the address (name) of that memory location. Display 1.2 shows a picture of a
hypothetical computer’s main memory. The sizes of the memory locations are
not fixed, but can change when a new program is run on the computer.

Bytes and Addresses

Main memory is divided into numbered locations called bytes. The
number associated with a byte is called its address. A group of consecutive
bytes is used as the location for a data item, such as a number or letter. The
address of the first byte in the group is used as the address of this larger
memory location.

The fact that the information in a computer’s memory is represented as
0s and 1s need not be of great concern to you when programming in C++

1.1 Computer Systems

DISPLAY 1.2 Memory Locations and Bytes

RASENNNNNNN\N
byte 2 LN\ > 3 byte location with address 1
byte 3 ANNNN\NN\N

byte 4
byte 5 > 2 byte location with address 4

byte 6 NNNNNNNN] ——— 1 byte location with address 6

byte 7
byte 8 3 byte location with address 7
byte 9

(or in most other programming languages). There is, however, one point
about this use of 0s and 1s that will concern us as soon as we start to write
programs. The computer needs to interpret these strings of 0Os and 1s as
numbers, letters, instructions, or other types of information. The computer
performs these interpretations automatically according to certain coding
schemes. A different code is used for each different type of item that is stored
in the computer's memory: one code for letters, another for whole numbers,
another for fractions, another for instructions, and so on. For example, in one
commonly used set of codes, 01000001 is the code for the letter A and also
for the number 65. In order to know what the string 01000001 in a particular
location stands for, the computer must keep track of which code is currently
being used for that location. Fortunately, the programmer seldom needs to
be concerned with such codes and can safely reason as though the locations
actually contained letters, numbers, or whatever is desired.

Why Eight?

A byte is a memory location that can hold eight bits. What is so
special about eight? Why not ten bits? There are two reasons why
eight is special. First, eight is a power of 2. (8 is 23.) Since computers
use bits, which have only two possible values, powers of 2 are more
convenient than powers of 10. Second, it turns out that eight bits (one
byte) are required to code a single character (such as a letter or other
keyboard symbol).

CHAPTER 1/ Introduction to Computers and C++ Programming

The memory we have been discussing up until now is the main memory.
Without its main memory, a computer can do nothing. However, main
memory is only used while the computer is actually following the instructions
in a program. The computer also has another form of memory called secondary
memory or secondary storage. (The words memory and storage are exact synonyms
in this context.) Secondary memory is the memory that is used for keeping
a permanent record of information after (and before) the computer is used.
Some alternative terms that are commonly used to refer to secondary memory
are auxiliary memory, auxiliary storage, external memory, and external storage.

Information in secondary storage is kept in units called files, which can
be as large or as small as you like. A program, for example, is stored in a file
in secondary storage and copied into main memory when the program is
run. You can store a program, a letter, an inventory list, or any other unit of
information in a file.

Several different kinds of secondary memory can be attached to a single
computer. The most common forms of secondary memory are hard disks,
diskettes, CDs, DVDs, and removable flash memory drives. (Diskettes are also
sometimes referred to as floppy disks.) CDs (compact discs) used on computers
are basically the same as those used to record and play music, while DVDs
(digital video discs) are the same as those used to play videos. CDs and DVDs
for computers can be read-only so that your computer can read, but cannot
change, the data on the disc; CDs and DVDs for computers can also be read/
write, which can have their data changed by the computer. Hard disks are
fixed in place and are normally not removed from the disk drive. Diskettes
and CDs can be easily removed from the disk drive and carried to another
computer. Diskettes and CDs have the advantages of being inexpensive and
portable, but hard disks hold more data and operate faster. Flash drives have
largely replaced diskettes today and store data using a type of memory called
flash memory. Unlike main memory, flash memory does not require power
to maintain the information stored on the device. Other forms of secondary
memory are also available, but this list covers most forms that you are likely
to encounter.

Main memory is often referred to as RAM or random access memory. It
is called random access because the computer can immediately access the data
in any memory location. Secondary memory often requires sequential access,
which means that the computer must look through all (or at least very many)
memory locations until it finds the item it needs.

The processor (also known as the central processing unit, or CPU) is the
“brain” of the computer. When a computer is advertised, the computer company
tells you what chip it contains. The chip is the processor. The processor follows
the instructions in a program and performs the calculations specified by the
program. The processor is, however, a very simple brain. All it can do is follow
a set of simple instructions provided by the programmer. Typical processor
instructions say things like “Interpret the Os and 1s as numbers, and then add
the number in memory location 37 to the number in memory location 59, and

1.1 Computer Systems

put the answer in location 43,” or “Read a letter of input, convert it to its code
as a string of Os and 1s, and place it in memory location 1298.” The processor
can add, subtract, multiply, and divide and can move things from one memory
location to another. It can interpret strings of Os and 1s as letters and send the
letters to an output device. The processor also has some primitive ability to
rearrange the order of instructions. Processor instructions vary somewhat from
one computer to another. The processor of a modern computer can have as
many as several hundred available instructions. However, these instructions are
typically all about as simple as those we have just described.

Software

You do not normally talk directly to the computer, but communicate with it
through an operating system. The operating system allocates the computer’s
resources to the different tasks that the computer must accomplish. The
operating system is actually a program, but it is perhaps better to think of
it as your chief servant. It is in charge of all your other servant programs,
and it delivers your requests to them. If you want to run a program, you tell
the operating system the name of the file that contains it, and the operating
system runs the program. If you want to edit a file, you tell the operating
system the name of the file and it starts up the editor to work on that file.
To most users, the operating system is the computer. Most users never see
the computer without its operating system. The names of some common
operating systems are UNIX, DOS, Linux, Windows, Mac OS, iOS, and Android.

A program is a set of instructions for a computer to follow. As shown
in Display 1.3, the input to a computer can be thought of as consisting of
two parts, a program and some data. The computer follows the instructions
in the program and in that way performs some process. The data is what we
conceptualize as the input to the program. For example, if the program adds
two numbers, then the two numbers are the data. In other words, the data is
the input to the program, and both the program and the data are input to the
computer (usually via the operating system). Whenever we give a computer

DISPLAY 1.3 Simple View of Running a Program

Computer

CHAPTER 1/ Introduction to Computers and C++ Programming

both a program to follow and some data for the program, we are said to be
running the program on the data, and the computer is said to execute the
program on the data. The word data also has a much more general meaning
than the one we have just given it. In its most general sense, it means any
information available to the computer. The word is commonly used in both
the narrow sense and the more general sense.

High-Level Languages

There are many languages for writing programs. In this text we will discuss
the C++ programming language and use it to write our programs. C++ is a
high-level language, as are most of the other programming languages you are
likely to have heard of, such as C, C#, Java, Python, PHP, Pascal, Visual Basic,
FORTRAN, COBOL, Lisp, Scheme, and Ada. High-level languages resemble
human languages in many ways. They are designed to be easy for human
beings to write programs in and to be easy for human beings to read. A
high-level language, such as C++, contains instructions that are much more
complicated than the simple instructions a computer’s processor (CPU) is
capable of following.

The kind of language a computer can understand is called a low-
level language. The exact details of low-level languages differ from one
kind of computer to another. A typical low-level instruction might be the
following:

ADD X Y Z

This instruction might mean “Add the number in the memory location
called X to the number in the memory location called Y, and place the
result in the memory location called Z.” The above sample instruction is
written in what is called assembly language. Although assembly language
is almost the same as the language understood by the computer, it must
undergo one simple translation before the computer can understand it.
In order to get a computer to follow an assembly language instruction,
the words need to be translated into strings of Os and 1s. For example,
the word ADD might translate to 0110, the X might translate to 1001, the Y
to 1010, and the Z to 1011. The version of the instruction above that the
computer ultimately follows would then be:

0110 1001 1010 1011

Assembly language instructions and their translation into Os and 1s differ
from machine to machine.

Programs written in the form of Os and 1s are said to be written in
machine language, because that is the version of the program that the
computer (the machine) actually reads and follows. Assembly language and
machine language are almost the same thing, and the distinction between
them will not be important to us. The important distinction is that between

1.1 Computer Systems

machine language and high-level languages like C++: Any high-level language
program must be translated into machine language before the computer can
understand and follow the program.

Compilers

A program that translates a high-level language like C++ to a machine language
is called a compiler. A compiler is thus a somewhat peculiar sort of program,
in that its input or data is some other program, and its output is yet another
program. To avoid confusion, the input program is usually called the source
program or source code, and the translated version produced by the compiler
is called the object program or object code. The word code is frequently
used to mean a program or a part of a program, and this usage is particularly
common when referring to object programs. Now, suppose you want to run
a C++ program that you have written. In order to get the computer to follow
your C++ instructions, proceed as follows. First, run the compiler using your
C++ program as data. Notice that in this case, your C++ program is not being
treated as a set of instructions. To the compiler, your C++ program is just a
long string of characters. The output will be another long string of characters,
which is the machine-language equivalent of your C++ program. Next, run
this machine-language program on what we normally think of as the data for
the C++ program. The output will be what we normally conceptualize as the
output of the C++ program. The basic process is easier to visualize if you have
two computers available, as diagrammed in Display 1.4. In reality, the entire
process is accomplished by using one computer two times.

Compiler

A compiler is a program that translates a high-level language program,
such as a C++ program, into a machine-language program that the
computer can directly understand and execute.

The complete process of translating and running a C++ program is a bit
more complicated than what we show in Display 1.4. Any C++ program
you write will use some operations (such as input and output routines)
that have already been programmed for you. These items that are already
programmed for you (like input and output routines) are already compiled
and have their object code waiting to be combined with your program'’s object
code to produce a complete machine-language program that can be run on
the computer. Another program, called a linker, combines the object code
for these program pieces with the object code that the compiler produced

10 CHAPTER 1/ Introduction to Computers and C++ Programming

from your C++ program. The interaction of the compiler and the linker are
diagrammed in Display 1.5. In routine cases, many systems will do this
linking for you automatically. Thus, you may not need to worry about linking
in many cases.

Linking

The object code for your C++ program must be combined with the object
code for routines (such as input and output routines) that your program
uses. This process of combining object code is called Tinking and is done
by a program called a Tinker. For simple programs, linking may be done
for you automatically.

DISPLAY 1.4 Compiling and Running a C++ Program (Basic Outline)

Data for
< C++ program) C € PRE)

L2222 A A A A A A O VA A AN NN . N NN NN NN N NN |

(o)
o

Computer

Machine-
language

Y Y

Computer

P O & & O 0P 0P YooY LYYy yyyyyyd
P & & & & & P O Q0000 L Ly ey Py oy o

A S S S SC SN S SN

Output of
C++ program

{
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/

1.1 Computer Systems

DISPLAY 1.5 Preparing a C++ Program for Running

(C++program)

Y

Compiler

Object code for
C++ program

Object code for
other routines

Complete machine-
language code
ready to run

. SELF-TEST EXERCISES

1.

2.

What are the five main components of a computer?
What would be the data for a program to add two numbers?

What would be the data for a program that assigns letter grades to students
in a class?

What is the difference between a machine-language program and a high-
level language program?

What is the role of a compiler?
What is a source program? What is an object program?
What is an operating system?

What purpose does the operating system serve?

1

12 CHAPTER 1/ Introduction to Computers and C++ Programming

9. Name the operating system that runs on the computer you use to prepare
programs for this course.

10. What is linking?

11. Find out whether linking is done automatically by the compiler you use

for this course.

1.2 PROGRAMMING AND PROBLEM-SOLVING

The Analytical Engine has no pretensions whatever to originate anything.

It can do whatever we know how to order it to perform. It can follow analysis,
but it has no power of anticipating any analytical relations or truths. Its prov-
ince is to assist us in making available what we are already acquainted with.

ADA AUGUSTA, Countess of Lovelace (1815-1852)

HISTORY NOTE Charles Babbage,
Ada Augusta

The first truly programmable computer
was designed by Charles Babbage, an
English mathematician and physical scientist.
Babbage began the project sometime
before 1822 and worked on it for the rest
of his life. Although he never completed
the construction of his machine, the design
was a conceptual milestone in the history of
computing. Much of what we know about
Charles Babbage and his computer design
comes from the writings of his colleague
Ada Augusta, the Countess of Lovelace
and the daughter of the poet Byron. Ada
Augusta is frequently given the title of the
first computer programmer. Her comments,
quoted in the opening of the this section,
still apply to the process of solving problems
on a computer. Computers are not magic
and do not, at least as yet, have the ability to
formulate sophisticated solutions to all the
problems we encounter. Computers simply
do what the programmer orders them to
do. The solutions to problems are carried
out by the computer, but the solutions
are formulated by the programmer. Our
discussion of computer programming begins
with a discussion of how a programmer
formulates these solutions.

In this section we describe some general principles
that you can use to design and write programs.
These principles are not particular to C++. They
apply no matter what programming language you
are using.

Algorithms

When learning your first programming language,
it is easy to get the impression that the hard part
of solving a problem on a computer is translating
your ideas into the specific language that will be
fed into the computer. This definitely is not the
case. The most difficult part of solving a problem
on a computer is discovering the method of
solution. After you come up with a method of
solution, it is routine to translate your method
into the required language, be it C++ or some
other programming language. It is therefore
helpful to temporarily ignore the programming
language and to concentrate instead on for-
mulating the steps of the solution and writing
them down in plain English, as if the instructions
were to be given to a human being rather than a
computer. A sequence of instructions expressed in
this way is frequently referred to as an algorithm.

A sequence of precise instructions which
leads to a solution is called an algorithm. Some
approximately equivalent words are recipe, method,

1.2 Programming and Problem-Solving

A Charles Babbage

< A model of
Babbage's
computer

A

Ada Augusta,
Countess of Lovelace and

the first computer programmer

directions, procedure, and routine. The instructions may be expressed in a
programming language or a human language. Our algorithms will be
expressed in English and in the programming language C++. A computer
program is simply an algorithm expressed in a language that a computer can
understand. Thus, the term algorithm is more general than the term program.
However, when we say that a sequence of instructions is an algorithm, we
usually mean that the instructions are expressed in English, since if they were
expressed in a programming language we would use the more specific term
program. An example may help to clarify the concept.

Display 1.6 contains an algorithm expressed in English. The algorithm
determines the number of times a specified name occurs on a list of names.
If the list contains the winners of each of last season’s football games and the
name is that of your favorite team, then the algorithm determines how many
games your team won. The algorithm is short and simple but is otherwise very
typical of the algorithms with which we will be dealing.

13

14

CHAPTER 1/ Introduction to Computers and C++ Programming

DISPLAY 1.6 An Algorithm

Algorithm that determines how many times a name occurs in a 1list of names:

A WN R

Get the Tist of names.

Get the name being checked.

Set a counter to zero.

Do the following for each name on the 1ist:

Compare the name on the 1list to the name being checked,

and if the names are the same, then add one to the counter.
Announce that the answer is the number indicated by the counter.

The instructions numbered 1 through 5 in our sample algorithm
are meant to be carried out in the order they are listed. Unless otherwise
specified, we will always assume that the instructions of an algorithm are
carried out in the order in which they are given (written down). Most
interesting algorithms do, however, specify some change of order, usually a
repeating of some instruction again and again such as in instruction 4 of our
sample algorithm.

The word algorithm has a long history. It derives from the name al-
Khowarizmi, a ninth-century Persian mathematician and astronomer. He
wrote a famous textbook on the manipulation of numbers and equations.
The book was entitled Kitab al-jabr w’almuqabala, which can be translated
as Rules for Reuniting and Reducing. The similar-sounding word algebra was
derived from the Arabic word al-jabr, which appears in the title of the book
and which is often translated as reuniting or restoring. The meanings of the
words algebra and algorithm used to be much more intimately related than
they are today. Indeed, until modern times, the word algorithm usually
referred only to algebraic rules for solving numerical equations. Today, the
word algorithm can be applied to a wide variety of kinds of instructions for
manipulating symbolic as well as numeric data. The properties that qualify
a set of instructions as an algorithm now are determined by the nature of
the instructions rather than by the things manipulated by the instructions.
To qualify as an algorithm, a set of instructions must completely and
unambiguously specify the steps to be taken and the order in which they are
taken. The person or machine carrying out the algorithm does exactly what
the algorithm says, neither more nor less.

Algorithm

An algorithm is a sequence of precise instructions that leads to a solution.

1.2 Programming and Problem-Solving

Program Design

Designing a program is often a difficult task. There is no complete set of
rules, no algorithm to tell you how to write programs. Program design is a
creative process. Still, there is the outline of a plan to follow. The outline
is given in diagrammatic form in Display 1.7. As indicated there, the entire
program design process can be divided into two phases, the problem-solving
phase and the implementation phase. The result of the problem-solving phase
is an algorithm, expressed in English, for solving the problem. To produce a
program in a programming language such as C++, the algorithm is translated
into the programming language. Producing the final program from the
algorithm is called the implementation phase.

The first step is to be certain that the task—what you want your program
to do—is completely and precisely specified. Do not take this step lightly.
If you do not know exactly what you want as the output of your program,
you may be surprised at what your program produces. Be certain that you
know what the input to the program will be and exactly what information is
supposed to be in the output, as well as what form that information should
be in. For example, if the program is a bank accounting program, you must
know not only the interest rate but also whether interest is to be compounded
annually, monthly, daily, or whatever. If the program is supposed to write
poetry, you need to determine whether the poems can be in free verse or must
be in iambic pentameter or some other meter.

Many novice programmers do not understand the need to design an
algorithm before writing a program in a programming language, such as
C++, and so they try to short-circuit the process by omitting the problem-
solving phase entirely, or by reducing it to just the problem-definition part.
This seems reasonable. Why not “go for the mark” and save time? The answer
is that it does not save time! Experience has shown that the two-phase process
will produce a correctly working program faster. The two-phase process
simplifies the algorithm design phase by isolating it from the detailed rules of
a programming language such as C++. The result is that the algorithm design
process becomes much less intricate and much less prone to error. For even
a modest-size program, it can represent the difference between a half day of
careful work and several frustrating days of looking for mistakes in a poorly
understood program.

The implementation phase is not a trivial step. There are details to be
concerned about, and occasionally some of these details can be subtle, but
it is much simpler than you might at first think. Once you become familiar
with C++ or any other programming language, the translation of an algorithm
from English into the programming language becomes a routine task.

As indicated in Display 1.7, testing takes place in both phases. Before the
program is written, the algorithm is tested, and if the algorithm is found to be
deficient, then the algorithm is redesigned. That desktop testing is performed
by mentally going through the algorithm and executing the steps yourself.

15

16

CHAPTER 1/ Introduction to Computers and C++ Programming

DISPLAY 1.7 Program Design Process

Froblem-solving phase

Implementation phase

Start

. Problem
definition
[

I
|

|

I

|

|

, Y

U Ll Algorithm - Translating
|

I

|

|

I

|

|

I

design [: to C++
I
I
Y C Y
Desktop | ! .
L testing : : Testing
|

Working
program

For large algorithms this will require a pencil and paper. The C++ program
is tested by compiling it and running it on some sample input data. The
compiler will give error messages for certain kinds of errors. To find other
types of errors, you must somehow check to see whether the output is correct.

The process diagrammed in Display 1.7 is an idealized picture of the
program design process. It is the basic picture you should have in mind, but
reality is sometimes more complicated. In reality, mistakes and deficiencies
are discovered at unexpected times, and you may have to back up and redo an
earlier step. For example, as shown in Display 1.7, testing the algorithm might
reveal that the definition of the problem was incomplete. In such a case you
must back up and reformulate the definition. Occasionally, deficiencies in the
definition or algorithm may not be observed until a program is tested. In that
case you must back up and modify the problem definition or algorithm and
all that follows them in the design process.

Object-Oriented Programming

The program design process that we outlined in the previous section
represents a program as an algorithm (set of instructions) for manipulating
some data. That is a correct view, but not always the most productive view.
Modern programs are usually designed using a method known as object-
oriented programming, or OOP. In OOP, a program is viewed as a collection

1.2 Programming and Problem-Solving

of interacting objects. The methodology is easiest to understand when the
program is a simulation program. For example, for a program to simulate a
highway interchange, the objects might represent the automobiles and the
lanes of the highway. Each object has algorithms that describe how it should
behave in different situations. Programming in the OOP style consists of
designing the objects and the algorithms they use. When programming in the
OOP framework, the term Algorithm design in Display 1.7 would be replaced
with the phrase Designing the objects and their algorithms.

The main characteristics of OOP are encapsulation, inheritance, and
polymorphism. Encapsulation is usually described as a form of information
hiding or abstraction. That description is correct, but perhaps an easier-
to-understand characterization is to say that encapsulation is a form of
simplification of the descriptions of objects. Inheritance has to do with writing
reusable program code. Polymorphism refers to a way that a single name can
have multiple meanings in the context of inheritance. Having made those
statements, we must admit that they hold little meaning for readers who have
not heard of OOP before. However, we will describe all these terms in detail
later in this book. C++ accommodates OOP by providing classes, a kind of
data type combining both data and algorithms.

The Software Life Cycle

Designers of large software systems, such as compilers and operating systems,
divide the software development process into six phases collectively known as
the software life cycle. The six phases of this life cycle are:

1. Analysis and specification of the task (problem definition)
. Design of the software (object and algorithm design)

. Implementation (coding)

2
3
4. Testing
5. Maintenance and evolution of the system
6

. Obsolescence

We did not mention the last two phases in our discussion of program design
because they take place after the program is finished and put into service.
However, they should always be kept in mind. You will not be able to add
improvements or corrections to your program unless you design it to be
easy to read and easy to change. Designing programs so that they can be
easily modified is an important topic that we will discuss in detail when
we have developed a bit more background and a few more programming
techniques. The meaning of obsolescence is obvious, but it is not always easy
to accept. When a program is not working as it should and cannot be fixed
with a reasonable amount of effort, it should be discarded and replaced with a
completely new program.

17

18

CHAPTER 1/ Introduction to Computers and C++ Programming

. SELF-TEST EXERCISES

12. An algorithm is approximately the same thing as a recipe, but some kinds
of steps that would be allowed in a recipe are not allowed in an algorithm.
Which steps in the following recipe would be allowed in an algorithm?

PTace 2 teaspoons of sugar in mixing bowl.
Add 1 egg to mixing bowl.

Add 1 cup of milk to mixing bowl.

Add 1 ounce of rum, if you are not driving.
Add vanilla extract to taste.

Beat until smooth.

Pour into a pretty glass.

Sprinkle with nutmeg.

13. What is the first step you should take when creating a program?

14. The program design process can be divided into two main phases. What
are they?

15. Explain why the problem-solving phase should not be slighted.

1.3 INTRODUCTION TO C++

Language is the only instrument of science . . .

SAMUEL JOHNSON (1709-1784)

In this section we introduce you to the C++ programming language, which is
the programming language used in this book.

Origins of the C++ Language

The first thing that people notice about the C++ language is its unusual name.
Is there a C programming language, you might ask? Is there a C- or a C- -
language? Are there programming languages named A and B? The answer to
most of these questions is no. But the general thrust of the questions is on the
mark. There is a B programming language; it was not derived from a language
called A, but from a language called BCPL. The C language was derived from
the B language, and C++ was derived from the C language. Why are there two
pluses in the name C++? As you will see in the next chapter, ++ is an operation
in the C and C++ languages, so using ++ produces a nice pun. The languages
BCPL and B do not concern us. They are earlier versions of the C programming
language. We will start our description of the C++ programming language
with a description of the C language.

The C programming language was developed by Dennis Ritchie of AT&T
Bell Laboratories in the 1970s. It was first used for writing and maintaining the

1.3 Introduction to C++

UNIX operating system. (Up until that time UNIX systems programs were written
either in assembly language or in B, a language developed by Ken Thompson,
who is the originator of UNIX.) C is a general-purpose language that can be used
for writing any sort of program, but its success and popularity are closely tied
to the UNIX operating system. If you wanted to maintain your UNIX system,
you needed to use C. C and UNIX fit together so well that soon not just systems
programs, but almost all commercial programs that ran under UNIX were written
in the C language. C became so popular that versions of the language were
written for other popular operating systems; its use is not limited to computers
that use UNIX. However, despite its popularity, C is not without its shortcomings.

The C language is peculiar because it is a high-level language with many
of the features of a low-level language. C is somewhere in between the two
extremes of a very high level language and a low-level language, and therein
lies both its strengths and its weaknesses. Like (low-level) assembly language,
C language programs can directly manipulate the computer’s memory. On the
other hand, C has many features of a high-level language, which makes it easier
to read and write than assembly language. This makes C an excellent choice for
writing systems programs, but for other programs (and in some sense even for
systems programs), C is not as easy to understand as other languages; also, it
does not have as many automatic checks as some other high-level languages.

To overcome these and other shortcomings of C, Bjarne Stroustrup of AT&T
Bell Laboratories developed C++ in the early 1980s. Stroustrup designed C++
to be a better C. Most of C is a subset of C++, and so most C programs are also
C++ programs. (The reverse is not true; many C++ programs are definitely not C
programs.) Unlike C, C++ has facilities to do object-oriented programming, which
is a very powerful programming technique described earlier in this chapter. The
C++ language continues to evolve. Major new features were added in 2011. This
version is referred to as C++11. Minor features are expected in 2014 and major
features again in 2017.

A Sample C++ Program

Display 1.8 contains a simple C++ program and the screen display that might
be generated when a user runs and interacts with this program. The person
who runs a program is called the user. The output when the program is run is
shown in the Sample Dialogue. The text typed in by the user is shown in color
to distinguish it from the text output by the program. On the actual screen both
texts would look alike. The source code for the program is shown in lines 1-22.
The line numbers are shown only for reference. You would not type in the line
numbers when entering the program. Keywords with a predefined meaning in
C++ are shown in color. These keywords are discussed in Chapter 2. The person
who writes the program is called the programmer. Do not confuse the roles of
the user and the programmer. The user and the programmer might or might not
be the same person. For example, if you write and then run a program, you are
both the programmer and the user. With professionally produced programs, the
programmer (or programmers) and the user are usually different persons.

20

CHAPTER 1/ Introduction to Computers and C++ Programming

DISPLAY 1.8 A Sample C++ Program

1 #include <iostream>
2 using namespace std;
3 int main()
4 {
5 int number_of_pods, peas_per_pod, total_peas;
6 cout << "Press return after entering a number.\n";
7 cout << "Enter the number of pods:\n";
8 cin >> number_of_pods;
9 cout << "Enter the number of peas in a pod:\n";
10 cin >> peas_per_pod;
11 total_peas = number_of_pods * peas_per_pod;
12 cout << "If you have ";
13 cout << number_of_pods;
14 cout << " pea pods\n";
15 cout << "and ";
16 cout << peas_per_pod;
17 cout << " peas in each pod, then\n";
18 cout << "you have ";
19 cout << total_peas;
20 cout << " peas in all the pods.\n";
21 return 0;
22 }

Sample Dialogue

Press return after entering a number.
Enter the number of pods:

10

Enter the number of peas in a pod:

9

If you have 10 pea pods

and 9 peas in each pod, then

you have 90 peas in all the pods.

In the next chapter we will explain in detail all the C++ features you need
to write programs like the one in Display 1.8, but to give you a feel for how
a C++ program works, we will now provide a brief description of how this
particular program works. If some of the details are a bit unclear, do not worry.
In this section we just want to give you a feel for what a C++ program is.

The beginning and end of our sample program contain some details that
need not concern us yet. The program begins with the following lines:

1.3 Introduction to C++

#include <iostream>
using namespace std;
int mainQ)

{

For now we will consider these lines to be a rather complicated way of saying
“The program starts here.”

The program ends with the following two Tines:

return 0;

}

For a simple program, these two lines simply mean “The program ends here.”

The lines in between these beginning and ending lines are the heart of
the program. We will briefly describe these lines, starting with the following
line:

int number_of_pods, peas_per_pod, total_peas;

This line is called a variable declaration. This variable declaration tells the
computer that number_of_pods, peas_per_pod, and total_peas will be used
as names for three variables. Variables will be explained more precisely in the
next chapter, but it is easy to understand how they are used in this program.
In this program the variables are used to name numbers. The word that starts
this line, int, is an abbreviation for the word integer and it tells the computer
that the numbers named by these variables will be integers. An integer is a
whole number, like 1, 2, -1, -7, 0, 205, —-103, and so forth.

The remaining lines are all instructions that tell the computer to do
something. These instructions are called statements or executable statements.
In this program each statement fits on exactly one line. That need not be true,
but for very simple programs, statements are usually listed one per line.

Most of the statements begin with either the word cin or cout. These
statements are input statements and output statements. The word cin,
which is pronounced “see-in,” is used for input. The statements that begin
with cin tell the computer what to do when information is entered from
the keyboard. The word cout, which is pronounced “see-out,” is used for
output, that is, for sending information from the program to the terminal
screen. The letter c is there because the language is C++. The arrows, written
<< or >>, tell you the direction that data is moving. The arrows, << and >>,
are called ‘insert’ and ‘extract,’ or ‘put to’ and ‘get from,” respectively. For
example, consider the line:

cout << "Press return after entering a number.\n";

This line may be read, ‘put "Press...number.\n" to cout’ or simply ‘output
"Press...number.\n"". If you think of the word cout as a name for the
screen (the output device), then the arrows tell the computer to send the
string in quotes to the screen. As shown in the sample dialogue, this causes

22

CHAPTER 1/ Introduction to Computers and C++ Programming

the text contained in the quotes to be written to the screen. The \n at the
end of the quoted string tells the computer to start a new line after writing
out the text. Similarly, the next line of the program also begins with cout,
and that program line causes the following line of text to be written to the
screen:

Enter the number of pods:

The next program line starts with the word cin, so it is an input statement.
Let’s look at that line:

cin >> number_of_pods;

This line may be read, ‘get number_of_pods from cin’ or simply ‘input
number_of_pods’.

If you think of the word cin as standing for the keyboard (the input
device), then the arrows say that input should be sent from the keyboard to
the variable number_of pods. Look again at the sample dialogue. The next
line shown has a 10 written in bold. We use bold to indicate something typed
in at the keyboard. If you type in the number 10, then the 10 appears on the
screen. If you then press the Return key (which is also sometimes called the
Enter key), that makes the 10 available to the program. The statement which
begins with cin tells the computer to send that input value of 10 to the
variable number_of_pods. From that point on, number_of_pods has the value
10; when we see number_of_pods later in the program, we can think of it as
standing for the number 10.

Consider the next two program lines:

cout << "Enter the number of peas in a pod:\n";
cin >> peas_per_pod;

These lines are similar to the previous two lines. The first sends a message to
the screen asking for a number. When you type in a number at the keyboard
and press the Return key, that number becomes the value of the variable peas_
per_pod. In the sample dialogue, we assume that you type in the number 9.
After you type in 9 and press the Return key, the value of the variable peas_
per_pod becomes 9.

The next nonblank program line, shown below, does all the computation
that is done in this simple program:

total_peas = number_of pods * peas_per_pod;

The asterisk symbol, *, is used for multiplication in C++. So this statement says
to multiply number_of_pods and peas_per_pod. In this case, 10 is multiplied
by 9 to give a result of 90. The equal sign says that the variable total_peas
should be made equal to this result of 90. This is a special use of the equal
sign; its meaning here is different than in other mathematical contexts. It gives
the variable on the left-hand side a (possibly new) value; in this case it makes
90 the value of total_peas.

1.3 Introduction to C++

The rest of the program is basically more of the same sort of output.
Consider the next three nonblank lines:

cout << "If you have ";
cout << number_of_pods;
cout << " pea pods\n";

These are just three more output statements that work basically the same
as the previous statements that begin with cout. The only thing that is new
is the second of these three statements, which says to output the variable
number_of_pods. When a variable is output, it is the value of the variable that
is output. So this statement causes a 10 to be output. (Remember that in this
sample run of the program, the variable number_of_pods was set to 10 by the
user who ran the program.) Thus, the output produced by these three lines is:

If you have 10 pea pods

Notice that the output is all on one line. A new line is not begun until the
special instruction \n is sent as output.

The rest of the program contains nothing new, and if you understand
what we have discussed so far, you should be able to understand the rest of
the program.

PITFALL Using the Wrong Slash in \n

When you use a \n in a cout statement be sure that you use the backslash,
which is written \. If you make a mistake and use /n rather than \n, the
compiler will not give you an error message. Your program will run, but the
output will look peculiar. |

B PROGRAMMING TIP Input and Output Syntax

If you think of cin as a name for the keyboard or input device and think of
cout as a name for the screen or the output device, then it is easy to remember
the direction of the arrows >> and <<. They point in the direction that data
moves. For example, consider the statement:

cin >> number_of_pods;

In the above statement, data moves from the keyboard to the variable number_
of_pods, and so the arrow points from cin to the variable.
On the other hand, consider the output statement:

cout << number_of pods;

In this statement the data moves from the variable number_of_pods to the
screen, so the arrow points from the variable number_of_pods to cout. |

24

CHAPTER 1/ Introduction to Computers and C++ Programming

Layout of a Simple C++ Program

The general form of a simple C++ program is shown in Display 1.9. As far
as the compiler is concerned, the line breaks and spacing need not be as shown
there and in our examples. The compiler will accept any reasonable pattern
of line breaks and indentation. In fact, the compiler will even accept most
unreasonable patterns of line breaks and indentation. However, a program
should always be laid out so that it is easy to read. Placing the opening brace,
{, on a line by itself and also placing the closing brace, }, on a line by itself will
make these punctuations easy to find. Indenting each statement and placing
each statement on a separate line makes it easy to see what the program
instructions are. Later on, some of our statements will be too long to fit on
one line and then we will use a slight variant of this pattern for indenting and
line breaks. You should follow the pattern set by the examples in this book, or
follow the pattern specified by your instructor if you are in a class.

In Display 1.8, the variable declarations are on the line that begins with
the word int. As we will see in the next chapter, you need not place all your
variable declarations at the beginning of your program, but that is a good
default location for them. Unless you have a reason to place them somewhere
else, place them at the start of your program as shown in Display 1.9 and in
the sample program in Display 1.8. The statements are the instructions that
are followed by the computer. In Display 1.8, the statements are the lines that
begin with cout or cin and the one line that begins with total_peas followed
by an equal sign. Statements are often called executable statements. We will
use the terms statement and executable statement interchangeably. Notice that
each of the statements we have seen ends with a semicolon. The semicolon
in statements is used in more or less the same way that the period is used in
English sentences; it marks the end of a statement.

DISPLAY 1.9 Layout of a Simple C++ Program

1 #include <iostream>
2 using namespace std;
3

4 int main()

5 {

6 Variable_Declarations
7

8 Statement_1

9 Statement_2
10 -
11 Statement_Last
12
13 return 0;

1.3 Introduction to C++

For now you can view the first few lines as a funny way to say “this is the
beginning of the program.” But we can explain them in a bit more detail. The
first line

#include <iostream>

is called an include directive. It tells the compiler where to find information
about certain items that are used in your program. In this case jostream is
the name of a library that contains the definitions of the routines that handle
input from the keyboard and output to the screen; iostream is a file that
contains some basic information about this library. The linker program that
we discussed earlier in this chapter combines the object code for the library
iostream and the object code for the program you write. For the library
iostream this will probably happen automatically on your system. You will
eventually use other libraries as well, and when you use them, they will have
to be named in directives at the start of your program. For other libraries, you
may need to do more than just place an include directive in your program,
but in order to use any library in your program, you will always need to at
least place an include directive for that library in your program. Directives
always begin with the symbol #. Some compilers require that directives have
no spaces around the #, so it is always safest to place the # at the very start of
the line and not include any space between the # and the word include.

The following line further explains the include directive that we just
explained:

using namespace std;

This line says that the names defined in iostream are to be interpreted in the
“standard way” (std is an abbreviation of standard). We will have more to say
about this line a bit later in this book.

The third and fourth nonblank lines, shown next, simply say that the
main part of the program starts here:

int main(Q)

{

The correct term is main function, rather than main part, but the reason for
that subtlety will not concern us until Chapter 4. The braces { and } mark the
beginning and end of the main part of the program. They need not be on a
line by themselves, but that is the way to make them easy to find and we will
therefore always place each of them on a line by itself.

The next-to-last line

return 0;

says to “end the program when you get to here.” This line need not be the
last thing in the program, but in a very simple program it makes no sense to
place it anywhere else. Some compilers will allow you to omit this line and
will figure out that the program ends when there are no more statements to

26 CHAPTER 1/ Introduction to Computers and C++ Programming

D

VideoNote
Compiling and Running
a C++ Program

execute. However, other compilers will insist that you include this line, so it is
best to get in the habit of including it, even if your compiler is happy without
it. This line is called a return statement and is considered to be an executable
statement because it tells the computer to do something; specifically, it tells
the computer to end the program. The number 0 has no intuitive significance
to us yet, but must be there; its meaning will become clear as you learn
more about C++. Note that even though the return statement says to end the
program, you still must add a closing brace, }, at the end of the main part of
your program.

PITFALL Putting a Space Before the include File Name

Be certain that you do not have any extra space between the < and the
iostream file name (Display 1.9) or between the end of the file name and the
closing >. The compiler include directive is not very smart: It will search for
a file name that starts or ends with a space! The file name will not be found,
producing an error that is quite difficult to locate. You should make this error
deliberately in a small program, then compile it. Save the message that your
compiler produces so you know what the error message means the next time
you get that error message. |

Compiling and Running a C++ Program

In the previous section you learned what would happen if you ran the C++
program shown in Display 1.8. But where is that program and how do you
make it run?

You write a C++ program using a text editor in the same way that you write
any other document—a term paper, a love letter, a shopping list, or whatever.
The program is kept in a file just like any other document you prepare using a
text editor. There are different text editors, and the details of how to use them
will vary from one to another, so we cannot say too much more about your
text editor. You should consult the documentation for your editor.

The way that you compile and run a C++ program also depends on the
particular system you are using, so we will discuss these points in only a
very general way. You need to learn how to give the commands to compile,
link, and run a C++ program on your system. These commands can be
found in the manuals for your system and by asking people who are already
using C++ on your system. When you give the command to compile your
program, this will produce a machine-language translation of your C++
program. This translated version is called the object code for your program.
The object code must be linked (that is, combined) with the object code
for routines (such as input and output routines) that are already written for
you. It is likely that this linking will be done automatically, so you do not
need to worry about linking. But on some systems, you may be required to
make a separate call to the linker. Again, consult your manuals or a local
expert. Finally, you give the command to run your program; how you give

1.3 Introduction to C++

that command also depends on the system you are using, so check with the
manuals or a local expert.

PITFALL Compiling a C++11 Program

C++11 (formerly known as C++0x) is the most recent version of the standard
of the C++ programming language. It was approved on August 12, 2011 by
the International Organization for Standardization. A C++11 compiler is able
to compile and run programs written for older versions of C++. However, the
C++11 version includes new language features that are not compatible with
older C++ compilers. This means that if you have an older C++ compiler then
you may not be able to compile and run C++11 programs.

You may also need to specify whether or not to compile against the C++11
standard. For example, g++ 4.7 requires the compiler flag of —std=c++11 to be
added to the command line; otherwise the compiler will assume that the
C++ program is written to an older standard. The command line to compile a
C++11 program named testing.cpp would look like:

g++ testing.cpp -std=c++11

Check the documentation with your compiler to determine if any special
steps are needed to compile C++11 programs and to determine what C++11
language features are supported. |

B PROGRAMMING TIP Getting Your Program to Run

Different compilers and different environments might require a slight variation
in some details of how you set up a file with your C++ program. Obtain a copy
of the program in Display 1.10. It is available for downloading over the Internet.
(See the Preface for details.) Alternatively, very carefully type in the program
yourself. Do not type in the line numbers. Compile the program. If you get an
error message, check your typing, fix any typing mistakes, and recompile the file.
Once the program compiles with no error messages, try running the program.

If you get the program to compile and run normally, you are all set. You
do not need to do anything different from the examples shown in the book.
If this program does not compile or does not run normally, then read on. In
what follows we offer some hints for dealing with your C++ setup. Once you
get this simple program to run normally, you will know what small changes
to make to your C++ program files in order to get them to run on your system.

If your program seems to run, but you do not see the output line

Testing 1, 2, 3

then, in all likelihood, the program probably did give that output, but it
disappeared before you could see it. Try adding the following to the end of
your program, just before the line return 0; these lines should stop your
program to allow you to read the output.

CHAPTER 1/ Introduction to Computers and C++ Programming

DISPLAY 1.10 Testing Your C++ Setup

1 #include <iostream>

2 using namespace std; If you cannot compile and run this

3 program, then see the programming

4 int main() tip entitled “Getting Your Frogram to
5 { Run.” It suggests some things to do to
6 cout << "Testing 1, 2, 3\n"; get your C++ programs to rur on your
7 return 0; particular computer setup.

8 }

9

Sample Dialogue

Testing 1, 2, 3

char letter;
cout << "Enter a Tetter to end the program:\n";
cin >> Tletter;

The part in braces should then read as follows:

"

cout << "Testing 1, 2, 3\n";
char letter;

cout << "Enter a letter to end the program:\n";
cin >> letter;

return 0;

For now you need not understand these added lines, but they will be clear to
you by the end of Chapter 2.
If the program does not compile or run at all, then try changing

#include <iostream>
by adding .h to the end of iostream, so it reads as follows:

#include <iostream.h>

If your program requires iostream.h instead of iostream, then you have an
old C++ compiler and should obtain a more recent compiler.
If your program still does not compile and run normally, try deleting

using namespace std;

If your program still does not compile and run, then check the
documentation for your version of C++ to see if any more “directives” are
needed for “console” input/output.

1.4 Testing and Debugging

If all this fails, consult your instructor if you are in a course. If you

are not in a course or you are not using the course computer, check the
documentation for your C++ compiler or check with a friend who has a
similar computer setup. The necessary change is undoubtedly very small and,
once you find out what it is, very easy.

. SELF-TEST EXERCISES

16.

17.

18.

19.

20.

21.

If the following statement were used in a C++ program, what would it
cause to be written on the screen?

cout << "C++ is easy to understand.";

What is the meaning of \n as used in the following statement (which
appears in Display 1.8)?

cout << "Enter the number of peas in a pod:\n";

What is the meaning of the following statement (which appears in
Display 1.8)?

cin >> peas_per_pod;

What is the meaning of the following statement (which appears in
Display 1.8)?

total_peas = number_of pods * peas_per_pod;

What is the meaning of this directive?

#include <iostream>

What, if anything, is wrong with the following #include directives?

#include <iostream >
#include < iostream>
c. #include <iostream>

T

1.4 TESTING AND DEBUGGING

“And if you take one from three hundred and sixty-five, what remains?”
“Three hundred and sixty-four, of course.”

Humpty Dumpty looked doubtful. “I'd rather see that done on paper,” he said.
LEWIS CARROLL, Through the Looking-Glass

A mistake in a program is usually called a bug, and the process of eliminating
bugs is called debugging. There is colorful history of how this term came into
use. It occurred in the early days of computers, when computer hardware was

29

30

CHAPTER 1/ Introduction to Computers and C++ Programming

extremely sensitive and occupied an entire room. Rear Admiral Grace Murray
Hopper (1906-1992) was “the third programmer on the world’s first large-
scale digital computer.” (Denise W. Gurer, “Pioneering women in computer
science” CACM 38(1):45-54, January 1995.) While Hopper was working
on the Harvard Mark I computer under the command of Harvard professor
Howard H. Aiken, an unfortunate moth caused a relay to fail. Hopper and
the other programmers taped the deceased moth in the logbook with the note
“First actual case of bug being found.” The logbook is currently on display
at the Naval Museum in Dahlgren, Virginia. This was the first documented
computer bug. Professor Aiken would come into the facility during a slack
time and inquire if any numbers were being computed. The programmers
would reply that they were debugging the computer. For more information
about Admiral Hopper and other persons in computing, see Robert Slater,
Portraits in Silicon (MIT Press, 1987). Today, a bug is a mistake in a program.
In this section we describe the three main kinds of programming mistakes and
give some hints on how to correct them.

Kinds of Program Errors

The compiler will catch certain kinds of mistakes and will write out an error
message when it finds a mistake. It will detect what are called syntax errors,
because they are, by and large, violation of the syntax (that is, the grammar
rules) of the programming language, such as omitting a semicolon.

If the compiler discovers that your program contains a syntax error, it will
tell you where the error is likely to be and what kind of error it is likely to be.
When the compiler says your program contains a syntax error, you can be
confident that it does. However, the compiler may be incorrect about either
the location or the nature of the error. It does a better job of determining the
location of an error, to within a line or two, than it does of determining the
source of the error. This is because the compiler is guessing at what you meant
to write down and can easily guess wrong. After all, the compiler cannot
read your mind. Error messages subsequent to the first one have a higher
likelihood of being incorrect with respect to either the location or the nature
of the error. Again, this is because the compiler must guess your meaning. If
the compiler’s first guess was incorrect, this will affect its analysis of future
mistakes, since the analysis will be based on a false assumption.

If your program contains something that is a direct violation of the
syntax rules for your programming language, the compiler will give you
an error message. However, sometimes the compiler will give you only a
warning message, which indicates that you have done something that is
not, technically speaking, a violation of the programming language syntax
rules, but that is unusual enough to indicate a likely mistake. When you get
a warning message, the compiler is saying, “Are you sure you mean this?” At
this stage of your development, you should treat every warning as if it were an
error until your instructor approves ignoring the warning.

1.4 Testing and Debugging

There are certain kinds of errors that the computer system can detect
only when a program is run. Appropriately enough, these are called run-time
errors. Most computer systems will detect certain run-time errors and output
an appropriate error message. Many run-time errors have to do with numeric
calculations. For example, if the computer attempts to divide a number by
zero, that is normally a run-time error.

If the compiler approved of your program and the program ran once with
no run-time error messages, this does not guarantee that your program is
correct. Remember, the compiler will only tell you if you wrote a syntactically
(that is, grammatically) correct C++ program. It will not tell you whether the
program does what you want it to do. Mistakes in the underlying algorithm
or in translating the algorithm into the C++ language are called logic errors.
For example, if you were to mistakenly use the addition sign + instead of the
multiplication sign * in the program in Display 1.8, that would be a logic
error. The program would compile and run normally but would give the
wrong answer. If the compiler approves of your program and there are no run-
time errors but the program does not perform properly, then undoubtedly
your program contains a logic error. Logic errors are the hardest kind to
diagnose, because the computer gives you no error messages to help find the
error. It cannot reasonably be expected to give any error messages. For all the
computer knows, you may have meant what you wrote.

PITFALL Assuming Your Program Is Correct

In order to test a new program for logic errors, you should run the program
on several representative data sets and check its performance on those inputs.
If the program passes those tests, you can have more confidence in it, but this
is still not an absolute guarantee that the program is correct. It still may not
do what you want it to do when it is run on some other data. The only way
to justify confidence in a program is to program carefully and so avoid most
errors. |

. SELF-TEST EXERCISES

22. What are the three main kinds of program errors?
23. What kinds of errors are discovered by the compiler?

24. If you omit a punctuation symbol (such as a semicolon) from a program,
an error is produced. What kind of error?

25. Omitting the final brace } from a program produces an error. What kind
of error?

31

32

CHAPTER 1/ Introduction to Computers and C++ Programming

26

27.

. Suppose your program has a situation about which the compiler reports
a warning. What should you do about it? Give the text’s answer and your
local answer if it is different from the text’s. Identify your answers as the
text's or as based on your local rules.

Suppose you write a program that is supposed to compute the interest
on a bank account at a bank that computes interest on a daily basis, and
suppose you incorrectly write your program so that it computes interest
on an annual basis. What kind of program error is this?

CHAPTER SUMMARY

The collection of programs used by a computer is referred to as the software
for that computer. The actual physical machines that make up a computer
installation are referred to as hardware.

The five main components of a computer are the input device(s), the output
device(s), the processor (CPU), the main memory, and the secondary memory.

A computer has two kinds of memory: main memory and secondary mem-
ory. Main memory is used only while the program is running. Secondary
memory is used to hold data that will stay in the computer before and/or
after the program is run.

A computer’s main memory is divided into a series of numbered locations
called bytes. The number associated with one of these bytes is called the ad-
dress of the byte. Often, several of these bytes are grouped together to form
a larger memory location. In that case, the address of the first byte is used as
the address of this larger memory location.

A byte consists of eight binary digits, each either zero or one. A digit that can
only be zero or one is called a bit.

A compiler is a program that translates a program written in a high-level
language like C++ into a program written in the machine language that the
computer can directly understand and execute.

A sequence of precise instructions that leads to a solution is called an algo-
rithm. Algorithms can be written in English or in a programming language,
like C++. However, the word algorithm is usually used to mean a sequence
of instructions written in English (or some other human language, such as
Spanish or Arabic).

Before writing a C++ program, you should design the algorithm (method of
solution) that the program will use.

Programming errors can be classified into three groups: syntax errors, run-
time errors, and logic errors. The computer will usually tell you about errors
in the first two categories. You must discover logic errors yourself.

10.

Answers to Self-Test Exercises

The individual instructions in a C++ program are called statements.

A variable in a C++ program can be used to name a number. (Variables are
explained more fully in the next chapter.)

A statement in a C++ program that begins with cout << is an output
statement, which tells the computer to output to the screen whatever
follows the <<.

A statement in a C++ program that begins with cin >> is an input statement.

Answers to Self-Test Exercises

. The five main components of a computer are the input device(s), the out-

put device(s), the processor (CPU), the main memory, and the secondary
memory.

. The two numbers to be added.

. The grades for each student on each test and each assignment.

A machine-language program is a low-level language consisting of 0s and 1s
that the computer can directly execute. A high-level language is written in
a more English-like format and is translated by a compiler into a machine-
language program that the computer can directly understand and execute.

. A compiler translates a high-level language program into a

machine-language program.

. The high-level language program that is input to a compiler is called the

source program. The translated machine-language program that is output
by the compiler is called the object program.

. An operating system is a program, or several cooperating programs, but is

best thought of as the user’s chief servant.

. An operating system'’s purpose is to allocate the computer’s resources to

different tasks the computer must accomplish.

. Among the possibilities are the Macintosh operating system Mac OS,

Windows, VMS, Solaris, SunOS, UNIX (or perhaps one of the UNIX-like
operating systems such as Linux). There are many others.

The object code for your C++ program must be combined with the object
code for routines (such as input and output routines) that your program
uses. This process of combining object code is called linking. For simple
programs, this linking may be done for you automatically.

34

CHAPTER 1/ Introduction to Computers and C++ Programming

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

The answer varies, depending on the compiler you use. Most UNIX and
UNIX-like compilers link automatically, as do the compilers in most inte-
grated development environments for Windows and Macintosh operating
systems.

The following instructions are too vague for use in an algorithm:

Add vanilla extract to taste.
Beat until smooth.

Pour into a pretty glass.
Sprinkle with nutmeg.

The notions of “to taste,” “smooth,” and “pretty” are not precise.
The instruction “sprinkle” is too vague, since it does not specify
how much nutmeg to sprinkle. The other instructions are reason-
able to use in an algorithm.

The first step you should take when creating a program is to be certain that
the task to be accomplished by the program is completely and precisely
specified.

The problem-solving phase and the implementation phase.

Experience has shown that the two-phase process produces a correctly
working program faster.

C++ is easy to understand.

The symbols \n tell the computer to start a new line in the output so that
the next item output will be on the next line.

This statement tells the computer to read the next number that is typed in at
the keyboard and to send that number to the variable named peas_per_pod.

This statement says to multiply the two numbers in the variables number_
of_pods and peas_per_pod, and to place the result in the variable named
total_peas.

The #include <iostreams> directive tells the compiler to fetch the file
iostream. This file contains declarations of cin, cout, the insertion (<<)
and extraction (>>) operators for I/O (input and output). This enables
correct linking of the object code from the iostream library with the I/O
statements in the program.

a. The extra space after the iostream file name causes a file-not-found error
message.

b. The extra space before the iostream file name causes a file-not-found
error message.

c. This one is correct.

Practice Programs

22. The three main kinds of program errors are syntax errors, run-time errors,
and logic errors.

23. The compiler detects syntax errors. There are other errors that are not tech-
nically syntax errors that we are lumping with syntax errors. You will learn
about these later.

24. A syntax error.
25. A syntax error.

26. The text states that you should take warnings as if they had been reported
as errors. You should ask your instructor for the local rules on how to
handle warnings.

27. Alogic error.

PRACTICE PROGRAMS

Practice Programs can generally be solved with a short program that directly applies
the programming principles presented in this chapter.

1. Using your text editor, enter (that is, type in) the C++ program shown in
Display 1.8. Be certain to type the first line exactly as shown in Display
1.8. In particular, be sure that the first line begins at the left-hand end of
the line with no space before or after the # symbol. Compile and run the
program. If the compiler gives you an error message, correct the program
and recompile the program. Do this until the compiler gives no error mes-
sages. Then run your program.

2. Modify the C++ program you entered in Practice Program 1. Change the
program so that it first writes the word Hel7o to the screen and then goes
on to do the same things that the program in Display 1.8 does. You will
only have to add one line to the program to make this happen. Recompile
the changed program and run it. Then change the program even more. Add
one more line that will make the program write the word Good-bye to the
screen at the end of the program. Be certain to add the symbols \n to the
last output statement so that it reads as follows:

cout << "Good-bye\n";

(Some systems require that final \n, and your system may be one of
them.) Recompile and run the changed program.

3. Further modify the C++ program that you already modified in Practice
Program 2. Change the multiplication sign * in your C++ program to a
division sign /. Recompile the changed program. Run the program. Enter a
0 input for “number of peas in a pod.” Notice the run-time error message
due to division by zero.

36

VideoNote
Solution to Practice
Program 1.6

CHAPTER 1/ Introduction to Computers and C++ Programming

4.

Modify the C++ program that you entered in Practice Program 1. Change
the multiplication sign * in your C++ program to an addition sign +.
Recompile and run the changed program. Notice that the program com-
piles and runs perfectly fine, but the output is incorrect. That is because this
modification is a logic error.

. Modify the C++ program that you entered in Practice Program 1. In this

version calculate the total length of fence you would need to enclose a
rectangular area that is width feet long and height feet tall. The program
should have variables for width and height with values entered by the
user. Create another variable, totalLength, that stores the total length of
fence needed (which your program should calculate). Output the total
with an appropriate message.

. The purpose of this exercise is to produce a catalog of typical syntax errors

and error messages that will be encountered by a beginner and to continue
acquainting you with the programming environment. This exercise should
leave you with a knowledge of what error to look for when given any of a
number of common error messages.

Your instructor may have a program for you to use for this exercise. If not,
you should use a program from one of the previous Practice Programs.

Deliberately introduce errors to the program, compile, record the error
and the error message, fix the error, compile again (to be sure you have
the program corrected), then introduce another error. Keep the catalog of
errors and add program errors and messages to it as you continue through
this course.

The sequence of suggested errors to introduce is:

a. Put an extra space between the < and the iostream file name.

b. Omit one of the < or > symbols in the include directive.

¢. Omit the int from int main().

d. Omit or misspell the word main.

e. Omit one of the (); then omit both the ().

f. Continue in this fashion, deliberately misspelling identifiers (cout, cin,
and so on). Omit one or both of the << in the cout statement; leave off
the ending curly brace }.

PROGRAMMING PROJECTS

Programming Projects require more problem-solving than Practice Programs and
can usually be solved many different ways. Visit www.myprogramminglab.com to
complete many of these Programming Projects online and get instant feedback.

1.

Write a C++ program that reads in two integers and then outputs both their
sum and their product. One way to proceed is to start with the program in

www.myprogramminglab.com

Programming Projects 37

Display 1.8 and to then modify that program to produce the program for
this project. Be certain to type the first line of your program exactly the same
as the first line in Display 1.8. In particular, be sure that the first line begins
at the left-hand end of the line with no space before or after the # symbol.
Also, be certain to add the symbols \n to the last output statement in your
program. For example, the last output statement might be the following:

cout << "This is the end of the program.\n";

(Some systems require that final \n, and your system may be one of
these.)

2. Write a program that prints out “C S !” in large block letters inside a border
of *s followed by two blank lines then the message Computer Science is
Cool Stuff. The output should look as follows:

Fedededefe N dedede NN dddef NN ddde NN A dded NNl dde NN dded A dde Rl dddt

ccc SSSS !

C C S S I

C S N

C S !

C SSSS 1

C S !

C S N
C C S S

ccc SSSS 00

Fedededefhdddedhdddnhdddfhhddd R dhdde i hdddhddd R hddnk

Computer Science is Cool Stuff!!!

3. Write a program that allows the user to enter a number of quarters, dimes,
and nickels and then outputs the monetary value of the coins in cents. For &
example, if the user enters 2 for the number of quarters, 3 for the NUMDber gyeuon o programming
of dimes, and 1 for the number of nickels, then the program should output ~ Proiect1:3
that the coins are worth 85 cents.

4. Write a program that allows the user to enter a time in seconds and then
outputs how far an object would drop if it is in freefall for that length of
time. Assume that the object starts at rest, there is no friction or resistance
from air, and there is a constant acceleration of 32 feet per second due to
gravity. Use the equation:

. . 2
distance = acceleration x time
2

You should first compute the product and then divide the result by 2 (The
reason for this will be discussed later in the book).

38 CHAPTER 1/ Introduction to Computers and C++ Programming

5. Write a program that inputs a character from the keyboard and then out-
puts a large block letter “C” composed of that character. For example, if the
user inputs the character “X,” then the output should look as follows:

X XX
X X
X
X
X
X
X
X X

X X X

C++ Basics

2.1 VARIABLES AND ASSIGNMENTS 40
Variables 40

Names: Identifiers 42

Variable Declarations 44

Assignment Statements 45

Pitfall: Uninitialized Variables 47

Programming Tip: Use Meaningful Names 49

2.2 INPUT AND OUTPUT 50
Output Using cout 50

Include Directives and Namespaces 52
Escape Sequences 53

Programming Tip: End Each Program with a \n
orendl 55

Formatting for Numbers with a Decimal Point 55

Input Using cin 56

Designing Input and Output 58

Programming Tip: Line Breaks in /0 58

2.3 DATA TYPES AND EXPRESSIONS 60
The Types int and double 60

Other Number Types 62

C++11 Types 63

Chapter Summary 98
Answers to Self-Test Exercises 98

The Type char 64

The Type bool 66

Introduction to the Class string 66
Type Compatibilities 68

Arithmetic Operators and Expressions 69
Pitfall: Whole Numbers in Division 72
More Assignment Statements 74

2.4 SIMPLE FLOW OF CONTROL 74

A Simple Branching Mechanism 75

Pitfall: Strings of Inequalities 80

Pitfall: Using = in place of == 81

Compound Statements 82

Simple Loop Mechanisms 84

Increment and Decrement Operators 87
Programming Example: Charge Card Balance 89
Pitfall: Infinite Loops 90

2.5 PROGRAM STYLE 93
Indenting 93

Comments 93

Naming Constants 95

Practice Programs 103
Programming Projects 105

Don't imagine you know what a computer terminal is. A computer terminal is
not some clunky old television with a typewriter in front of it. It is an inter-
face where the mind and the body can connect with the universe and move
bits of it about.

DOUGLAS ADAMS, Mostly Harmless (the fifth volume in The Hitchhiker’s Trilogy)

40

INTRODUCTION

In this chapter we explain some additional sample C++ programs and
present enough details of the C++ language to allow you to write simple C++
programs.

PREREQUISITES

In Chapter 1 we gave a brief description of one sample C++ program. (If you
have not read the description of that program, you may find it helpful to do
so before reading this chapter.)

2.1 VARIABLES AND ASSIGNMENTS

Once a person has understood the way variables are used in programming,
he has understood the quintessence of programming.

E. W. DIKSTRA, Notes on Structured Programming

Programs manipulate data such as numbers and letters. C++ and most other
common programming languages use programming constructs known as
variables to name and store data. Variables are at the very heart of a programming
language like C++, so that is where we start our description of C++. We will
use the program in Display 2.1 for our discussion and will explain all the items
in that program. While the general idea of that program should be clear, some
of the details are new and will require some explanation.

Variables

A C++ variable can hold a number or data of other types. For the moment,
we will confine our attention to variables that hold only numbers. These
variables are like small blackboards on which the numbers can be written.
Just as the numbers written on a blackboard can be changed, so too can the
number held by a C++ variable be changed. Unlike a blackboard that might
possibly contain no number at all, a C++ variable is guaranteed to have
some value in it, if only a garbage number left in the computer’s memory by
some previously run program. The number or other type of data held in a

2.1 Variables and Assignments 41

variable is called its value; that is, the value of a variable is the item written
on the figurative blackboard. In the program in Display 2.1, number_of_bars,
one_weight, and total_weight are variables. For example, when this program
is run with the input shown in the sample dialogue, number_of_bars has its
value set equal to the number 11 with the statement

cin >> number_of_bars;

Later, the value of the variable number_of_bars is changed to 12 when a
second copy of the same statement is executed. We will discuss exactly how
this happens a little later in this chapter.

Of course, variables are not blackboards. In programming languages,
variables are implemented as memory locations. The compiler assigns a
memory location (of the kind discussed in Chapter 1) to each variable name
in the program. The value of the variable, in a coded form consisting of 0s and
1s, is kept in the memory location assigned to that variable. For example, the
three variables in the program shown in Display 2.1 might be assigned the
memory locations with addresses 1001, 1003, and 1007. The exact numbers
will depend on your computer, your compiler, and a number of other factors.
We do not know, or even care, what addresses the compiler will choose for the
variables in our program. We can think as though the memory locations were
actually labeled with the variable names.

DISPLAY 2.1 A C++ Program (part |1 of 2)

1 #include <iostream>

2 using namespace std;

3 int main()

4 {

5 int number_of_bars;

6 double one_weight, total_weight;

7

8 cout << "Enter the number of candy bars in a package\n";
9 cout << "and the weight in ounces of one candy bar.\n";
10 cout << "Then press return.\n";

11 cin >> number_of_bars;

12 cin >> one_weight;

13

14 total_weight = one_weight * number_of bars;

15

16 cout << number_of_bars << " candy bars\n";

17 cout << one_weight << " ounces each\n";
18 cout << "Total weight is " << total_weight << " ounces.\n";
19
20 cout << "Try another brand.\n";
21 cout << "Enter the number of candy bars in a package\n";
22 cout << "and the weight in ounces of one candy bar.\n";

(continued)

42

CHAPTER 2 / C++ Basics

DISPLAY 2.1 A C++ Program (part 2 of 2)

23
24
25
26
27
28
29
30
31
32
33
34
35
36

cout << "Then press return.\n";
cin >> number_of_bars;
cin >> one_weight;

total_weight = one_weight * number_of_bars;
cout << number_of_bars << "
cout << one_weight << "

cout << "Total weight is

candy bars\n";
ounces each\n";
" << total_weight <<

ounces.\n";
cout << "Perhaps an apple would be healthier.\n";

return 0;

Sample Dialogue

Enter the number of candy bars in a package and the weight in
ounces of one candy bar.

Then press return.

11 2.1

11 candy bars

2.1 ounces each

Total weight is 23.1 ounces.
Try another brand.

Enter the number of candy bars in a package and the weight in
ounces of one candy bar.

Then press return.

12 1.8

12 candy bars

1.8 ounces each

Total weight is 21.6 ounces.
Perhaps an apple would be healthier.

Names: Identifiers

The first thing you might notice about the names of the variables in our
sample programs is that they are longer than the names normally used for
variables in mathematics classes. To make your program easy to understand,
you should always use meaningful names for variables. The name of a
variable (or other item you might define in a program) is called an identifier.

2.1 Variables and Assignments

Cannot Get Programs to Run?

If you cannot get your C++ programs to compile and run, read the
Programming Tip in Chapter 1 entitled “Getting Your Program to Run.”
That section has tips for dealing with variations in C++ compilers and C++
environments.

An identifier must start with either a letter or the underscore symbol, and all
the rest of the characters must be letters, digits, or the underscore symbol. For
example, the following are all valid identifiers:

x x1 x_1 _abc ABC123z7 sum RATE count data2 Big_Bonus

All of the previously mentioned names are legal and would be accepted by the
compiler, but the first five are poor choices for identifiers, since they are not
descriptive of the identifier's use. None of the following are legal identifiers
and all would be rejected by the compiler:

12 3X %change data-1 myfirst.c PROG.CPP

The first three are not allowed because they do not start with a letter or
an underscore. The remaining three are not identifiers because they contain
symbols other than letters, digits, and the underscore symbol.

C++ is a case-sensitive language; that is, it distinguishes between uppercase
and lowercase letters in the spelling of identifiers. Hence the following are
three distinct identifiers and could be used to name three distinct variables:

rate RATE Rate

However, it is not a good idea to use two such variants in the same program,
since that might be confusing. Although it is not required by C++, variables
are often spelled with all lowercase letters. The predefined identifiers, such as
main, cin, cout, and so forth, must be spelled in all lowercase letters. We
will see uses for identifiers spelled with uppercase letters later in this chapter.
A C++ identifier can be of any length, although some compilers will ignore
all characters after some specified and typically large number of initial characters.

Identifiers

Identifiers are used as names for variables and other items in a C++
program. An identifier must start with either a letter or the underscore
symbol, and the remaining characters must all be letters, digits, or the

underscore symbol.

43

44

CHAPTER 2 / C++ Basics

There is a special class of identifiers, called keywords or reserved words,
that have a predefined meaning in C++ and that you cannot use as names for
variables or anything else. In this book, keywords are written in a different
type font like so: int, doubTle. (And now you know why those words were
written in a funny way.) A complete list of keywords is given in Appendix 1.

You may wonder why the other words that we defined as part of the C++
language are not on the list of keywords. What about words like cin and
cout? The answer is that you are allowed to redefine these words, although
it would be confusing to do so. These predefined words are not keywords;
however, they are defined in libraries required by the C++ language standard.
We will discuss libraries later in this book. For now, you need not worry about
libraries. Needless to say, using a predefined identifier for anything other than
its standard meaning can be confusing and dangerous, and thus should be
avoided. The safest and easiest practice is to treat all predefined identifiers as
if they were keywords.

Variable Declarations

Every variable in a C++ program must be declared. When you declare a
variable you are telling the compiler—and, ultimately, the computer—what
kind of data you will be storing in the variable. For example, the following
two declarations from the program in Display 2.1 declare the three variables
used in that program:

int number_of_bars;
double one_weight, total_weight;

When there is more than one variable in a declaration, the variables are
separated by commas. Also, note that each declaration ends with a semicolon.

The word 7nt in the first of these two declarations is an abbreviation of
the word integer. (But in a C++ program you must use the abbreviated form
int. Do not write out the entire word integer.) This line declares the identifier
number_of _bars to be a variable of type int. This means that the value of
number_of_bars must be a whole number, such as 1, 2, -1, 0, 37, or -288.

The word double in the second of these two lines declares the two
identifiers one_weight and total_weight to be variables of type double. A
variable of type doubTle can hold numbers with a fractional part, such as 1.75
or -0.55. The kind of data that is held in a variable is called its type and the
name for the type, such as int or doubTe, is called a type name.

Every variable in a C++ program must be declared before the variable can
be used. There are two natural places to declare a variable: either just before
it is used or at the start of the main part of your program right after the lines

int main(Q)

{

Do whatever makes your program clearer.

2.1 Variables and Assignments

Variable Declarations

All variables must be declared before they are used. The syntax for
variable declarations is as follows:

SYNTAX
Type_Name Variable_Name_1, Variable_Name_2, ...;

EXAMPLES

int count, number_of_dragons, number_of trolls;
double distance;

Variable declarations provide information the compiler needs in order
to implement the variables. Recall that the compiler implements variables as
memory locations and that the value of a variable is stored in the memory
location assigned to that variable. The value is coded as a string of 0s and 1s.
Different types of variables require different sizes of memory locations and
different methods for coding their values as a string of Os and 1s. The computer
uses one code to encode integers as a string of Os and 1s. It uses a different
code to encode numbers that have a fractional part. It uses yet another
code to encode letters as strings of Os and 1s. The variable declaration tells
the compiler—and, ultimately, the computer—what size memory location to
use for the variable and which code to use when representing the variable’s
value as a string of Os and 1s.

Syntax

The syntax for a programming language (or any other kind of language)

is the set of grammar rules for that language. For example, when we talk
about the syntax for a variable declaration (as in the box labeled “Variable
Declarations”), we are talking about the rules for writing down a well-
formed variable declaration. If you follow all the syntax rules for C++, then
the compiler will accept your program. Of course, this only guarantees that
what you write is legal. It guarantees that your program will do something,
but it does not guarantee that your program will do what you want it to do.

Assignment Statements

The most direct way to change the value of a variable is to use an assignment
statement. An assignment statement is an order to the computer saying, “set

45

46

CHAPTER 2 / C++ Basics

the value of this variable to what I have written down.” The following line
from the program in Display 2.1 is an example of an assignment statement:

A

total_weight = one_weight * number_of_bars;

This assignment statement tells the computer to set the value of total_
weight equal to the number in the variable one_weight multiplied by the
number in number_of_bars. (As we noted in Chapter 1, * is the sign used for
multiplication in C++.)

An assignment statement always consists of a variable on the left-hand
side of the equal sign and an expression on the right-hand side. An assignment
statement ends with a semicolon. The expression on the right-hand side of the
equal sign may be a variable, a number, or a more complicated expression
made up of variables, numbers, and arithmetic operators such as * and +. An
assignment statement instructs the computer to evaluate (that is, to compute
the value of) the expression on the right-hand side of the equal sign and to
set the value of the variable on the left-hand side equal to the value of that
expression. A few more examples may help to clarify the way these assignment
statements work.

You may use any arithmetic operator in place of the multiplication sign.
The following, for example, is also a valid assignment statement:

total_weight = one_weight + number_of_bars;

This statement is just like the assignment statements in our sample program,
except that it performs addition rather than multiplication. This statement
changes the value of total_weight to the sum of the values of one_weight
and number_of_bars. Of course, if you made this change in the program in
Display 2.1, the program would give incorrect output, but it would still run.

In an assignment statement, the expression on the right-hand side of the
equal sign can simply be another variable. The statement

total_weight = one_weight;

changes the value of the variable total_weight so that it is the same as that
of the variable one_weight. If you were to use this in the program in Display
2.1, it would give out incorrectly low values for the total weight of a package
(assuming there is more than one candy bar in a package), but it might make
sense in some other program.

As another example, the following assignment statement changes the
value of number_of_bars to 37:

number_of_bars = 37;

A number, like the 37 in this example, is called a constant, because unlike a
variable, its value cannot change.

Since variables can change value over time and since the assignment
operator is one vehicle for changing their values, there is an element of time
involved in the meaning of an assignment statement. First, the expression
on the right-hand side of the equal sign is evaluated. After that, the value of

2.1 Variables and Assignments

the variable on the left side of the equal sign is changed to the value that was
obtained from that expression. This means that a variable can meaningfully
occur on both sides of an assignment operator. For example, consider the
assignment statement

number_of_bars = number_of_bars + 3;

This assignment statement may look strange at first. If you read it as an
English sentence, it seems to say “the number_of_bars is equal to the number_
of_bars plus three.” It may seem to say that, but what it really says is “Make
the new value of number_of_bars equal to the old value of number_of_bars
plus three.” The equal sign in C++ is not used the same way that it is used in
English or in simple mathematics.

Assignment Statements

In an assignment statement, first the expression on the right-hand side of
the equal sign is evaluated, and then the variable on the left-hand side of
the equal sign is set equal to this value.

SYNTAX
Variable = Expression;

EXAMPLES

distance = rate * time;
count = count + 2;

PITFALL \Uninitialized Variables

A variable has no meaningful value until a program gives it one. For example,
if the variable minimum_number has not been given a value either as the left-
hand side of an assignment statement or by some other means (such as being
given an input value with a cin statement), then the following is an error:

desired_number = minimum_number + 10;

This is because minimum_number has no meaningful value, so the entire expression
on the right-hand side of the equal sign has no meaningful value. A variable like
minimum_number that has not been given a value is said to be uninitialized. This
situation is, in fact, worse than it would be if minimum_number had no value
at all. An uninitialized variable, like minimum_number, will simply have some
“garbage value.” The value of an uninitialized variable is determined by whatever
pattern of Os and 1s was left in its memory location by the last program that
used that portion of memory. Thus if the program is run twice, an uninitialized

47

48

CHAPTER 2 / C++ Basics

variable may receive a different value each time the program is run. Whenever a
program gives different output on exactly the same input data and without any
changes in the program itself, you should suspect an uninitialized variable.

One way to avoid an uninitialized variable is to initialize variables at the
same time they are declared. This can be done by adding an equal sign and a
value, as follows:

int minimum_number = 3;

This both declares minimum_number to be a variable of type int and sets
the value of the variable minimum_number equal to 3. You can use a more
complicated expression involving operations such as addition or multiplication
when you initialize a variable inside the declaration in this way. However, a
simple constant is what is most often used. You can initialize some, all, or
none of the variables in a declaration that lists more than one variable. For
example, the following declares three variables and initializes two of them:

double rate = 0.07, time, balance = 0.0;

C++ allows an alternative notation for initializing variables when they are
declared. This alternative notation is illustrated by the following, which is
equivalent to the preceding declaration:

double rate(0.07), time, balance(0.0);

Whether you initialize a variable when it is declared or at some later point in
the program depends on the circumstances. Do whatever makes your program
the easiest to understand. |

Initializing Variables in Declarations

You can initialize a variable (that is, give it a value) at the time that you
declare the variable.

SYNTAX

Type_Name Variable_Name_1 = Expression_for_Value_1,
Variable Name_2 = Expression_for_Value 2, . . .;

EXAMPLES

int count = 0, limit = 10, fudge_factor = 2;
double distance = 999.99;

ALTERNATIVE SYNTAX FOR INITIALIZING IN DECLARATIONS

Type_Name Variable_Name_1 (Expression_for_Value_1),
Variable Name_2 (Expression_for_Value 2), . . .;

(continued)

2.1 Variables and Assignments

EXAMPLES

int count(0), 1imit(10), fudge_factor(2);
double distance(999.99);

B PROGRAMMING TIP Use Meaningful Names

Variable names and other names in a program should at least hint at the
meaning or use of the thing they are naming. It is much easier to understand a
program if the variables have meaningful names. Contrast the following:

X =Yy * z;
with the more suggestive:
distance = speed * time;

The two statements accomplish the same thing, but the second is easier to
understand. u

. SELF-TEST EXERCISES

1. Give the declaration for two variables called feet and inches. Both
variables are of type int and both are to be initialized to zero in the
declaration. Use both initialization alternatives.

2. Give the declaration for two variables called count and distance. count
is of type int and is initialized to zero. distance is of type doub7e and is
initialized to 1.5.

3. Give a C++ statement that will change the value of the variable sum to the
sum of the values in the variables n1 and n2. The variables are all of type
int.

4. Give a C++ statement that will increase the value of the variable Tength by
8.3. The variable 1ength is of type doubTe.

5. Give a C++ statement that will change the value of the variable product to
its old value multiplied by the value of the variable n. The variables are all
of type int.

6. Write a program that contains statements that output the value of five or
six variables that have been declared, but not initialized. Compile and run
the program. What is the output? Explain.

CHAPTER 2 / C++ Basics

7. Give good variable names for each of the following:

a. Avariable to hold the speed of an automobile
b. A variable to hold the pay rate for an hourly employee
c. Avariable to hold the highest score in an exam

2.2 INPUT AND OUTPUT

Garbage in means garbage out.

PROGRAMMERS’ SAYING

There are several different ways that a C++ program can perform input and
output. We will describe what are called streams. An input stream is simply
the stream of input that is being fed into the computer for the program to
use. The word stream suggests that the program processes the input in the
same way no matter where the input comes from. The intuition for the word
stream is that the program sees only the stream of input and not the source
of the stream, like a mountain stream whose water flows past you but whose
source is unknown to you. In this section we will assume that the input
comes from the keyboard. In Chapter 6 we will discuss how a program can
read its input from a file; as you will see there, you can use the same kinds of
input statements to read input from a file as those that you use for reading
input from the key