

Problem Solving with C++
Ninth Edition

This page intentionally left blank

Boston Columbus Indianapolis New York San Francisco Upper Saddle River
Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto

 Delhi Mexico City São Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

Problem Solving with C++

Walter Savitch
University of California, San Diego

Contributor

Kenrick Mock
University of Alaska, Anchorage

Ninth Edition

Editorial Director: Marcia Horton
Acquisitions Editor: Matt Goldstein
Program Manager: Kayla Smith-Tarbox
Editorial Assistant: Kelsey Loanes
Marketing Coordinator: Kathryn Ferranti
Production Director: Erin Gregg
Managing Editor: Scott Disanno
Senior Operations Supervisor: Vincent Scelta
Operations Specialist: Linda Sager
Cover Designer: Joyce Wells
Permissions Manager: Timothy Nicholls
Image Permissions Manager: Karen Sanatar
Media Producer: Renata Butera
Media Project Manager: Wanda Rockwell
Full-Service Vendor: Hardik Popli, Cenveo® Publisher Services
Composition: Cenveo Publisher Services
Printer/Binder: Courier/Westford
Cover Printer: Lehigh-Phoenix Color/Hagerstown

Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook
appear on appropriate page within text.

Microsoft® and Windows® are registered trademarks of the Microsoft Corporation in the U.S.A. and other coun-
tries. Screen shots and icons reprinted with permission from the Microsoft Corporation. This book is not spon-
sored or endorsed by or affiliated with the Microsoft Corporation.

Copyright © 2015, 2012, 2009, 2007, 2005, 2003 Pearson Education, Inc. All rights reserved. Manufactured in
the United States of America. This publication is protected by Copyright, and permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any
form or by any means, electronic, mechanical, photocopying, recording, or likewise. To obtain permission(s) to
use material from this work, please submit a written request to Pearson Education, Inc., Permissions Department,
501 Boylston Street, Suite 900, Boston, Massachusetts 02116.

Many of the designations by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations
have been printed in initial caps or all caps.

    Library of Congress Cataloging-in-Publication Data

Savitch, Walter J., 1943-
 Problem solving with C++ / Walter Savitch ; contributor, Kenrick Mock. -- Ninth edition.
 pages cm
 Includes index.
 ISBN-13: 978-0-13-359174-3 (alkaline paper)
 ISBN-10: 0-13-359174-3 (alkaline paper)
1. C++ (Computer program language) 2. Problem solving. I. Mock, Kenrick. II. Title.
 QA76.73.C153S29 2014
 005.13'3--dc23
 2013048487

10 9 8 7 6 5 4 3 2 1—CW—15 14 13 12 11
	 ISBN 10: 0-13-359174-3
	 www.pearsonhighered.com	 ISBN 13: 978-0-13-359174-3

www.pearsonhighered.com

v

Preface

This book is meant to be used in a first course in programming and computer
science using the C++ language. It assumes no previous programming experi-
ence and no mathematics beyond high school algebra.

If you have used the previous edition of this book, you should read the
following section that explains the changes to this ninth edition and then
you can skip the rest of this preface. If you are new to this book, the rest of
this preface will give you an overview of the book.

Changes to the Ninth Edition
This ninth edition presents the same programming philosophy as the eighth
edition. All of the material from the eighth edition remains, but with the fol-
lowing enhancements:

■	End-of-chapter programs are now split into Practice Programs and Program-
ming Projects. Practice Programs require a direct application of concepts
presented in the chapter and solutions are usually short. Practice Programs
are appropriate for laboratory exercises. Programming Projects require ad-
ditional problem solving and solutions are generally longer than Practice
Programs. Programming Projects are appropriate for homework problems.

■	 Introduction to C++11 in the context of C++98. Examples of C++11 content
includes new integer types, the auto type, raw string literals, strong enumera-
tions, nullptr, ranged for loop, conversion between strings and integers,
member initializers, and constructor delegation.

■	Additional material on sorting, secure programming (e.g., overflow, array
out of bounds), and inheritance.

■	Correction of errata.
■	Twenty-one new Practice Programs and ten new Programming Projects.
■	 Ten new VideoNotes for a total of sixty-four VideoNotes. These VideoNotes

walk students through the process of both problem solving and coding to help
reinforce key programming concepts. An icon appears in the margin of the
book when a VideoNote is available regarding the topic covered in the text.

If you are an instructor already using the eighth edition, you can continue to
teach your course almost without change.

Flexibility in Topic Ordering
This book was written to allow instructors wide latitude in reordering the
material. To illustrate this flexibility, we suggest two alternative ways to order

vi	 Preface

the topics. There is no loss of continuity when the book is read in either of
these ways. To ensure this continuity when you rearrange material, you may
need to move sections rather than entire chapters. However, only large sec-
tions in convenient locations are moved. To help customize a particular order
for any class’s needs, the end of this preface contains a dependency chart, and
each chapter has a “Prerequisites” section that explains what material needs to
be covered before each section in that chapter.

Reordering 1: Earlier Classes

To effectively design classes, a student needs some basic tools such as control
structures and function definitions. This basic material is covered in Chapters
1 through 6. After completing Chapter 6, students can begin to write their own
classes. One possible reordering of chapters that allows for such early coverage
of classes is the following:

Basics: Chapters 1, 2, 3, 4, 5, and 6. This material covers all control struc-
tures, function definitions, and basic file I/O. Chapter 3, which covers ad-
ditional control structures, could be deferred if you wish to cover classes
as early as possible.

Classes and namespaces: Chapter 10, Sections 11.1 and 11.2 of Chapter 11,
and Chapter 12. This material covers defining classes, friends, overloaded
operators, and namespaces.

Arrays, strings and vectors: Chapters 7 and 8

Pointers and dynamic arrays: Chapter 9

Arrays in classes: Sections 11.3 and 11.4 of Chapter 11

Inheritance: Chapter 15

Recursion: Chapter 14 (Alternately, recursion may be moved to later in the
course.)

Pointers and linked lists: Chapter 13

Any subset of the following chapters may also be used:

Exception handling: Chapter 16

Templates: Chapter 17

Standard Template Library: Chapter 18

Reordering 2: Classes Slightly Later but Still Early

This version covers all control structures and the basic material on arrays be-
fore doing classes, but classes are covered later than the previous ordering and
slightly earlier than the default ordering.

Basics: Chapters 1, 2, 3, 4, 5, and 6. This material covers all control struc-
tures, function definitions, and the basic file I/O.

	 Preface	 vii

Arrays and strings: Chapter 7, Sections 8.1 and 8.2 of Chapter 8

Classes and namespaces: Chapter 10, Sections 11.1 and 11.2 of Chapter 11,
and Chapter 12. This material covers defining classes, friends, overloaded
operators, and namespaces.

Pointers and dynamic arrays: Chapter 9

Arrays in classes: Sections 11.3 and 11.4 of Chapter 11

Inheritance: Chapter 15

Recursion: Chapter 14. (Alternately, recursion may be moved to later in the
course.)

Vectors: Chapter 8.3

Pointers and linked lists: Chapter 13

Any subset of the following chapters may also be used:

Exception handling: Chapter 16

Templates: Chapter 17

Standard Template Library: Chapter 18

Accessibility to Students

It is not enough for a book to present the right topics in the right order. It is not
even enough for it to be clear and correct when read by an instructor or other
experienced programmer. The material needs to be presented in a way that is
accessible to beginning students. In this introductory textbook, I have endeav-
ored to write in a way that students find clear and friendly. Reports from the
many students who have used the earlier editions of this book confirm that
this style makes the material clear and often even enjoyable to students.

ANSI/ISO C++ Standard

This edition is fully compatible with compilers that meet the latest ANSI/ISO
C++ standard. At the time of this writing the latest standard is C++11.

Advanced Topics

Many “advanced topics” are becoming part of a standard CS1 course. Even if
they are not part of a course, it is good to have them available in the text as
enrichment material. This book offers a number of advanced topics that can
be integrated into a course or left as enrichment topics. It gives thorough cov-
erage of C++ templates, inheritance (including virtual functions), exception
handling, and the STL (Standard Template Library). Although this book uses
libraries and teaches students the importance of libraries, it does not require
any nonstandard libraries. This book uses only libraries that are provided with
essentially all C++ implementations.

viii	 Preface

Dependency Chart

The dependency chart on the next page shows possible orderings of chapters
and subsections. A line joining two boxes means that the upper box must be
covered before the lower box. Any ordering that is consistent with this partial
ordering can be read without loss of continuity. If a box contains a section
number or numbers, then the box refers only to those sections and not to the
entire chapter.

Summary Boxes

Each major point is summarized in a boxed section. These boxed sections are
spread throughout each chapter.

Self-Test Exercises

Each chapter contains numerous Self-Test Exercises at strategic points. Com-
plete answers for all the Self-Test Exercises are given at the end of each chapter.

VideoNotes

VideoNotes are designed for teaching students key programming concepts and
techniques. These short step-by-step videos demonstrate how to solve problems
from design through coding. VideoNotes allow for self-paced instruction with
easy navigation including the ability to select, play, rewind, fast-forward, and
stop within each VideoNote exercise.

Online Practice and Assessment with MyProgrammingLab

MyProgrammingLab helps students fully grasp the logic, semantics, and syn-
tax of programming. Through practice exercises and immediate, personalized
feedback, MyProgrammingLab improves the programming competence of be-
ginning students who often struggle with the basic concepts and paradigms of
popular high-level programming languages.

A self-study and homework tool, a MyProgrammingLab course consists
of hundreds of small practice problems organized around the structure of this
textbook. For students, the system automatically detects errors in the logic and
syntax of their code submissions and offers targeted hints that enable students
to figure out what went wrong—and why. For instructors, a comprehensive
gradebook tracks correct and incorrect answers and stores the code inputted by
students for review.

MyProgrammingLab is offered to users of this book in partnership with
Turing’s Craft, the makers of the CodeLab interactive programming exer-
cise system. For a full demonstration, to see feedback from instructors and
students, or to get started using MyProgrammingLab in your course, visit
www.myprogramminglab.com.

VideoNote

www.myprogramminglab.com

	 Preface	 ix

DISPLAY P.1   Dependency Chart

*Chapter 16 contains
occasional references
to derived classes,
but those references
can be omitted

Chapter 1
Introduction

Chapter 2
C++ Basics

Chapter 3
More Flow
of Control

Chapter 6
I/O Streams

Chapter 7
Arrays
7.1–7.3

Chapter 14
Recursion

Chapter 10
Classes 1

Chapter 11
Classes 2
11.1–11.2

Chapter 7
7.4 Multi-

Dimensional
Arrays

Chapter 15
Inheritance

*Chapter 16
Exception
Handling

Chapter 12
Separate

Compilation
& Namespaces

Chapter 11
11.3 Classes &

Arrays

Chapter 11
11.4 Classes &

Dynamic
Arrays

Chapter 17
Templates

Chapter 18
STL

Chapter 9
Pointers and

Dynamic
Arrays

Chapter 8
Strings and

Vectors

Chapter 13
Pointers and
Linked Lists

Chapter 4
Functions 1

Chapter 5
Functions 2

x	 Preface

Support Material

There is support material available to all users of this book and additional
material available only to qualified instructors.

Materials Available to All Users of this Book

■	Source Code from the book
■	PowerPoint slides
■	VideoNotes

To access these materials, go to:
www.pearsonhighered.com/savitch

Resources Available to Qualified Instructors Only

Visit Pearson Education’s instructor resource center at www.pearsonhighered
.com/irc to access the following instructor resources:

■	 Instructor’s Resource Guide—including chapter-by-chapter teaching hints,
quiz questions with solutions, and solutions to many programming projects

■	Test Bank and Test Generator
■	PowerPoint Lectures—including programs and art from the text
■	Lab Manual

Integrated Development Environment (IDE) Resource Kits

Instructors who adopt this text can order it for students with a kit containing
five popular C++ IDEs (Microsoft® Visual Studio 2013 Express Edition, Dev
C++, NetBeans, Eclipse, and CodeLite) and access to a Web site containing
written and video tutorials for getting started in each IDE. For ordering infor-
mation, please contact your campus Pearson Education representative.

Contact Us

Your comments, suggestions, questions, and corrections are always welcome.
Please e-mail them to savitch.programming.cpp@gmail.com

Acknowledgments

Numerous individuals and groups have provided me with suggestions, discus-
sions, and other help in preparing this textbook. Much of the first edition of
this book was written while I was visiting the Computer Science Department
at the University of Colorado in Boulder. The remainder of the writing on the
first edition and the work on subsequent editions was done in the Computer
Science and Engineering Department at the University of California, San Diego
(UCSD). I am grateful to these institutions for providing a conducive environ-
ment for teaching this material and writing this book.

www.pearsonhighered.com/savitch
www.pearsonhighered.com/irc
www.pearsonhighered.com/irc

	 Preface	 xi

I extend a special thanks to all the individuals who have contributed
critiques or programming projects for this or earlier editions and drafts of this book.
In alphabetical order, they are: Alex Feldman, Amber Settle, Andrew Burt, Andrew
Haas, Anne Marchant, Barney MacCabe, Bob Holloway, Bob Matthews, Brian
R. King, Bruce Johnston, Carol Roberts, Charles Dowling, Claire Bono, Cynthia
Martincic, David Feinstein, David Teague, Dennis Heckman, Donald Needham,
Doug Cosman, Dung Nguyen, Edward Carr, Eitan M. Gurari, Ethan Munson,
Firooz Khosraviyani, Frank Moore, Gilliean Lee, Huzefa Kagdi, James Stepleton,
Jeff Roach, Jeffrey Watson, Jennifer Perkins, Jerry Weltman, Joe Faletti, Joel Cohen,
John J. Westman, John Marsaglia, John Russo, Joseph Allen, Joseph D. Oldham,
Jerrold Grossman, Jesse Morehouse, Karla Chaveau, Ken Rockwood, Larry Johnson,
Len Garrett, Linda F. Wilson, Mal Gunasekera, Marianne Lepp, Matt Johnson,
Michael Keenan, Michael Main, Michal Sramka, Naomi Shapiro, Nat Martin, Noah
Aydin, Nisar Hundewale, Paul J. Kaiser, Paul Kube, Paulo Franca, Richard Borie,
Scot Drysdale, Scott Strong, Sheila Foster, Steve Mahaney, Susanne Sherba, Thomas
Judson, Walter A. Manrique, Wei Lian Chen, and Wojciech Komornicki.

I extend a special thanks to the many instructors who used early editions
of this book. Their comments provided some of the most helpful reviewing
that the book received.

Finally, I thank Kenrick Mock who implemented the changes in this
edition. He had the almost impossible task of pleasing me, my editor, and his
own sensibilities, and he did a superb job of it.

Walter Savitch

This page intentionally left blank

Through the power of practice and immediate personalized

feedback, MyProgrammingLab improves your performance.

Learn more at www.myprogramminglab.com

get with the programming

To improving results

www.myprogramminglab.com

xiv

Brief Contents

Table of Location of VideoNotes
Inside front cover and inside back cover

Chapter 1	 Introduction to Computers and

C++ Programming  1

Chapter 2	 C++ Basics  39

Chapter 3	 More Flow of Control  111

Chapter 4	 Procedural Abstraction and Functions That

Return a Value  181

Chapter 5	 Functions for All Subtasks  251

Chapter 6	 I/O Streams as an Introduction to Objects

and Classes  305

Chapter 7	 Arrays  377

Chapter 8	 Strings and Vectors  451

Chapter 9	 Pointers and Dynamic Arrays  507

Chapter 10	 Defining Classes  541

Chapter 11	 Friends, Overloaded Operators, and Arrays

in Classes  619

	 Brief Contents	 xv

Chapter 12	 Separate Compilation and Namespaces  703

Chapter 13	 Pointers and Linked Lists  739

Chapter 14	 Recursion  789

Chapter 15	 Inheritance  833

Chapter 16	 Exception Handling  893

Chapter 17	 Templates  925

Chapter 18	 Standard Template Library  957

Appendices
1	 C++ Keywords  1015

2	 Precedence of Operators  1016

3	 The ASCII Character Set  1018

4	 Some Library Functions  1019

5	 Inline Functions  1026

6	 Overloading the Array Index

Square Brackets  1027

7	 The this Pointer  1029

8	 Overloading Operators as Member

Operators  1032

Index  1034

xvi

Contents

Table of Location of VideoNotes
Inside front cover and inside back cover

Chapter 1 � Introduction to Computers and C++
Programming  1

1.1 Computer Systems  2

Hardware  2

Software  7

High-Level Languages  8

Compilers  9

History Note  12

1.2 Programming and Problem-Solving  12

Algorithms  12

Program Design  15

Object-Oriented Programming  16

The Software Life Cycle  17

1.3  Introduction to C++  18

Origins of the C++ Language  18

A Sample C++ Program  19

Pitfall: Using the Wrong Slash in \n  23

Programming Tip: Input and Output Syntax  23

Layout of a Simple C++ Program  24

Pitfall: Putting a Space Before the include File Name  26

Compiling and Running a C++ Program  26

Pitfall: Compiling a C++11 program  27

Programming Tip: Getting Your Program to Run  27

1.4 Testing and Debugging  29

Kinds of Program Errors  30

Pitfall: Assuming Your Program Is Correct  31

	 Contents	 xvii

Chapter Summary  32

Answers to Self-Test Exercises  33

Practice Programs 35

Programming Projects  36

Chapter 2  C++ Basics  39

2.1 Variables and Assignments  40

Variables  40

Names: Identifiers  42

Variable Declarations  44

Assignment Statements  45

Pitfall: Uninitialized Variables  47

Programming Tip: Use Meaningful Names  49

2.2  Input and Output  50

Output Using cout  50

Include Directives and Namespaces  52

Escape Sequences  53

Programming Tip: End Each Program with a \n or endl  55

Formatting for Numbers with a Decimal Point  55

Input Using cin  56

Designing Input and Output  58

Programming Tip: Line Breaks in I/O  58

2.3 Data Types and Expressions  60

The Types int and double  60

Other Number Types  62

C++11 Types  63

The Type char  64

The Type bool  66

Introduction to the Class string  66

Type Compatibilities  68

Arithmetic Operators and Expressions  69

Pitfall: Whole Numbers in Division  72

More Assignment Statements  74

2.4 Simple Flow of Control  74

A Simple Branching Mechanism  75

Pitfall: Strings of Inequalities  80

Pitfall: Using = in place of ==  81

Compound Statements  82

xviii	 Contents

Simple Loop Mechanisms  84

Increment and Decrement Operators  87

Programming Example: Charge Card Balance  89

Pitfall: Infinite Loops  90

2.5 Program Style  93

Indenting  93

Comments  93

Naming Constants  95

Chapter Summary  98

Answers to Self-Test Exercises  98

Practice Programs 103

Programming Projects  105

Chapter 3  More Flow of Control  111

3.1 Using Boolean Expressions  112

Evaluating Boolean Expressions  112

Pitfall: Boolean Expressions Convert to int Values  116

Enumeration Types (Optional)  119

3.2 Multiway Branches  120

Nested Statements  120

Programming Tip: Use Braces in Nested Statements  121

Multiway if-else Statements  123

Programming Example: State Income Tax  125

The switch Statement  128

Pitfall: Forgetting a break in a switch Statement  132

Using switch Statements for Menus  133

Blocks  135

Pitfall: Inadvertent Local Variables  138

3.3 More About C++ Loop Statements  139

The while Statements Reviewed  139

Increment and Decrement Operators Revisited  141

The for Statement  144

Pitfall: Extra Semicolon in a for Statement  149

What Kind of Loop to Use  150

Pitfall: Uninitialized Variables and Infinite Loops  152

The break Statement  153

Pitfall: The break Statement in Nested Loops  154

	 Contents	 xix

3.4 Designing Loops  155

Loops for Sums and Products  155

Ending a Loop  157

Nested Loops  160

Debugging Loops  162

Chapter Summary  165

Answers to Self-Test Exercises  166

Practice Programs 172

Programming Projects  174

Chapter 4 � Procedural Abstraction and Functions
That Return a Value  181

4.1 Top-Down Design  182

4.2 Predefined Functions  183

Using Predefined Functions  183

Random Number Generation  188

Type Casting  190

Older Form of Type Casting  192

Pitfall: Integer Division Drops the Fractional Part  192

4.3 Programmer-Defined Functions  193

Function Definitions  193

Functions That Return a Boolean Value  199

Alternate Form for Function Declarations  199

Pitfall: Arguments in the Wrong Order  200

Function Definition–Syntax Summary  201

More About Placement of Function Definitions  202

Programming Tip: Use Function Calls in Branching Statements  203

4.4 Procedural Abstraction  204

The Black-Box Analogy  204

Programming Tip: Choosing Formal Parameter Names  207

Programming Tip: Nested Loops  208

Case Study: Buying Pizza  211

Programming Tip: Use Pseudocode  217

4.5 Scope and Local Variables  218

The Small Program Analogy  218

Programming Example: Experimental Pea Patch  221

xx	 Contents

Global Constants and Global Variables  221

Call-by-Value Formal Parameters Are Local Variables  224

Block Scope  226

Namespaces Revisited  227

Programming Example: The Factorial Function  230

4.6 Overloading Function Names  232

Introduction to Overloading  232

Programming Example: Revised Pizza-Buying Program  235

Automatic Type Conversion  238

Chapter Summary  240

Answers to Self-Test Exercises  240

Practice Programs 245

Programming Projects  247

Chapter 5  Functions for All Subtasks  251

5.1 void Functions  252

Definitions of void Functions  252

Programming Example: Converting Temperatures  255

return Statements in void Functions  255

5.2 Call-By-Reference Parameters  259

A First View of Call-by-Reference  259

Call-by-Reference in Detail  262

Programming Example: The swap_values Function  267

Mixed Parameter Lists  268

Programming Tip: What Kind of Parameter to Use  269

Pitfall: Inadvertent Local Variables  270

5.3 Using Procedural Abstraction  273

Functions Calling Functions  273

Preconditions and Postconditions  275

Case Study: Supermarket Pricing  276

5.4 Testing and Debugging Functions  281

Stubs and Drivers  282

5.5 General Debugging Techniques  287

Keep an Open Mind  287

Check Common Errors  287

	 Contents	 xxi

Localize the Error  288

The assert Macro  290

Chapter Summary  292

Answers to Self-Test Exercises  293

Practice Programs 296

Programming Projects  299

Chapter 6 � I/O Streams as an Introduction to Objects
and Classes  305

6.1 Streams and Basic File I/O  306

Why Use Files for I/O?  307

File I/O  308

Introduction to Classes and Objects  312

Programming Tip: Check Whether a File Was Opened

Successfully  314

Techniques for File I/O  316

Appending to a File (Optional)  320

File Names as Input (Optional)  321

6.2 Tools for Stream I/O  323

Formatting Output with Stream Functions  323

Manipulators  329

Streams as Arguments to Functions  332

Programming Tip: Checking for the End of a File  332

A Note on Namespaces  335

Programming Example: Cleaning Up a File Format  336

6.3 Character I/O  338

The Member Functions get and put  338

The putback Member Function (Optional)  342

Programming Example: Checking Input  343

Pitfall: Unexpected '\n' in Input  345

Programming Example: Another new_line Function  347

Default Arguments for Functions (Optional)  348

The eof Member Function  353

Programming Example: Editing a Text File  355

Predefined Character Functions  356

Pitfall: toupper and tolower Return Values  358

xxii	 Contents

Chapter Summary  360

Answers to Self-Test Exercises  361

Practice Programs 368

Programming Projects  370

Chapter 7  Arrays  377

7.1  Introduction to Arrays  378

Declaring and Referencing Arrays  378

Programming Tip: Use for Loops with Arrays  380

Pitfall: Array Indexes Always Start with Zero  380

Programming Tip: Use a Defined Constant for the

Size of an Array  380

Arrays in Memory  382

Pitfall: Array Index Out of Range  383

Initializing Arrays  386

Programming Tip: C++11 Range-Based for Statement  386

7.2 Arrays in Functions  389

Indexed Variables as Function Arguments  389

Entire Arrays as Function Arguments  391

The const Parameter Modifier  394

Pitfall: Inconsistent Use of const Parameters  397

Functions That Return an Array  397

Case Study: Production Graph  398

7.3 Programming with Arrays  411

Partially Filled Arrays  411

Programming Tip: Do Not Skimp on Formal Parameters  414

Programming Example: Searching an Array  414

Programming Example: Sorting an Array  417

Programming Example: Bubble Sort  421

7.4 Multidimensional Arrays  424

Multidimensional Array Basics  425

Multidimensional Array Parameters  425

Programming Example: Two-Dimensional

Grading Program  427

Pitfall: Using Commas Between Array Indexes  431

	 Contents	 xxiii

Chapter Summary  432

Answers to Self-Test Exercises  433

Practice Programs 437

Programming Projects  439

Chapter 8  Strings and Vectors  451

8.1 An Array Type for Strings  453

C-String Values and C-String Variables  453

Pitfall: Using = and == with C Strings  456

Other Functions in <cstring>  458

Pitfall: Copying past the end of a C-string using strcpy  461

C-String Input and Output  464

C-String-to-Number Conversions and Robust Input  466

8.2 The Standard string Class  472

Introduction to the Standard Class string  472

I/O with the Class string  475

Programming Tip: More Versions of getline  478

Pitfall: Mixing cin >> variable; and getline  479

String Processing with the Class string  480

Programming Example: Palindrome Testing  484

Converting Between string Objects and C Strings  487

Converting Between Strings and Numbers  488

8.3 Vectors  489

Vector Basics  489

Pitfall: Using Square Brackets Beyond the Vector Size  492

Programming Tip: Vector Assignment Is Well Behaved  493

Efficiency Issues  493

Chapter Summary  495

Answers to Self-Test Exercises  495

Practice Programs 497

Programming Projects  498

Chapter 9  Pointers and Dynamic Arrays  507

9.1 Pointers  508

Pointer Variables  509

Basic Memory Management  516

xxiv	 Contents

Pitfall: Dangling Pointers  517

Static Variables and Automatic Variables  518

Programming Tip: Define Pointer Types  518

9.2 Dynamic Arrays  521

Array Variables and Pointer Variables  521

Creating and Using Dynamic Arrays  522

Pointer Arithmetic (Optional)  528

Multidimensional Dynamic Arrays (Optional)  530

Chapter Summary  532

Answers to Self-Test Exercises  532

Practice Programs 533

Programming Projects  534

Chapter 10  Defining Classes  541

10.1 Structures  542

Structures for Diverse Data  542

Pitfall: Forgetting a Semicolon in a Structure Definition  547

Structures as Function Arguments  548

Programming Tip: Use Hierarchical Structures  549

Initializing Structures  551

10.2 Classes  554

Defining Classes and Member Functions  554

Public and Private Members  559

Programming Tip: Make All Member Variables Private  567

Programming Tip: Define Accessor and Mutator Functions  567

Programming Tip: Use the Assignment Operator

with Objects  569

Programming Example: BankAccount Class—Version 1  570

Summary of Some Properties of Classes  574

Constructors for Initialization  576

Programming Tip: Always Include a Default Constructor  584

Pitfall: Constructors with No Arguments  585

Member Initializers and Constructor Delegation in C++11  587

10.3 Abstract Data Types  588

Classes to Produce Abstract Data Types  589

Programming Example: Alternative Implementation of a Class  593

	 Contents	 xxv

10.4  Introduction to Inheritance  598

Derived Classes  599

Defining Derived Classes  600

Chapter Summary  604

Answers to Self-Test Exercises  605

Practice Programs 611

Programming Projects  612

Chapter 11 � Friends, Overloaded Operators, and
Arrays in Classes  619

11.1 Friend Functions  620

Programming Example: An Equality Function  620

Friend Functions  624

Programming Tip: Define Both Accessor Functions and Friend

Functions  626

Programming Tip: Use Both Member and Nonmember

Functions  628

Programming Example: Money Class (Version 1)  628

Implementation of digit_to_int (Optional)  635

Pitfall: Leading Zeros in Number Constants  636

The const Parameter Modifier  638

Pitfall: Inconsistent Use of const  639

11.2 Overloading Operators  643

Overloading Operators  644

Constructors for Automatic Type Conversion  647

Overloading Unary Operators  649

Overloading >> and <<  650

11.3 Arrays and Classes  660

Arrays of Classes  660

Arrays as Class Members  664

Programming Example: A Class for a Partially Filled Array  665

11.4 Classes and Dynamic Arrays  667

Programming Example: A String Variable Class  668

Destructors  671

Pitfall: Pointers as Call-by-Value Parameters  674

xxvi	 Contents

Copy Constructors  675

Overloading the Assignment Operator  680

Chapter Summary  683

Answers to Self-Test Exercises  683

Practice Programs 693

Programming Projects  694

Chapter 12  Separate Compilation and Namespaces  703

12.1 Separate Compilation  704

ADTs Reviewed  705

Case Study: DigitalTime —A Class Compiled Separately  706

Using #ifndef  715

Programming Tip: Defining Other Libraries  718

12.2 Namespaces  719

Namespaces and using Directives  719

Creating a Namespace  721

Qualifying Names  724

A Subtle Point About Namespaces (Optional)  725

Unnamed Namespaces  726

Programming Tip: Choosing a Name for a Namespace  731

Pitfall: Confusing the Global Namespace and the Unnamed

Namespace  732

Chapter Summary  733

Answers to Self-Test Exercises  734

Practice Programs 736

Programming Projects  738

Chapter 13  Pointers and Linked Lists  739

13.1 Nodes and Linked Lists  740

Nodes  740

nullptr  745

Linked Lists  746

Inserting a Node at the Head of a List  747

Pitfall: Losing Nodes  750

Searching a Linked List  751

	 Contents	 xxvii

Pointers as Iterators  755

Inserting and Removing Nodes Inside a List  755

Pitfall: Using the Assignment Operator with Dynamic

Data Structures  757

Variations on Linked Lists  760

Linked Lists of Classes  762

13.2 Stacks and Queues  765

Stacks  765

Programming Example: A Stack Class  766

Queues  771

Programming Example: A Queue Class  772

Chapter Summary  776

Answers to Self-Test Exercises  776

Practice Programs 779

Programming Projects  780

Chapter 14  Recursion  789

14.1 Recursive Functions for Tasks  791

Case Study: Vertical Numbers  791

A Closer Look at Recursion  797

Pitfall: Infinite Recursion  799

Stacks for Recursion  800

Pitfall: Stack Overflow  802

Recursion Versus Iteration  802

14.2 Recursive Functions for Values  804

General Form for a Recursive Function That Returns a Value  804

Programming Example: Another Powers Function  804

14.3 Thinking Recursively  809

Recursive Design Techniques  809

Case Study: Binary Search—An Example of Recursive Thinking  810

Programming Example: A Recursive Member Function  818

Chapter Summary  822

Answers to Self-Test Exercises  822

Practice Programs 827

Programming Projects  827

xxviii	 Contents

Chapter 15  Inheritance  833

15.1  Inheritance Basics  834

Derived Classes  837

Constructors in Derived Classes  845

Pitfall: Use of Private Member Variables from the Base Class  848

Pitfall: Private Member Functions Are Effectively Not Inherited  850

The protected Qualifier  850

Redefinition of Member Functions  853

Redefining Versus Overloading  856

Access to a Redefined Base Function  858

15.2  INHERITANCE DETAILS  859

Functions That Are Not Inherited  859

Assignment Operators and Copy Constructors in Derived Classes  860

Destructors in Derived Classes  861

15.3 Polymorphism  862

Late Binding  863

Virtual Functions in C++  864

Virtual Functions and Extended Type Compatibility  869

Pitfall: The Slicing Problem  873

Pitfall: Not Using Virtual Member Functions  874

Pitfall: Attempting to Compile Class Definitions Without

Definitions for Every Virtual Member Function  875

Programming Tip: Make Destructors Virtual  875

Chapter Summary  877

Answers to Self-Test Exercises  877

Practice Programs 881

Programming Projects  884

Chapter 16  Exception Handling  893

16.1 Exception-Handling Basics  895

A Toy Example of Exception Handling  895

Defining Your Own Exception Classes  904

Multiple Throws and Catches  904

Pitfall: Catch the More Specific Exception First  908

Programming Tip: Exception Classes Can Be Trivial  909

Throwing an Exception in a Function  909

	 Contents	 xxix

Exception Specification  911

Pitfall: Exception Specification in Derived Classes  913

16.2 � Programming Techniques for
Exception Handling  914

When to Throw an Exception  914

Pitfall: Uncaught Exceptions  916

Pitfall: Nested try-catch Blocks  916

Pitfall: Overuse of Exceptions  916

Exception Class Hierarchies  917

Testing for Available Memory  917

Rethrowing an Exception  918

Chapter Summary  918

Answers to Self-Test Exercises  918

Practice Programs 920

Programming Projects  921

Chapter 17  Templates  925

17.1 � Templates for Algorithm Abstraction  926

Templates for Functions  927

Pitfall: Compiler Complications  931

Programming Example: A Generic Sorting Function  933

Programming Tip: How to Define Templates  937

Pitfall: Using a Template with an Inappropriate Type  938

17.2 Templates for Data Abstraction  939

Syntax for Class Templates  939

Programming Example: An Array Class  942

Chapter Summary  949

Answers to Self-Test Exercises  949

Practice Programs 953

Programming Projects  953

Chapter 18  Standard Template Library  957

18.1  Iterators  959

using Declarations  959

Iterator Basics  960

xxx	 Contents

Programming Tip: Use auto to Simplify Variable Declarations  964

Pitfall: Compiler Problems  964

Kinds of Iterators  966

Constant and Mutable Iterators  970

Reverse Iterators  971

Other Kinds of Iterators  972

18.2 Containers  973

Sequential Containers  974

Pitfall: Iterators and Removing Elements  978

Programming Tip: Type Definitions in Containers  979

Container Adapters stack and queue  979

Associative Containers set and map  983

Programming Tip: Use Initialization, Ranged For,

and auto with Containers  990

Efficiency  990

18.3 Generic Algorithms  991

Running Times and Big-O Notation  992

Container Access Running Times  995

Nonmodifying Sequence Algorithms  997

Container Modifying Algorithms  1001

Set Algorithms  1003

Sorting Algorithms  1004

Chapter Summary  1005

Answers to Self-Test Exercises  1005

Practice Programs 1007

Programming Projects  1008

Appendices

1	 C++ Keywords  1015

2	 Precedence of Operators  1016

3	 The ASCII Character Set  1018

4	 Some Library Functions  1019

5	 Inline Functions  1026

6	 Overloading the Array Index Square Brackets  1027

7	 The this Pointer  1029

8	 Overloading Operators as Member Operators  1032

Index  1034

Introduction to
Computers and

C++ Programming

1.1  Computer Systems   2
Hardware   2
Software   7
High-Level Languages   8
Compilers   9
History Note   12

1.2 �PRO GRAMMING AND
PROBLEM-SOLVING   12

Algorithms   12
Program Design   15
Object-Oriented Programming   16
The Software Life Cycle   17

1.3  Introduction to C++   18
Origins of the C++ Language   18
A Sample C++ Program   19

Pitfall: Using the Wrong Slash in \n   23
Programming Tip: Input and Output

Syntax   23
Layout of a Simple C++ Program   24
Pitfall: Putting a Space Before the include

File Name   26
Compiling and Running a C++ Program   26
Pitfall: Compiling a C++11 Program   27
Programming Tip: Getting Your Program

to Run   27

1.4 T esting and Debugging   29
Kinds of Program Errors   30
Pitfall: Assuming Your Program Is Correct   31

1

Chapter Summary   32
Answers to Self-Test Exercises   33

Practice Programs   35
Programming Projects   36

Introduction

In this chapter we describe the basic components of a computer, as well as
the basic technique for designing and writing a program. We then show you a
sample C++ program and describe how it works.

1.1  Computer Systems

A set of instructions for a computer to follow is called a program. The
collection of programs used by a computer is referred to as the software
for that computer. The actual physical machines that make up a computer
installation are referred to as hardware. As we will see, the hardware for a
computer is conceptually very simple. However, computers now come with
a large array of software to aid in the task of programming. This software
includes editors, translators, and managers of various sorts. The resulting
environment is a complicated and powerful system. In this book we are
concerned almost exclusively with software, but a brief overview of how the
hardware is organized will be useful.

Hardware

There are three main classes of computers: PCs, workstations, and mainframes.
A PC (personal computer) is a relatively small computer designed to be used
by one person at a time. Most home computers are PCs, but PCs are also
widely used in business, industry, and science. A workstation is essentially a
larger and more powerful PC. You can think of it as an “industrial-strength”
PC. A mainframe is an even larger computer that typically requires some
support staff and generally is shared by more than one user. The distinctions
between PCs, workstations, and mainframes are not precise, but the terms
are commonly used and do convey some very general information about a
computer.

A network consists of a number of computers connected so that they may
share resources such as printers and may share information. A network might
contain a number of workstations and one or more mainframes, as well as
shared devices such as printers.

For our purposes in learning programming, it will not matter whether you
are working on a PC, a mainframe, or a workstation. The basic configuration
of the computer, as we will view it, is the same for all three types of computers.

2

The whole of the development and operation of analysis are now capable of
being executed by machinery. . . . As soon as an Analytical Engine exists, it
will necessarily guide the future course of science.

 Charles Babbage (1792–1871)

	 1.1  Computer Systems	 3

The hardware for most computer systems is organized as shown in
Display 1.1. The computer can be thought of as having five main components:
the input device(s), the output device(s), the processor (also called the CPU,
for central processing unit), the main memory, and the secondary memory. The
processor, main memory, and secondary memory are normally housed in a
single cabinet. The processor and main memory form the heart of a computer
and can be thought of as an integrated unit. Other components connect to the
main memory and operate under the direction of the processor. The arrows in
Display 1.1 indicate the direction of information flow.

An input device is any device that allows a person to communicate
information to the computer. Your primary input devices are likely to be a
keyboard and a mouse.

An output device is anything that allows the computer to communicate
information to you. The most common output device is a display screen,
referred to as a monitor. Quite often, there is more than one output device. For
example, in addition to the monitor, your computer probably is connected
to a printer for producing output on paper. The keyboard and monitor are
sometimes thought of as a single unit called a terminal.

Display 1.1   Main Components of a Computer

Main memory

Processor (CPU)

Secondary
memory

Input
device(s)

Output
device(s)

4	 Chapter 1 /  Introduction to Computers and C++ Programming

In order to store input and to have the equivalent of scratch paper for
performing calculations, computers are provided with memory. The program
that the computer executes is also stored in this memory. A computer has two
forms of memory, called main memory and secondary memory. The program that
is being executed is kept in main memory, and main memory is, as the name
implies, the most important memory. Main memory consists of a long list of
numbered locations called memory locations; the number of memory locations
varies from one computer to another, ranging from a few thousand to many
millions, and sometimes even into the billions. Each memory location
contains a string of 0s and 1s. The contents of these locations can change.
Hence, you can think of each memory location as a tiny blackboard on which
the computer can write and erase. In most computers, all memory locations
contain the same number of zero/one digits. A digit that can assume only
the values 0 or 1 is called a binary digit or a bit. The memory locations in
most computers contain eight bits (or some multiple of eight bits). An eight-
bit portion of memory is called a byte, so we can refer to these numbered
memory locations as bytes. To rephrase the situation, you can think of the
computer’s main memory as a long list of numbered memory locations called
bytes. The number that identifies a byte is called its address. A data item, such
as a number or a letter, can be stored in one of these bytes, and the address of
the byte is then used to find the data item when it is needed.

If the computer needs to deal with a data item (such as a large number)
that is too large to fit in a single byte, it will use several adjacent bytes to hold
the data item. In this case, the entire chunk of memory that holds the data
item is still called a memory location. The address of the first of the bytes that
make up this memory location is used as the address for this larger memory
location. Thus, as a practical matter, you can think of the computer’s main
memory as a long list of memory locations of varying sizes. The size of each of
these locations is expressed in bytes and the address of the first byte is used as
the address (name) of that memory location. Display 1.2 shows a picture of a
hypothetical computer’s main memory. The sizes of the memory locations are
not fixed, but can change when a new program is run on the computer.

Bytes and Addresses

The fact that the information in a computer’s memory is represented as
0s and 1s need not be of great concern to you when programming in C++

Main memory is divided into numbered locations called bytes. The
number associated with a byte is called its address. A group of consecutive
bytes is used as the location for a data item, such as a number or letter. The
address of the first byte in the group is used as the address of this larger
memory location.

	 1.1  Computer Systems	 5

(or in most other programming languages). There is, however, one point
about this use of 0s and 1s that will concern us as soon as we start to write
programs. The computer needs to interpret these strings of 0s and 1s as
numbers, letters, instructions, or other types of information. The computer
performs these interpretations automatically according to certain coding
schemes. A different code is used for each different type of item that is stored
in the computer’s memory: one code for letters, another for whole numbers,
another for fractions, another for instructions, and so on. For example, in one
commonly used set of codes, 01000001 is the code for the letter A and also
for the number 65. In order to know what the string 01000001 in a particular
location stands for, the computer must keep track of which code is currently
being used for that location. Fortunately, the programmer seldom needs to
be concerned with such codes and can safely reason as though the locations
actually contained letters, numbers, or whatever is desired.

Display 1.2   Memory Locations and Bytes

byte 1
byte 2
byte 3
byte 4
byte 5
byte 6
byte 7
byte 8
byte 9

3 byte location with address 1

2 byte location with address 4

1 byte location with address 6

3 byte location with address 7

Why Eight?

A byte is a memory location that can hold eight bits. What is so
special about eight? Why not ten bits? There are two reasons why
eight is special. First, eight is a power of 2. (8 is 23.) Since computers
use bits, which have only two possible values, powers of 2 are more
convenient than powers of 10. Second, it turns out that eight bits (one
byte) are required to code a single character (such as a letter or other
keyboard symbol).

6	 Chapter 1 /  Introduction to Computers and C++ Programming

The memory we have been discussing up until now is the main memory.
Without its main memory, a computer can do nothing. However, main
memory is only used while the computer is actually following the instructions
in a program. The computer also has another form of memory called secondary
memory or secondary storage. (The words memory and storage are exact synonyms
in this context.) Secondary memory is the memory that is used for keeping
a permanent record of information after (and before) the computer is used.
Some alternative terms that are commonly used to refer to secondary memory
are auxiliary memory, auxiliary storage, external memory, and external storage.

Information in secondary storage is kept in units called files, which can
be as large or as small as you like. A program, for example, is stored in a file
in secondary storage and copied into main memory when the program is
run. You can store a program, a letter, an inventory list, or any other unit of
information in a file.

Several different kinds of secondary memory can be attached to a single
computer. The most common forms of secondary memory are hard disks,
diskettes, CDs, DVDs, and removable flash memory drives. (Diskettes are also
sometimes referred to as floppy disks.) CDs (compact discs) used on computers
are basically the same as those used to record and play music, while DVDs
(digital video discs) are the same as those used to play videos. CDs and DVDs
for computers can be read-only so that your computer can read, but cannot
change, the data on the disc; CDs and DVDs for computers can also be read/
write, which can have their data changed by the computer. Hard disks are
fixed in place and are normally not removed from the disk drive. Diskettes
and CDs can be easily removed from the disk drive and carried to another
computer. Diskettes and CDs have the advantages of being inexpensive and
portable, but hard disks hold more data and operate faster. Flash drives have
largely replaced diskettes today and store data using a type of memory called
flash memory. Unlike main memory, flash memory does not require power
to maintain the information stored on the device. Other forms of secondary
memory are also available, but this list covers most forms that you are likely
to encounter.

Main memory is often referred to as RAM or random access memory. It
is called random access because the computer can immediately access the data
in any memory location. Secondary memory often requires sequential access,
which means that the computer must look through all (or at least very many)
memory locations until it finds the item it needs.

The processor (also known as the central processing unit, or CPU) is the
“brain” of the computer. When a computer is advertised, the computer company
tells you what chip it contains. The chip is the processor. The processor follows
the instructions in a program and performs the calculations specified by the
program. The processor is, however, a very simple brain. All it can do is follow
a set of simple instructions provided by the programmer. Typical processor
instructions say things like “Interpret the 0s and 1s as numbers, and then add
the number in memory location 37 to the number in memory location 59, and

	 1.1  Computer Systems	 7

put the answer in location 43,” or “Read a letter of input, convert it to its code
as a string of 0s and 1s, and place it in memory location 1298.” The processor
can add, subtract, multiply, and divide and can move things from one memory
location to another. It can interpret strings of 0s and 1s as letters and send the
letters to an output device. The processor also has some primitive ability to
rearrange the order of instructions. Processor instructions vary somewhat from
one computer to another. The processor of a modern computer can have as
many as several hundred available instructions. However, these instructions are
typically all about as simple as those we have just described.

Software

You do not normally talk directly to the computer, but communicate with it
through an operating system. The operating system allocates the computer’s
resources to the different tasks that the computer must accomplish. The
operating system is actually a program, but it is perhaps better to think of
it as your chief servant. It is in charge of all your other servant programs,
and it delivers your requests to them. If you want to run a program, you tell
the operating system the name of the file that contains it, and the operating
system runs the program. If you want to edit a file, you tell the operating
system the name of the file and it starts up the editor to work on that file.
To most users, the operating system is the computer. Most users never see
the computer without its operating system. The names of some common
operating systems are UNIX, DOS, Linux, Windows, Mac OS, iOS, and Android.

A program is a set of instructions for a computer to follow. As shown
in Display 1.3, the input to a computer can be thought of as consisting of
two parts, a program and some data. The computer follows the instructions
in the program and in that way performs some process. The data is what we
conceptualize as the input to the program. For example, if the program adds
two numbers, then the two numbers are the data. In other words, the data is
the input to the program, and both the program and the data are input to the
computer (usually via the operating system). Whenever we give a computer

Display 1.3 S imple View of Running a Program

Program

Computer

Data

Output

8	 Chapter 1 /  Introduction to Computers and C++ Programming

both a program to follow and some data for the program, we are said to be
running the program on the data, and the computer is said to execute the
program on the data. The word data also has a much more general meaning
than the one we have just given it. In its most general sense, it means any
information available to the computer. The word is commonly used in both
the narrow sense and the more general sense.

High-Level Languages

There are many languages for writing programs. In this text we will discuss
the C++ programming language and use it to write our programs. C++ is a
high-level language, as are most of the other programming languages you are
likely to have heard of, such as C, C#, Java, Python, PHP, Pascal, Visual Basic,
FORTRAN, COBOL, Lisp, Scheme, and Ada. High-level languages resemble
human languages in many ways. They are designed to be easy for human
beings to write programs in and to be easy for human beings to read. A
high-level language, such as C++, contains instructions that are much more
complicated than the simple instructions a computer’s processor (CPU) is
capable of following.

The kind of language a computer can understand is called a low-
level language. The exact details of low-level languages differ from one
kind of computer to another. A typical low-level instruction might be the
following:

ADD X Y Z

This instruction might mean “Add the number in the memory location
called X to the number in the memory location called Y, and place the
result in the memory location called Z.” The above sample instruction is
written in what is called assembly language. Although assembly language
is almost the same as the language understood by the computer, it must
undergo one simple translation before the computer can understand it.
In order to get a computer to follow an assembly language instruction,
the words need to be translated into strings of 0s and 1s. For example,
the word ADD might translate to 0110, the X might translate to 1001, the Y
to 1010, and the Z to 1011. The version of the instruction above that the
computer ultimately follows would then be:

0110 1001 1010 1011

Assembly language instructions and their translation into 0s and 1s differ
from machine to machine.

Programs written in the form of 0s and 1s are said to be written in
machine language, because that is the version of the program that the
computer (the machine) actually reads and follows. Assembly language and
machine language are almost the same thing, and the distinction between
them will not be important to us. The important distinction is that between

	 1.1  Computer Systems	 9

The complete process of translating and running a C++ program is a bit
more complicated than what we show in Display 1.4. Any C++ program
you write will use some operations (such as input and output routines)
that have already been programmed for you. These items that are already
programmed for you (like input and output routines) are already compiled
and have their object code waiting to be combined with your program’s object
code to produce a complete machine-language program that can be run on
the computer. Another program, called a linker, combines the object code
for these program pieces with the object code that the compiler produced

machine language and high-level languages like C++: Any high-level language
program must be translated into machine language before the computer can
understand and follow the program.

Compilers

A program that translates a high-level language like C++ to a machine language
is called a compiler. A compiler is thus a somewhat peculiar sort of program,
in that its input or data is some other program, and its output is yet another
program. To avoid confusion, the input program is usually called the source
program or source code, and the translated version produced by the compiler
is called the object program or object code. The word code is frequently
used to mean a program or a part of a program, and this usage is particularly
common when referring to object programs. Now, suppose you want to run
a C++ program that you have written. In order to get the computer to follow
your C++ instructions, proceed as follows. First, run the compiler using your
C++ program as data. Notice that in this case, your C++ program is not being
treated as a set of instructions. To the compiler, your C++ program is just a
long string of characters. The output will be another long string of characters,
which is the machine-language equivalent of your C++ program. Next, run
this machine-language program on what we normally think of as the data for
the C++ program. The output will be what we normally conceptualize as the
output of the C++ program. The basic process is easier to visualize if you have
two computers available, as diagrammed in Display 1.4. In reality, the entire
process is accomplished by using one computer two times.

Compiler

A compiler is a program that translates a high-level language program,
such as a C++ program, into a machine-language program that the
computer can directly understand and execute.

10	 Chapter 1 /  Introduction to Computers and C++ Programming

from your C++ program. The interaction of the compiler and the linker are
diagrammed in Display 1.5. In routine cases, many systems will do this
linking for you automatically. Thus, you may not need to worry about linking
in many cases.

Linking

Display 1.4   Compiling and Running a C++ Program (Basic Outline)

C++ program Data for
C++ program

Compiler

Computer

Machine-
language

Computer

Output of
C++ program

The object code for your C++ program must be combined with the object
code for routines (such as input and output routines) that your program
uses. This process of combining object code is called linking and is done
by a program called a linker. For simple programs, linking may be done
for you automatically.

	 1.1  Computer Systems	 11

Self-Test Exercises

	1.	 What are the five main components of a computer?

	2.	 What would be the data for a program to add two numbers?

	3.	 What would be the data for a program that assigns letter grades to students
in a class?

	4.	 What is the difference between a machine-language program and a high-
level language program?

	5.	 What is the role of a compiler?

	6.	 What is a source program? What is an object program?

	7.	 What is an operating system?

	8.	 What purpose does the operating system serve?

Display 1.5  P reparing a C++ Program for Running

Complete machine-
language code
ready to run

Object code for
C++ program

Object code for
other routines

C++ program

Compiler

Linker

12	 Chapter 1 /  Introduction to Computers and C++ Programming

	  9.	 Name the operating system that runs on the computer you use to prepare
programs for this course.

	10.	 What is linking?

	11.	 Find out whether linking is done automatically by the compiler you use
for this course.

1.2  Programming and Problem-Solving

The Analytical Engine has no pretensions whatever to originate anything.
It can do whatever we know how to order it to perform. It can follow analysis;
but it has no power of anticipating any analytical relations or truths. Its prov-
ince is to assist us in making available what we are already acquainted with.

ADA AUGUSTA, Countess of Lovelace (1815–1852)

In this section we describe some general principles
that you can use to design and write programs.
These principles are not particular to C++. They
apply no matter what programming language you
are using.

Algorithms

When learning your first programming language,
it is easy to get the impression that the hard part
of solving a problem on a computer is translating
your ideas into the specific language that will be
fed into the computer. This definitely is not the
case. The most difficult part of solving a problem
on a computer is discovering the method of
solution. After you come up with a method of
solution, it is routine to translate your method
into the required language, be it C++ or some
other programming language. It is therefore
helpful to temporarily ignore the programming
language and to concentrate instead on for-
mulating the steps of the solution and writing
them down in plain English, as if the instructions
were to be given to a human being rather than a
computer. A sequence of instructions expressed in
this way is frequently referred to as an algorithm.

A sequence of precise instructions which
leads to a solution is called an algorithm. Some
approximately equivalent words are recipe, method,

History Note � Charles Babbage,
Ada Augusta

The first truly programmable computer
was designed by Charles Babbage, an
English mathematician and physical scientist.
Babbage began the project sometime
before 1822 and worked on it for the rest
of his life. Although he never completed
the construction of his machine, the design
was a conceptual milestone in the history of
computing. Much of what we know about
Charles Babbage and his computer design
comes from the writings of his colleague
Ada Augusta, the Countess of Lovelace
and the daughter of the poet Byron. Ada
Augusta is frequently given the title of the
first computer programmer. Her comments,
quoted in the opening of the this section,
still apply to the process of solving problems
on a computer. Computers are not magic
and do not, at least as yet, have the ability to
formulate sophisticated solutions to all the
problems we encounter. Computers simply
do what the programmer orders them to
do. The solutions to problems are carried
out by the computer, but the solutions
are formulated by the programmer. Our
discussion of computer programming begins
with a discussion of how a programmer
formulates these solutions.

	 1.2  Programming and Problem-Solving	 13

directions, procedure, and routine. The instructions may be expressed in a
programming language or a human language. Our algorithms will be
expressed in English and in the programming language C++. A computer
program is simply an algorithm expressed in a language that a computer can
understand. Thus, the term algorithm is more general than the term program.
However, when we say that a sequence of instructions is an algorithm, we
usually mean that the instructions are expressed in English, since if they were
expressed in a programming language we would use the more specific term
program. An example may help to clarify the concept.

Display 1.6 contains an algorithm expressed in English. The algorithm
determines the number of times a specified name occurs on a list of names.
If the list contains the winners of each of last season’s football games and the
name is that of your favorite team, then the algorithm determines how many
games your team won. The algorithm is short and simple but is otherwise very
typical of the algorithms with which we will be dealing.

Ada Augusta,
Countess of Lovelace and
the first computer programmer

A model of
Babbage’s
computer

Charles Babbage

14	 Chapter 1 /  Introduction to Computers and C++ Programming

The instructions numbered 1 through 5 in our sample algorithm
are meant to be carried out in the order they are listed. Unless otherwise
specified, we will always assume that the instructions of an algorithm are
carried out in the order in which they are given (written down). Most
interesting algorithms do, however, specify some change of order, usually a
repeating of some instruction again and again such as in instruction 4 of our
sample algorithm.

The word algorithm has a long history. It derives from the name al-
Khowarizmi, a ninth-century Persian mathematician and astronomer. He
wrote a famous textbook on the manipulation of numbers and equations.
The book was entitled Kitab al-jabr w’almuqabala, which can be translated
as Rules for Reuniting and Reducing. The similar-sounding word algebra was
derived from the Arabic word al-jabr, which appears in the title of the book
and which is often translated as reuniting or restoring. The meanings of the
words algebra and algorithm used to be much more intimately related than
they are today. Indeed, until modern times, the word algorithm usually
referred only to algebraic rules for solving numerical equations. Today, the
word algorithm can be applied to a wide variety of kinds of instructions for
manipulating symbolic as well as numeric data. The properties that qualify
a set of instructions as an algorithm now are determined by the nature of
the instructions rather than by the things manipulated by the instructions.
To qualify as an algorithm, a set of instructions must completely and
unambiguously specify the steps to be taken and the order in which they are
taken. The person or machine carrying out the algorithm does exactly what
the algorithm says, neither more nor less.

Display 1.6  A n Algorithm

Algorithm that determines how many times a name occurs in a list of names:

	1. Get the list of names.
	2. Get the name being checked.
	3. Set a counter to zero.
	4. Do the following for each name on the list:
 Compare the name on the list to the name being checked,
 and if the names are the same, then add one to the counter.
	5. Announce that the answer is the number indicated by the counter.

Algorithm

An algorithm is a sequence of precise instructions that leads to a solution.

	 1.2  Programming and Problem-Solving	 15

Program Design

Designing a program is often a difficult task. There is no complete set of
rules, no algorithm to tell you how to write programs. Program design is a
creative process. Still, there is the outline of a plan to follow. The outline
is given in diagrammatic form in Display 1.7. As indicated there, the entire
program design process can be divided into two phases, the problem-solving
phase and the implementation phase. The result of the problem-solving phase
is an algorithm, expressed in English, for solving the problem. To produce a
program in a programming language such as C++, the algorithm is translated
into the programming language. Producing the final program from the
algorithm is called the implementation phase.

The first step is to be certain that the task—what you want your program
to do—is completely and precisely specified. Do not take this step lightly.
If you do not know exactly what you want as the output of your program,
you may be surprised at what your program produces. Be certain that you
know what the input to the program will be and exactly what information is
supposed to be in the output, as well as what form that information should
be in. For example, if the program is a bank accounting program, you must
know not only the interest rate but also whether interest is to be compounded
annually, monthly, daily, or whatever. If the program is supposed to write
poetry, you need to determine whether the poems can be in free verse or must
be in iambic pentameter or some other meter.

Many novice programmers do not understand the need to design an
algorithm before writing a program in a programming language, such as
C++, and so they try to short-circuit the process by omitting the problem-
solving phase entirely, or by reducing it to just the problem-definition part.
This seems reasonable. Why not “go for the mark” and save time? The answer
is that it does not save time! Experience has shown that the two-phase process
will produce a correctly working program faster. The two-phase process
simplifies the algorithm design phase by isolating it from the detailed rules of
a programming language such as C++. The result is that the algorithm design
process becomes much less intricate and much less prone to error. For even
a modest-size program, it can represent the difference between a half day of
careful work and several frustrating days of looking for mistakes in a poorly
understood program.

The implementation phase is not a trivial step. There are details to be
concerned about, and occasionally some of these details can be subtle, but
it is much simpler than you might at first think. Once you become familiar
with C++ or any other programming language, the translation of an algorithm
from English into the programming language becomes a routine task.

As indicated in Display 1.7, testing takes place in both phases. Before the
program is written, the algorithm is tested, and if the algorithm is found to be
deficient, then the algorithm is redesigned. That desktop testing is performed
by mentally going through the algorithm and executing the steps yourself.

16	 Chapter 1 /  Introduction to Computers and C++ Programming

For large algorithms this will require a pencil and paper. The C++ program
is tested by compiling it and running it on some sample input data. The
compiler will give error messages for certain kinds of errors. To find other
types of errors, you must somehow check to see whether the output is correct.

The process diagrammed in Display 1.7 is an idealized picture of the
program design process. It is the basic picture you should have in mind, but
reality is sometimes more complicated. In reality, mistakes and deficiencies
are discovered at unexpected times, and you may have to back up and redo an
earlier step. For example, as shown in Display 1.7, testing the algorithm might
reveal that the definition of the problem was incomplete. In such a case you
must back up and reformulate the definition. Occasionally, deficiencies in the
definition or algorithm may not be observed until a program is tested. In that
case you must back up and modify the problem definition or algorithm and
all that follows them in the design process.

Object-Oriented Programming

The program design process that we outlined in the previous section
represents a program as an algorithm (set of instructions) for manipulating
some data. That is a correct view, but not always the most productive view.
Modern programs are usually designed using a method known as object-
oriented programming, or OOP. In OOP, a program is viewed as a collection

Display 1.7  P rogram Design Process

Translating
to C++

Testing

Start

Working
program

Desktop
testing

Algorithm
design

Problem
definition

Problem-solving phase

Implementation phase

	 1.2  Programming and Problem-Solving	 17

of interacting objects. The methodology is easiest to understand when the
program is a simulation program. For example, for a program to simulate a
highway interchange, the objects might represent the automobiles and the
lanes of the highway. Each object has algorithms that describe how it should
behave in different situations. Programming in the OOP style consists of
designing the objects and the algorithms they use. When programming in the
OOP framework, the term Algorithm design in Display 1.7 would be replaced
with the phrase Designing the objects and their algorithms.

The main characteristics of OOP are encapsulation, inheritance, and
polymorphism. Encapsulation is usually described as a form of information
hiding or abstraction. That description is correct, but perhaps an easier-
to-understand characterization is to say that encapsulation is a form of
simplification of the descriptions of objects. Inheritance has to do with writing
reusable program code. Polymorphism refers to a way that a single name can
have multiple meanings in the context of inheritance. Having made those
statements, we must admit that they hold little meaning for readers who have
not heard of OOP before. However, we will describe all these terms in detail
later in this book. C++ accommodates OOP by providing classes, a kind of
data type combining both data and algorithms.

The Software Life Cycle

Designers of large software systems, such as compilers and operating systems,
divide the software development process into six phases collectively known as
the software life cycle. The six phases of this life cycle are:

	1.	 Analysis and specification of the task (problem definition)

	2.	 Design of the software (object and algorithm design)

	3.	 Implementation (coding)

	4.	 Testing

	5.	 Maintenance and evolution of the system

	6.	 Obsolescence

We did not mention the last two phases in our discussion of program design
because they take place after the program is finished and put into service.
However, they should always be kept in mind. You will not be able to add
improvements or corrections to your program unless you design it to be
easy to read and easy to change. Designing programs so that they can be
easily modified is an important topic that we will discuss in detail when
we have developed a bit more background and a few more programming
techniques. The meaning of obsolescence is obvious, but it is not always easy
to accept. When a program is not working as it should and cannot be fixed
with a reasonable amount of effort, it should be discarded and replaced with a
completely new program.

18	 Chapter 1 /  Introduction to Computers and C++ Programming

Self-Test Exercises

	12.	 An algorithm is approximately the same thing as a recipe, but some kinds
of steps that would be allowed in a recipe are not allowed in an algorithm.
Which steps in the following recipe would be allowed in an algorithm?

Place 2 teaspoons of sugar in mixing bowl.
Add 1 egg to mixing bowl.
Add 1 cup of milk to mixing bowl.
Add 1 ounce of rum, if you are not driving.
Add vanilla extract to taste.
Beat until smooth.
Pour into a pretty glass.
Sprinkle with nutmeg.

	13.	 What is the first step you should take when creating a program?

	14.	 The program design process can be divided into two main phases. What
are they?

	15.	E xplain why the problem-solving phase should not be slighted.

1.3  Introduction to C++

Language is the only instrument of science . . .

SAMUEL JOHNSON (1709–1784)

In this section we introduce you to the C++ programming language, which is
the programming language used in this book.

Origins of the C++ Language

The first thing that people notice about the C++ language is its unusual name.
Is there a C programming language, you might ask? Is there a C– or a C– –
language? Are there programming languages named A and B? The answer to
most of these questions is no. But the general thrust of the questions is on the
mark. There is a B programming language; it was not derived from a language
called A, but from a language called BCPL. The C language was derived from
the B language, and C++ was derived from the C language. Why are there two
pluses in the name C++? As you will see in the next chapter, ++ is an operation
in the C and C++ languages, so using ++ produces a nice pun. The languages
BCPL and B do not concern us. They are earlier versions of the C programming
language. We will start our description of the C++ programming language
with a description of the C language.

The C programming language was developed by Dennis Ritchie of AT&T
Bell Laboratories in the 1970s. It was first used for writing and maintaining the

	 1.3  Introduction to C++	 19

UNIX operating system. (Up until that time UNIX systems programs were written
either in assembly language or in B, a language developed by Ken Thompson,
who is the originator of UNIX.) C is a general-purpose language that can be used
for writing any sort of program, but its success and popularity are closely tied
to the UNIX operating system. If you wanted to maintain your UNIX system,
you needed to use C. C and UNIX fit together so well that soon not just systems
programs, but almost all commercial programs that ran under UNIX were written
in the C language. C became so popular that versions of the language were
written for other popular operating systems; its use is not limited to computers
that use UNIX. However, despite its popularity, C is not without its shortcomings.

The C language is peculiar because it is a high-level language with many
of the features of a low-level language. C is somewhere in between the two
extremes of a very high level language and a low-level language, and therein
lies both its strengths and its weaknesses. Like (low-level) assembly language,
C language programs can directly manipulate the computer’s memory. On the
other hand, C has many features of a high-level language, which makes it easier
to read and write than assembly language. This makes C an excellent choice for
writing systems programs, but for other programs (and in some sense even for
systems programs), C is not as easy to understand as other languages; also, it
does not have as many automatic checks as some other high-level languages.

To overcome these and other shortcomings of C, Bjarne Stroustrup of AT&T
Bell Laboratories developed C++ in the early 1980s. Stroustrup designed C++
to be a better C. Most of C is a subset of C++, and so most C programs are also
C++ programs. (The reverse is not true; many C++ programs are definitely not C
programs.) Unlike C, C++ has facilities to do object-oriented programming, which
is a very powerful programming technique described earlier in this chapter. The
C++ language continues to evolve. Major new features were added in 2011. This
version is referred to as C++11. Minor features are expected in 2014 and major
features again in 2017.

A Sample C++ Program

Display 1.8 contains a simple C++ program and the screen display that might
be generated when a user runs and interacts with this program. The person
who runs a program is called the user. The output when the program is run is
shown in the Sample Dialogue. The text typed in by the user is shown in color
to distinguish it from the text output by the program. On the actual screen both
texts would look alike. The source code for the program is shown in lines 1–22.
The line numbers are shown only for reference. You would not type in the line
numbers when entering the program. Keywords with a predefined meaning in
C++ are shown in color. These keywords are discussed in Chapter 2. The person
who writes the program is called the programmer. Do not confuse the roles of
the user and the programmer. The user and the programmer might or might not
be the same person. For example, if you write and then run a program, you are
both the programmer and the user. With professionally produced programs, the
programmer (or programmers) and the user are usually different persons.

20	 Chapter 1 /  Introduction to Computers and C++ Programming

Sample Dialogue

Press return after entering a number.

Enter the number of pods:

10

Enter the number of peas in a pod:

9

If you have 10 pea pods

and 9 peas in each pod, then

you have 90 peas in all the pods.

In the next chapter we will explain in detail all the C++ features you need
to write programs like the one in Display 1.8, but to give you a feel for how
a C++ program works, we will now provide a brief description of how this
particular program works. If some of the details are a bit unclear, do not worry.
In this section we just want to give you a feel for what a C++ program is.

The beginning and end of our sample program contain some details that
need not concern us yet. The program begins with the following lines:

Display 1.8 A Sample C++ Program

	 1 #include <iostream>
	 2 using namespace std;

	 3 int main()
	 4 {
	 5 int number_of_pods, peas_per_pod, total_peas;

	 6 cout << "Press return after entering a number.\n";
	 7 cout << "Enter the number of pods:\n";

	 8 cin >> number_of_pods;

	 9 cout << "Enter the number of peas in a pod:\n";
	10 cin >> peas_per_pod;
	11 total_peas = number_of_pods * peas_per_pod;
	12 cout << "If you have ";
	13 cout << number_of_pods;
	14 cout << " pea pods\n";
	15 cout << "and ";
	16 cout << peas_per_pod;
	17 cout << " peas in each pod, then\n";
	18 cout << "you have ";
	19 cout << total_peas;
	20 cout << " peas in all the pods.\n";

	21 return 0;

	22 }

	 1.3  Introduction to C++	 21

#include <iostream>
using namespace std;
int main()
{

For now we will consider these lines to be a rather complicated way of saying
“The program starts here.”

The program ends with the following two lines:

 return 0;
}

For a simple program, these two lines simply mean “The program ends here.”
The lines in between these beginning and ending lines are the heart of

the program. We will briefly describe these lines, starting with the following
line:

int number_of_pods, peas_per_pod, total_peas;

This line is called a variable declaration. This variable declaration tells the
computer that number_of_pods, peas_per_pod, and total_peas will be used
as names for three variables. Variables will be explained more precisely in the
next chapter, but it is easy to understand how they are used in this program.
In this program the variables are used to name numbers. The word that starts
this line, int, is an abbreviation for the word integer and it tells the computer
that the numbers named by these variables will be integers. An integer is a
whole number, like 1, 2, −1, −7, 0, 205, −103, and so forth.

The remaining lines are all instructions that tell the computer to do
something. These instructions are called statements or executable statements.
In this program each statement fits on exactly one line. That need not be true,
but for very simple programs, statements are usually listed one per line.

Most of the statements begin with either the word cin or cout. These
statements are input statements and output statements. The word cin,
which is pronounced “see-in,” is used for input. The statements that begin
with cin tell the computer what to do when information is entered from
the keyboard. The word cout, which is pronounced “see-out,” is used for
output, that is, for sending information from the program to the terminal
screen. The letter c is there because the language is C++. The arrows, written
<< or >>, tell you the direction that data is moving. The arrows, << and >>,
are called ‘insert’ and ‘extract,’ or ‘put to’ and ‘get from,’ respectively. For
example, consider the line:

cout << "Press return after entering a number.\n";

This line may be read, ‘put "Press...number.\n" to cout’ or simply ‘output
"Press...number.\n"’. If you think of the word cout as a name for the
screen (the output device), then the arrows tell the computer to send the
string in quotes to the screen. As shown in the sample dialogue, this causes

22	 Chapter 1 /  Introduction to Computers and C++ Programming

the text contained in the quotes to be written to the screen. The \n at the
end of the quoted string tells the computer to start a new line after writing
out the text. Similarly, the next line of the program also begins with cout,
and that program line causes the following line of text to be written to the
screen:

Enter the number of pods:

The next program line starts with the word cin, so it is an input statement.
Let’s look at that line:

cin >> number_of_pods;

This line may be read, ‘get number_of_pods from cin’ or simply ‘input
number_of_pods’.

If you think of the word cin as standing for the keyboard (the input
device), then the arrows say that input should be sent from the keyboard to
the variable number_of_pods. Look again at the sample dialogue. The next
line shown has a 10 written in bold. We use bold to indicate something typed
in at the keyboard. If you type in the number 10, then the 10 appears on the
screen. If you then press the Return key (which is also sometimes called the
Enter key), that makes the 10 available to the program. The statement which
begins with cin tells the computer to send that input value of 10 to the
variable number_of_pods. From that point on, number_of_pods has the value
10; when we see number_of_pods later in the program, we can think of it as
standing for the number 10.

Consider the next two program lines:

cout << "Enter the number of peas in a pod:\n";
cin >> peas_per_pod;

These lines are similar to the previous two lines. The first sends a message to
the screen asking for a number. When you type in a number at the keyboard
and press the Return key, that number becomes the value of the variable peas_
per_pod. In the sample dialogue, we assume that you type in the number 9.
After you type in 9 and press the Return key, the value of the variable peas_
per_pod becomes 9.

The next nonblank program line, shown below, does all the computation
that is done in this simple program:

total_peas = number_of_pods * peas_per_pod;

The asterisk symbol, *, is used for multiplication in C++. So this statement says
to multiply number_of_pods and peas_per_pod. In this case, 10 is multiplied
by 9 to give a result of 90. The equal sign says that the variable total_peas
should be made equal to this result of 90. This is a special use of the equal
sign; its meaning here is different than in other mathematical contexts. It gives
the variable on the left-hand side a (possibly new) value; in this case it makes
90 the value of total_peas.

	 1.3  Introduction to C++	 23

The rest of the program is basically more of the same sort of output.
Consider the next three nonblank lines:

cout << "If you have ";
cout << number_of_pods;
cout << " pea pods\n";

These are just three more output statements that work basically the same
as the previous statements that begin with cout. The only thing that is new
is the second of these three statements, which says to output the variable
number_of_pods. When a variable is output, it is the value of the variable that
is output. So this statement causes a 10 to be output. (Remember that in this
sample run of the program, the variable number_of_pods was set to 10 by the
user who ran the program.) Thus, the output produced by these three lines is:

If you have 10 pea pods

Notice that the output is all on one line. A new line is not begun until the
special instruction \n is sent as output.

The rest of the program contains nothing new, and if you understand
what we have discussed so far, you should be able to understand the rest of
the program.

PITFALL  Using the Wrong Slash in \n

When you use a \n in a cout statement be sure that you use the backslash,
which is written \. If you make a mistake and use /n rather than \n, the
compiler will not give you an error message. Your program will run, but the
output will look peculiar.	 ■

■  Programming Tip   Input and Output Syntax

If you think of cin as a name for the keyboard or input device and think of
cout as a name for the screen or the output device, then it is easy to remember
the direction of the arrows >> and <<. They point in the direction that data
moves. For example, consider the statement:

cin >> number_of_pods;

In the above statement, data moves from the keyboard to the variable number_
of_pods, and so the arrow points from cin to the variable.

On the other hand, consider the output statement:

cout << number_of_pods;

In this statement the data moves from the variable number_of_pods to the
screen, so the arrow points from the variable number_of_pods to cout.	 ■

24	 Chapter 1 /  Introduction to Computers and C++ Programming

Layout of a Simple C++ Program

The general form of a simple C++ program is shown in Display 1.9. As far
as the compiler is concerned, the line breaks and spacing need not be as shown
there and in our examples. The compiler will accept any reasonable pattern
of line breaks and indentation. In fact, the compiler will even accept most
unreasonable patterns of line breaks and indentation. However, a program
should always be laid out so that it is easy to read. Placing the opening brace,
{, on a line by itself and also placing the closing brace, }, on a line by itself will
make these punctuations easy to find. Indenting each statement and placing
each statement on a separate line makes it easy to see what the program
instructions are. Later on, some of our statements will be too long to fit on
one line and then we will use a slight variant of this pattern for indenting and
line breaks. You should follow the pattern set by the examples in this book, or
follow the pattern specified by your instructor if you are in a class.

In Display 1.8, the variable declarations are on the line that begins with
the word int. As we will see in the next chapter, you need not place all your
variable declarations at the beginning of your program, but that is a good
default location for them. Unless you have a reason to place them somewhere
else, place them at the start of your program as shown in Display 1.9 and in
the sample program in Display 1.8. The statements are the instructions that
are followed by the computer. In Display 1.8, the statements are the lines that
begin with cout or cin and the one line that begins with total_peas followed
by an equal sign. Statements are often called executable statements. We will
use the terms statement and executable statement interchangeably. Notice that
each of the statements we have seen ends with a semicolon. The semicolon
in statements is used in more or less the same way that the period is used in
English sentences; it marks the end of a statement.

Display 1.9 L ayout of a Simple C++ Program

	 1 #include <iostream>
	 2 using namespace std;
 3
	 4 int main()
	 5 {
	 6 Variable_Declarations
 7
	 8 Statement_1
	 9 Statement_2
10 ...
	11 Statement_Last
12
	13 return 0;
	14 }

	 1.3  Introduction to C++	 25

For now you can view the first few lines as a funny way to say “this is the
beginning of the program.” But we can explain them in a bit more detail. The
first line

#include <iostream>

is called an include directive. It tells the compiler where to find information
about certain items that are used in your program. In this case iostream is
the name of a library that contains the definitions of the routines that handle
input from the keyboard and output to the screen; iostream is a file that
contains some basic information about this library. The linker program that
we discussed earlier in this chapter combines the object code for the library
iostream and the object code for the program you write. For the library
iostream this will probably happen automatically on your system. You will
eventually use other libraries as well, and when you use them, they will have
to be named in directives at the start of your program. For other libraries, you
may need to do more than just place an include directive in your program,
but in order to use any library in your program, you will always need to at
least place an include directive for that library in your program. Directives
always begin with the symbol #. Some compilers require that directives have
no spaces around the #, so it is always safest to place the # at the very start of
the line and not include any space between the # and the word include.

The following line further explains the include directive that we just
explained:

using namespace std;

This line says that the names defined in iostream are to be interpreted in the
“standard way” (std is an abbreviation of standard). We will have more to say
about this line a bit later in this book.

The third and fourth nonblank lines, shown next, simply say that the
main part of the program starts here:

int main()
{

The correct term is main function, rather than main part, but the reason for
that subtlety will not concern us until Chapter 4. The braces { and } mark the
beginning and end of the main part of the program. They need not be on a
line by themselves, but that is the way to make them easy to find and we will
therefore always place each of them on a line by itself.

The next-to-last line

return 0;

says to “end the program when you get to here.” This line need not be the
last thing in the program, but in a very simple program it makes no sense to
place it anywhere else. Some compilers will allow you to omit this line and
will figure out that the program ends when there are no more statements to

26	 Chapter 1 /  Introduction to Computers and C++ Programming

execute. However, other compilers will insist that you include this line, so it is
best to get in the habit of including it, even if your compiler is happy without
it. This line is called a return statement and is considered to be an executable
statement because it tells the computer to do something; specifically, it tells
the computer to end the program. The number 0 has no intuitive significance
to us yet, but must be there; its meaning will become clear as you learn
more about C++. Note that even though the return statement says to end the
program, you still must add a closing brace, }, at the end of the main part of
your program.

PITFALL   Putting a Space Before the include File Name

Be certain that you do not have any extra space between the < and the
iostream file name (Display 1.9) or between the end of the file name and the
closing >. The compiler include directive is not very smart: It will search for
a file name that starts or ends with a space! The file name will not be found,
producing an error that is quite difficult to locate. You should make this error
deliberately in a small program, then compile it. Save the message that your
compiler produces so you know what the error message means the next time
you get that error message.	 ■

Compiling and Running a C++ Program

In the previous section you learned what would happen if you ran the C++
program shown in Display 1.8. But where is that program and how do you
make it run?

You write a C++ program using a text editor in the same way that you write
any other document—a term paper, a love letter, a shopping list, or whatever.
The program is kept in a file just like any other document you prepare using a
text editor. There are different text editors, and the details of how to use them
will vary from one to another, so we cannot say too much more about your
text editor. You should consult the documentation for your editor.

The way that you compile and run a C++ program also depends on the
particular system you are using, so we will discuss these points in only a
very general way. You need to learn how to give the commands to compile,
link, and run a C++ program on your system. These commands can be
found in the manuals for your system and by asking people who are already
using C++ on your system. When you give the command to compile your
program, this will produce a machine-language translation of your C++
program. This translated version is called the object code for your program.
The object code must be linked (that is, combined) with the object code
for routines (such as input and output routines) that are already written for
you. It is likely that this linking will be done automatically, so you do not
need to worry about linking. But on some systems, you may be required to
make a separate call to the linker. Again, consult your manuals or a local
expert. Finally, you give the command to run your program; how you give

Compiling and Running
a C++ Program

VideoNote

	 1.3  Introduction to C++	 27

that command also depends on the system you are using, so check with the
manuals or a local expert.

PITFALL   Compiling a C++11 Program

C++11 (formerly known as C++0x) is the most recent version of the standard
of the C++ programming language. It was approved on August 12, 2011 by
the International Organization for Standardization. A C++11 compiler is able
to compile and run programs written for older versions of C++. However, the
C++11 version includes new language features that are not compatible with
older C++ compilers. This means that if you have an older C++ compiler then
you may not be able to compile and run C++11 programs.

You may also need to specify whether or not to compile against the C++11
standard. For example, g++ 4.7 requires the compiler flag of –std=c++11 to be
added to the command line; otherwise the compiler will assume that the
C++ program is written to an older standard. The command line to compile a
C++11 program named testing.cpp would look like:

g++ testing.cpp -std=c++11

Check the documentation with your compiler to determine if any special
steps are needed to compile C++11 programs and to determine what C++11
language features are supported.	 ■

■ P rogramming Tip   Getting Your Program to Run

Different compilers and different environments might require a slight variation
in some details of how you set up a file with your C++ program. Obtain a copy
of the program in Display 1.10. It is available for downloading over the Internet.
(See the Preface for details.) Alternatively, very carefully type in the program
yourself. Do not type in the line numbers. Compile the program. If you get an
error message, check your typing, fix any typing mistakes, and recompile the file.
Once the program compiles with no error messages, try running the program.

If you get the program to compile and run normally, you are all set. You
do not need to do anything different from the examples shown in the book.
If this program does not compile or does not run normally, then read on. In
what follows we offer some hints for dealing with your C++ setup. Once you
get this simple program to run normally, you will know what small changes
to make to your C++ program files in order to get them to run on your system.

If your program seems to run, but you do not see the output line

Testing 1, 2, 3

then, in all likelihood, the program probably did give that output, but it
disappeared before you could see it. Try adding the following to the end of
your program, just before the line return 0; these lines should stop your
program to allow you to read the output.

28	 Chapter 1 /  Introduction to Computers and C++ Programming

char letter;
cout << "Enter a letter to end the program:\n";
cin >> letter;

The part in braces should then read as follows:

cout << "Testing 1, 2, 3\n";
char letter;
cout << "Enter a letter to end the program:\n";
cin >> letter;
return 0;

For now you need not understand these added lines, but they will be clear to
you by the end of Chapter 2.

If the program does not compile or run at all, then try changing

#include <iostream>

by adding .h to the end of iostream, so it reads as follows:

#include <iostream.h>

If your program requires iostream.h instead of iostream, then you have an
old C++ compiler and should obtain a more recent compiler.

If your program still does not compile and run normally, try deleting

using namespace std;

If your program still does not compile and run, then check the
documentation for your version of C++ to see if any more “directives” are
needed for “console” input/output.

Display 1.10  Testing Your C++ Setup

 1 #include <iostream>
 2 using namespace std;
 3
 4 int main()
 5 {
 6 cout << "Testing 1, 2, 3\n";
 7 return 0;
 8 }
 9

Sample Dialogue

Testing 1, 2, 3

■

If you cannot compile and run this
program, then see the programming
tip entitled “Getting Your Program to
Run.” It suggests some things to do to
get your C++ programs to run on your
particular computer setup.

	 1.4  Testing and Debugging	 29

If all this fails, consult your instructor if you are in a course. If you
are not in a course or you are not using the course computer, check the
documentation for your C++ compiler or check with a friend who has a
similar computer setup. The necessary change is undoubtedly very small and,
once you find out what it is, very easy.

Self-Test Exercises

	16.	 If the following statement were used in a C++ program, what would it
cause to be written on the screen?

cout << "C++ is easy to understand.";

	17.	 What is the meaning of \n as used in the following statement (which
appears in Display 1.8)?

cout << "Enter the number of peas in a pod:\n";

	18.	 What is the meaning of the following statement (which appears in
Display 1.8)?

cin >> peas_per_pod;

	19.	 What is the meaning of the following statement (which appears in
Display 1.8)?

total_peas = number_of_pods * peas_per_pod;

	20.	 What is the meaning of this directive?

#include <iostream>

	21.	 What, if anything, is wrong with the following #include directives?

a.	 #include <iostream >
b.	 #include < iostream>
c.	 #include <iostream>

1.4  Testing and Debugging

“And if you take one from three hundred and sixty-five, what remains?”

“Three hundred and sixty-four, of course.”

Humpty Dumpty looked doubtful. “I’d rather see that done on paper,” he said.

Lewis Carroll, Through the Looking-Glass

A mistake in a program is usually called a bug, and the process of eliminating
bugs is called debugging. There is colorful history of how this term came into
use. It occurred in the early days of computers, when computer hardware was

30	 Chapter 1 /  Introduction to Computers and C++ Programming

extremely sensitive and occupied an entire room. Rear Admiral Grace Murray
Hopper (1906–1992) was “the third programmer on the world’s first large-
scale digital computer.” (Denise W. Gurer, “Pioneering women in computer
science” CACM 38(1):45–54, January 1995.) While Hopper was working
on the Harvard Mark I computer under the command of Harvard professor
Howard H. Aiken, an unfortunate moth caused a relay to fail. Hopper and
the other programmers taped the deceased moth in the logbook with the note
“First actual case of bug being found.” The logbook is currently on display
at the Naval Museum in Dahlgren, Virginia. This was the first documented
computer bug. Professor Aiken would come into the facility during a slack
time and inquire if any numbers were being computed. The programmers
would reply that they were debugging the computer. For more information
about Admiral Hopper and other persons in computing, see Robert Slater,
Portraits in Silicon (MIT Press, 1987). Today, a bug is a mistake in a program.
In this section we describe the three main kinds of programming mistakes and
give some hints on how to correct them.

Kinds of Program Errors

The compiler will catch certain kinds of mistakes and will write out an error
message when it finds a mistake. It will detect what are called syntax errors,
because they are, by and large, violation of the syntax (that is, the grammar
rules) of the programming language, such as omitting a semicolon.

If the compiler discovers that your program contains a syntax error, it will
tell you where the error is likely to be and what kind of error it is likely to be.
When the compiler says your program contains a syntax error, you can be
confident that it does. However, the compiler may be incorrect about either
the location or the nature of the error. It does a better job of determining the
location of an error, to within a line or two, than it does of determining the
source of the error. This is because the compiler is guessing at what you meant
to write down and can easily guess wrong. After all, the compiler cannot
read your mind. Error messages subsequent to the first one have a higher
likelihood of being incorrect with respect to either the location or the nature
of the error. Again, this is because the compiler must guess your meaning. If
the compiler’s first guess was incorrect, this will affect its analysis of future
mistakes, since the analysis will be based on a false assumption.

If your program contains something that is a direct violation of the
syntax rules for your programming language, the compiler will give you
an error message. However, sometimes the compiler will give you only a
warning message, which indicates that you have done something that is
not, technically speaking, a violation of the programming language syntax
rules, but that is unusual enough to indicate a likely mistake. When you get
a warning message, the compiler is saying, “Are you sure you mean this?” At
this stage of your development, you should treat every warning as if it were an
error until your instructor approves ignoring the warning.

	 1.4  Testing and Debugging	 31

There are certain kinds of errors that the computer system can detect
only when a program is run. Appropriately enough, these are called run-time
errors. Most computer systems will detect certain run-time errors and output
an appropriate error message. Many run-time errors have to do with numeric
calculations. For example, if the computer attempts to divide a number by
zero, that is normally a run-time error.

If the compiler approved of your program and the program ran once with
no run-time error messages, this does not guarantee that your program is
correct. Remember, the compiler will only tell you if you wrote a syntactically
(that is, grammatically) correct C++ program. It will not tell you whether the
program does what you want it to do. Mistakes in the underlying algorithm
or in translating the algorithm into the C++ language are called logic errors.
For example, if you were to mistakenly use the addition sign + instead of the
multiplication sign * in the program in Display 1.8, that would be a logic
error. The program would compile and run normally but would give the
wrong answer. If the compiler approves of your program and there are no run-
time errors but the program does not perform properly, then undoubtedly
your program contains a logic error. Logic errors are the hardest kind to
diagnose, because the computer gives you no error messages to help find the
error. It cannot reasonably be expected to give any error messages. For all the
computer knows, you may have meant what you wrote.

PITFALL   Assuming Your Program Is Correct

In order to test a new program for logic errors, you should run the program
on several representative data sets and check its performance on those inputs.
If the program passes those tests, you can have more confidence in it, but this
is still not an absolute guarantee that the program is correct. It still may not
do what you want it to do when it is run on some other data. The only way
to justify confidence in a program is to program carefully and so avoid most
errors.	 ■

Self-Test Exercises

	22.	 What are the three main kinds of program errors?

	23.	 What kinds of errors are discovered by the compiler?

	24.	 If you omit a punctuation symbol (such as a semicolon) from a program,
an error is produced. What kind of error?

	25.	 Omitting the final brace } from a program produces an error. What kind
of error?

32	 Chapter 1 /  Introduction to Computers and C++ Programming

	26.	S uppose your program has a situation about which the compiler reports
a warning. What should you do about it? Give the text’s answer and your
local answer if it is different from the text’s. Identify your answers as the
text’s or as based on your local rules.

	27.	S uppose you write a program that is supposed to compute the interest
on a bank account at a bank that computes interest on a daily basis, and
suppose you incorrectly write your program so that it computes interest
on an annual basis. What kind of program error is this?

Chapter Summary

The collection of programs used by a computer is referred to as the software
for that computer. The actual physical machines that make up a computer
installation are referred to as hardware.

■	 The five main components of a computer are the input device(s), the output
device(s), the processor (CPU), the main memory, and the secondary memory.

■	 A computer has two kinds of memory: main memory and secondary mem-
ory. Main memory is used only while the program is running. Secondary
memory is used to hold data that will stay in the computer before and/or
after the program is run.

■	 A computer’s main memory is divided into a series of numbered locations
called bytes. The number associated with one of these bytes is called the ad-
dress of the byte. Often, several of these bytes are grouped together to form
a larger memory location. In that case, the address of the first byte is used as
the address of this larger memory location.

■	 A byte consists of eight binary digits, each either zero or one. A digit that can
only be zero or one is called a bit.

■	 A compiler is a program that translates a program written in a high-level
language like C++ into a program written in the machine language that the
computer can directly understand and execute.

■	 A sequence of precise instructions that leads to a solution is called an algo-
rithm. Algorithms can be written in English or in a programming language,
like C++. However, the word algorithm is usually used to mean a sequence
of instructions written in English (or some other human language, such as
Spanish or Arabic).

■	 Before writing a C++ program, you should design the algorithm (method of
solution) that the program will use.

■	 Programming errors can be classified into three groups: syntax errors, run-
time errors, and logic errors. The computer will usually tell you about errors
in the first two categories. You must discover logic errors yourself.

	 Answers to Self-Test Exercises	 33

■	 The individual instructions in a C++ program are called statements.

■	 A variable in a C++ program can be used to name a number. (Variables are
explained more fully in the next chapter.)

■	 A statement in a C++ program that begins with cout << is an output
statement, which tells the computer to output to the screen whatever
follows the <<.

■	 A statement in a C++ program that begins with cin >> is an input statement.

Answers to Self-Test Exercises

	  1.	 The five main components of a computer are the input device(s), the out-
put device(s), the processor (CPU), the main memory, and the secondary
memory.

	  2.	 The two numbers to be added.

	  3.	 The grades for each student on each test and each assignment.

	  4.	 A machine-language program is a low-level language consisting of 0s and 1s
that the computer can directly execute. A high-level language is written in
a more English-like format and is translated by a compiler into a machine-
language program that the computer can directly understand and execute.

	  5.	 A compiler translates a high-level language program into a
machine-language program.

	  6.	 The high-level language program that is input to a compiler is called the
source program. The translated machine-language program that is output
by the compiler is called the object program.

	  7.	 An operating system is a program, or several cooperating programs, but is
best thought of as the user’s chief servant.

	  8.	 An operating system’s purpose is to allocate the computer’s resources to
different tasks the computer must accomplish.

	  9.	 Among the possibilities are the Macintosh operating system Mac OS,
Windows, VMS, Solaris, SunOS, UNIX (or perhaps one of the UNIX-like
operating systems such as Linux). There are many others.

	10.	 The object code for your C++ program must be combined with the object
code for routines (such as input and output routines) that your program
uses. This process of combining object code is called linking. For simple
programs, this linking may be done for you automatically.

34	 Chapter 1 /  Introduction to Computers and C++ Programming

	11.	 The answer varies, depending on the compiler you use. Most UNIX and
UNIX-like compilers link automatically, as do the compilers in most inte-
grated development environments for Windows and Macintosh operating
systems.

	12.	 The following instructions are too vague for use in an algorithm:

Add vanilla extract to taste.
Beat until smooth.
Pour into a pretty glass.
Sprinkle with nutmeg.

The notions of “to taste,” “smooth,” and “pretty” are not precise.
The instruction “sprinkle” is too vague, since it does not specify
how much nutmeg to sprinkle. The other instructions are reason-
able to use in an algorithm.

	13.	 The first step you should take when creating a program is to be certain that
the task to be accomplished by the program is completely and precisely
specified.

	14.	 The problem-solving phase and the implementation phase.

	15.	E xperience has shown that the two-phase process produces a correctly
working program faster.

	16.	 C++ is easy to understand.

	17.	 The symbols \n tell the computer to start a new line in the output so that
the next item output will be on the next line.

	18.	 This statement tells the computer to read the next number that is typed in at
the keyboard and to send that number to the variable named peas_per_pod.

	19.	 This statement says to multiply the two numbers in the variables number_
of_pods and peas_per_pod, and to place the result in the variable named
total_peas.

	20.	 The #include <iostream> directive tells the compiler to fetch the file
iostream. This file contains declarations of cin, cout, the insertion (<<)
and extraction (>>) operators for I/O (input and output). This enables
correct linking of the object code from the iostream library with the I/O
statements in the program.

	21.	 a. � The extra space after the iostream file name causes a file-not-found error
message.

b. � The extra space before the iostream file name causes a file-not-found
error message.

 c.  This one is correct.

	 Practice Programs	 35

	22.	 The three main kinds of program errors are syntax errors, run-time errors,
and logic errors.

	23.	 The compiler detects syntax errors. There are other errors that are not tech-
nically syntax errors that we are lumping with syntax errors. You will learn
about these later.

	24.	 A syntax error.

	25.	 A syntax error.

	26.	 The text states that you should take warnings as if they had been reported
as errors. You should ask your instructor for the local rules on how to
handle warnings.

	27.	 A logic error.

Practice ProgramS

Practice Programs can generally be solved with a short program that directly applies
the programming principles presented in this chapter.

	  1.	 Using your text editor, enter (that is, type in) the C++ program shown in
Display 1.8. Be certain to type the first line exactly as shown in Display
1.8. In particular, be sure that the first line begins at the left-hand end of
the line with no space before or after the # symbol. Compile and run the
program. If the compiler gives you an error message, correct the program
and recompile the program. Do this until the compiler gives no error mes-
sages. Then run your program.

	  2.	 Modify the C++ program you entered in Practice Program 1. Change the
program so that it first writes the word Hello to the screen and then goes
on to do the same things that the program in Display 1.8 does. You will
only have to add one line to the program to make this happen. Recompile
the changed program and run it. Then change the program even more. Add
one more line that will make the program write the word Good-bye to the
screen at the end of the program. Be certain to add the symbols \n to the
last output statement so that it reads as follows:

cout << "Good-bye\n";

(Some systems require that final \n, and your system may be one of
them.) Recompile and run the changed program.

	  3.	 Further modify the C++ program that you already modified in Practice
Program 2. Change the multiplication sign * in your C++ program to a
division sign /. Recompile the changed program. Run the program. Enter a
0 input for “number of peas in a pod.” Notice the run-time error message
due to division by zero.

36	 Chapter 1 /  Introduction to Computers and C++ Programming

	  4.	 Modify the C++ program that you entered in Practice Program 1. Change
the multiplication sign * in your C++ program to an addition sign +.
Recompile and run the changed program. Notice that the program com-
piles and runs perfectly fine, but the output is incorrect. That is because this
modification is a logic error.

	  5.	 Modify the C++ program that you entered in Practice Program 1. In this
version calculate the total length of fence you would need to enclose a
rectangular area that is width feet long and height feet tall. The program
should have variables for width and height with values entered by the
user. Create another variable, totalLength, that stores the total length of
fence needed (which your program should calculate). Output the total
with an appropriate message.

	  6.	 The purpose of this exercise is to produce a catalog of typical syntax errors
and error messages that will be encountered by a beginner and to continue
acquainting you with the programming environment. This exercise should
leave you with a knowledge of what error to look for when given any of a
number of common error messages.

�Your instructor may have a program for you to use for this exercise. If not,
you should use a program from one of the previous Practice Programs.

�Deliberately introduce errors to the program, compile, record the error
and the error message, fix the error, compile again (to be sure you have
the program corrected), then introduce another error. Keep the catalog of
errors and add program errors and messages to it as you continue through
this course.

The sequence of suggested errors to introduce is:

		 a. Put an extra space between the < and the iostream file name.
		 b. Omit one of the < or > symbols in the include directive.
		 c. Omit the int from int main().
		 d. Omit or misspell the word main.
		 e. Omit one of the (); then omit both the ().
		 f. �Continue in this fashion, deliberately misspelling identifiers (cout, cin,

and so on). Omit one or both of the << in the cout statement; leave off
the ending curly brace }.

Programming Projects

Programming Projects require more problem-solving than Practice Programs and
can usually be solved many different ways. Visit www.myprogramminglab.com to
complete many of these Programming Projects online and get instant feedback.

	1.	 Write a C++ program that reads in two integers and then outputs both their
sum and their product. One way to proceed is to start with the program in

Solution to Practice
Program 1.6

VideoNote

www.myprogramminglab.com

	 Programming Projects	 37

Display 1.8 and to then modify that program to produce the program for
this project. Be certain to type the first line of your program exactly the same
as the first line in Display 1.8. In particular, be sure that the first line begins
at the left-hand end of the line with no space before or after the # symbol.
Also, be certain to add the symbols \n to the last output statement in your
program. For example, the last output statement might be the following:

cout << "This is the end of the program.\n";

(Some systems require that final \n, and your system may be one of
these.)

	  2.	 Write a program that prints out “C S !” in large block letters inside a border
of *s followed by two blank lines then the message Computer Science is
Cool Stuff. The output should look as follows:

VideoNote
Solution to Programming
Project 1.3

!!S S S SC C C

C C C S S S S

S S S S

!!
!!
!!
!!
!!
!!

OO

SS
S
S

S

SS
S

C
C
C
C

C
C C

C

C

Computer Science is Cool Stuff!!!

	  3.	 Write a program that allows the user to enter a number of quarters, dimes,
and nickels and then outputs the monetary value of the coins in cents. For
example, if the user enters 2 for the number of quarters, 3 for the number
of dimes, and 1 for the number of nickels, then the program should output
that the coins are worth 85 cents.

	  4.	 Write a program that allows the user to enter a time in seconds and then
outputs how far an object would drop if it is in freefall for that length of
time. Assume that the object starts at rest, there is no friction or resistance
from air, and there is a constant acceleration of 32 feet per second due to
gravity. Use the equation:

distance = acceleration x time
2

2

You should first compute the product and then divide the result by 2 (The
reason for this will be discussed later in the book).

38	 Chapter 1 /  Introduction to Computers and C++ Programming

	  5.	 Write a program that inputs a character from the keyboard and then out-
puts a large block letter “C” composed of that character. For example, if the
user inputs the character “X,” then the output should look as follows:

 X X X
 X X
 X
 X
 X
 X
 X
 X X
 X X X

C++ Basics

2.1   Variables and Assignments   40
Variables   40
Names: Identifiers   42
Variable Declarations   44
Assignment Statements   45
Pitfall: Uninitialized Variables   47
Programming Tip: Use Meaningful Names   49

2.2  I nput and Output   50
Output Using cout   50
Include Directives and Namespaces   52
Escape Sequences   53
Programming Tip: End Each Program with a \n

or endl  55
Formatting for Numbers with a Decimal Point   55
Input Using cin   56
Designing Input and Output   58
Programming Tip: Line Breaks in I/O   58

2.3  D ata Types and Expressions   60
The Types int and double   60
Other Number Types   62
C++11 Types   63

The Type char  64
The Type bool  66
Introduction to the Class string  66
Type Compatibilities   68
Arithmetic Operators and Expressions   69
Pitfall: Whole Numbers in Division   72
More Assignment Statements   74

2.4  S imple Flow of Control   74
A Simple Branching Mechanism   75
Pitfall: Strings of Inequalities   80
Pitfall: Using = in place of ==   81
Compound Statements   82
Simple Loop Mechanisms   84
Increment and Decrement Operators   87
Programming Example: Charge Card Balance   89
Pitfall: Infinite Loops   90

2.5  P rogram Style   93
Indenting   93
Comments   93
Naming Constants   95

2	

Chapter Summary   98
Answers to Self-Test Exercises   98

Practice Programs   103
Programming Projects   105

Introduction

In this chapter we explain some additional sample C++ programs and
present enough details of the C++ language to allow you to write simple C++
programs.

Prerequisites

In Chapter 1 we gave a brief description of one sample C++ program. (If you
have not read the description of that program, you may find it helpful to do
so before reading this chapter.)

2.1  Variables and Assignments

Once a person has understood the way variables are used in programming,
he has understood the quintessence of programming.

E. W. DIjkstra, Notes on Structured Programming

Programs manipulate data such as numbers and letters. C++ and most other
common programming languages use programming constructs known as
variables to name and store data. Variables are at the very heart of a programming
language like C++, so that is where we start our description of C++. We will
use the program in Display 2.1 for our discussion and will explain all the items
in that program. While the general idea of that program should be clear, some
of the details are new and will require some explanation.

Variables

A C++ variable can hold a number or data of other types. For the moment,
we will confine our attention to variables that hold only numbers. These
variables are like small blackboards on which the numbers can be written.
Just as the numbers written on a blackboard can be changed, so too can the
number held by a C++ variable be changed. Unlike a blackboard that might
possibly contain no number at all, a C++ variable is guaranteed to have
some value in it, if only a garbage number left in the computer’s memory by
some previously run program. The number or other type of data held in a

40

Don’t imagine you know what a computer terminal is. A computer terminal is
not some clunky old television with a typewriter in front of it. It is an inter-
face where the mind and the body can connect with the universe and move
bits of it about.

Douglas Adams, Mostly Harmless (the fifth volume in The Hitchhiker’s Trilogy)

	 2.1  Variables and Assignments	 41

variable is called its value; that is, the value of a variable is the item written
on the figurative blackboard. In the program in Display 2.1, number_of_bars,
one_weight, and total_weight are variables. For example, when this program
is run with the input shown in the sample dialogue, number_of_bars has its
value set equal to the number 11 with the statement

cin >> number_of_bars;

Later, the value of the variable number_of_bars is changed to 12 when a
second copy of the same statement is executed. We will discuss exactly how
this happens a little later in this chapter.

Of course, variables are not blackboards. In programming languages,
variables are implemented as memory locations. The compiler assigns a
memory location (of the kind discussed in Chapter 1) to each variable name
in the program. The value of the variable, in a coded form consisting of 0s and
1s, is kept in the memory location assigned to that variable. For example, the
three variables in the program shown in Display 2.1 might be assigned the
memory locations with addresses 1001, 1003, and 1007. The exact numbers
will depend on your computer, your compiler, and a number of other factors.
We do not know, or even care, what addresses the compiler will choose for the
variables in our program. We can think as though the memory locations were
actually labeled with the variable names.

Display 2.1  A C++ Program (part 1 of 2)

	 1 #include <iostream>
	 2 using namespace std;
	 3 int main()
	 4 {
	 5 int number_of_bars;
	 6 double one_weight, total_weight;
 7
	 8 cout << "Enter the number of candy bars in a package\n";
	 9 cout << "and the weight in ounces of one candy bar.\n";
	10 cout << "Then press return.\n";
	11 cin >> number_of_bars;
	12 cin >> one_weight;
	13
	14 total_weight = one_weight * number_of_bars;
	15
	16 cout << number_of_bars << " candy bars\n";
	17 cout << one_weight << " ounces each\n";
	18 cout << "Total weight is " << total_weight << " ounces.\n";
	19
	20 cout << "Try another brand.\n";
	21 cout << "Enter the number of candy bars in a package\n";
	22 cout << "and the weight in ounces of one candy bar.\n";

(continued)

42	 Chapter 2 /  C++ Basics

Names: Identifiers

The first thing you might notice about the names of the variables in our
sample programs is that they are longer than the names normally used for
variables in mathematics classes. To make your program easy to understand,
you should always use meaningful names for variables. The name of a
variable (or other item you might define in a program) is called an identifier.

DISPLAY 2.1   A C++ Program (part 2 of 2)

23 cout << "Then press return.\n";
	24 cin >> number_of_bars;
	25 cin >> one_weight;
	26
	27 total_weight = one_weight * number_of_bars;
	28
	29 cout << number_of_bars << " candy bars\n";
	30 cout << one_weight << " ounces each\n";
	31 cout << "Total weight is " << total_weight << " ounces.\n";
	32
	33 cout << "Perhaps an apple would be healthier.\n";
	34
	35 return 0;
	36 }

Sample Dialogue

Enter the number of candy bars in a package and the weight in
ounces of one candy bar.

Then press return.

11 2.1

11 candy bars

2.1 ounces each

Total weight is 23.1 ounces.

Try another brand.

Enter the number of candy bars in a package and the weight in
ounces of one candy bar.

Then press return.

12 1.8

12 candy bars

1.8 ounces each

Total weight is 21.6 ounces.

Perhaps an apple would be healthier.

	 2.1  Variables and Assignments	 43

An identifier must start with either a letter or the underscore symbol, and all
the rest of the characters must be letters, digits, or the underscore symbol. For
example, the following are all valid identifiers:

x x1 x_1 _abc ABC123z7 sum RATE count data2 Big_Bonus

All of the previously mentioned names are legal and would be accepted by the
compiler, but the first five are poor choices for identifiers, since they are not
descriptive of the identifier’s use. None of the following are legal identifiers
and all would be rejected by the compiler:

12 3X %change data-1 myfirst.c PROG.CPP

The first three are not allowed because they do not start with a letter or
an underscore. The remaining three are not identifiers because they contain
symbols other than letters, digits, and the underscore symbol.

C++ is a case-sensitive language; that is, it distinguishes between uppercase
and lowercase letters in the spelling of identifiers. Hence the following are
three distinct identifiers and could be used to name three distinct variables:

rate RATE Rate

However, it is not a good idea to use two such variants in the same program,
since that might be confusing. Although it is not required by C++, variables
are often spelled with all lowercase letters. The predefined identifiers, such as
main, cin, cout, and so forth, must be spelled in all lowercase letters. We
will see uses for identifiers spelled with uppercase letters later in this chapter.

A C++ identifier can be of any length, although some compilers will ignore
all characters after some specified and typically large number of initial characters.

Cannot Get Programs to Run?

If you cannot get your C++ programs to compile and run, read the
Programming Tip in Chapter 1 entitled “Getting Your Program to Run.”
That section has tips for dealing with variations in C++ compilers and C++
environments.

Identifiers

Identifiers are used as names for variables and other items in a C++
program. An identifier must start with either a letter or the underscore
symbol, and the remaining characters must all be letters, digits, or the
underscore symbol.

44	 Chapter 2 /  C++ Basics

There is a special class of identifiers, called keywords or reserved words,
that have a predefined meaning in C++ and that you cannot use as names for
variables or anything else. In this book, keywords are written in a different
type font like so: int, double. (And now you know why those words were
written in a funny way.) A complete list of keywords is given in Appendix 1.

You may wonder why the other words that we defined as part of the C++
language are not on the list of keywords. What about words like cin and
cout? The answer is that you are allowed to redefine these words, although
it would be confusing to do so. These predefined words are not keywords;
however, they are defined in libraries required by the C++ language standard.
We will discuss libraries later in this book. For now, you need not worry about
libraries. Needless to say, using a predefined identifier for anything other than
its standard meaning can be confusing and dangerous, and thus should be
avoided. The safest and easiest practice is to treat all predefined identifiers as
if they were keywords.

Variable Declarations

Every variable in a C++ program must be declared. When you declare a
variable you are telling the compiler—and, ultimately, the computer—what
kind of data you will be storing in the variable. For example, the following
two declarations from the program in Display 2.1 declare the three variables
used in that program:

int number_of_bars;
double one_weight, total_weight;

When there is more than one variable in a declaration, the variables are
separated by commas. Also, note that each declaration ends with a semicolon.

The word int in the first of these two declarations is an abbreviation of
the word integer. (But in a C++ program you must use the abbreviated form
int. Do not write out the entire word integer.) This line declares the identifier
number_of_bars to be a variable of type int. This means that the value of
number_of_bars must be a whole number, such as 1, 2, –1, 0, 37, or –288.

The word double in the second of these two lines declares the two
identifiers one_weight and total_weight to be variables of type double. A
variable of type double can hold numbers with a fractional part, such as 1.75
or –0.55. The kind of data that is held in a variable is called its type and the
name for the type, such as int or double, is called a type name.

Every variable in a C++ program must be declared before the variable can
be used. There are two natural places to declare a variable: either just before
it is used or at the start of the main part of your program right after the lines

int main()
{

Do whatever makes your program clearer.

	 2.1  Variables and Assignments	 45

Variable declarations provide information the compiler needs in order
to implement the variables. Recall that the compiler implements variables as
memory locations and that the value of a variable is stored in the memory
location assigned to that variable. The value is coded as a string of 0s and 1s.
Different types of variables require different sizes of memory locations and
different methods for coding their values as a string of 0s and 1s. The computer
uses one code to encode integers as a string of 0s and 1s. It uses a different
code to encode numbers that have a fractional part. It uses yet another
code to encode letters as strings of 0s and 1s. The variable declaration tells
the compiler—and, ultimately, the computer—what size memory location to
use for the variable and which code to use when representing the variable’s
value as a string of 0s and 1s.

Variable Declarations

All variables must be declared before they are used. The syntax for
variable declarations is as follows:

Syntax

Type_Name Variable_Name_1, Variable_Name_2, ...;

Examples

int count, number_of_dragons, number_of_trolls;
double distance;

Syntax

The syntax for a programming language (or any other kind of language)
is the set of grammar rules for that language. For example, when we talk
about the syntax for a variable declaration (as in the box labeled “Variable
Declarations”), we are talking about the rules for writing down a well-
formed variable declaration. If you follow all the syntax rules for C++, then
the compiler will accept your program. Of course, this only guarantees that
what you write is legal. It guarantees that your program will do something,
but it does not guarantee that your program will do what you want it to do.

Assignment Statements

The most direct way to change the value of a variable is to use an assignment
statement. An assignment statement is an order to the computer saying, “set

46	 Chapter 2 /  C++ Basics

the value of this variable to what I have written down.” The following line
from the program in Display 2.1 is an example of an assignment statement:

total_weight = one_weight * number_of_bars;

This assignment statement tells the computer to set the value of total_
weight equal to the number in the variable one_weight multiplied by the
number in number_of_bars. (As we noted in Chapter 1, * is the sign used for
multiplication in C++.)

An assignment statement always consists of a variable on the left-hand
side of the equal sign and an expression on the right-hand side. An assignment
statement ends with a semicolon. The expression on the right-hand side of the
equal sign may be a variable, a number, or a more complicated expression
made up of variables, numbers, and arithmetic operators such as * and +. An
assignment statement instructs the computer to evaluate (that is, to compute
the value of) the expression on the right-hand side of the equal sign and to
set the value of the variable on the left-hand side equal to the value of that
expression. A few more examples may help to clarify the way these assignment
statements work.

You may use any arithmetic operator in place of the multiplication sign.
The following, for example, is also a valid assignment statement:

total_weight = one_weight + number_of_bars;

This statement is just like the assignment statements in our sample program,
except that it performs addition rather than multiplication. This statement
changes the value of total_weight to the sum of the values of one_weight
and number_of_bars. Of course, if you made this change in the program in
Display 2.1, the program would give incorrect output, but it would still run.

In an assignment statement, the expression on the right-hand side of the
equal sign can simply be another variable. The statement

total_weight = one_weight;

changes the value of the variable total_weight so that it is the same as that
of the variable one_weight. If you were to use this in the program in Display
2.1, it would give out incorrectly low values for the total weight of a package
(assuming there is more than one candy bar in a package), but it might make
sense in some other program.

As another example, the following assignment statement changes the
value of number_of_bars to 37:

number_of_bars = 37;

A number, like the 37 in this example, is called a constant, because unlike a
variable, its value cannot change.

Since variables can change value over time and since the assignment
operator is one vehicle for changing their values, there is an element of time
involved in the meaning of an assignment statement. First, the expression
on the right-hand side of the equal sign is evaluated. After that, the value of

	 2.1  Variables and Assignments	 47

Pitfall   Uninitialized Variables

A variable has no meaningful value until a program gives it one. For example,
if the variable minimum_number has not been given a value either as the left-
hand side of an assignment statement or by some other means (such as being
given an input value with a cin statement), then the following is an error:

desired_number = minimum_number + 10;

This is because minimum_number has no meaningful value, so the entire expression
on the right-hand side of the equal sign has no meaningful value. A variable like
minimum_number that has not been given a value is said to be uninitialized. This
situation is, in fact, worse than it would be if minimum_number had no value
at all. An uninitialized variable, like minimum_number, will simply have some
“garbage value.” The value of an uninitialized variable is determined by whatever
pattern of 0s and 1s was left in its memory location by the last program that
used that portion of memory. Thus if the program is run twice, an uninitialized

the variable on the left side of the equal sign is changed to the value that was
obtained from that expression. This means that a variable can meaningfully
occur on both sides of an assignment operator. For example, consider the
assignment statement

number_of_bars = number_of_bars + 3;

This assignment statement may look strange at first. If you read it as an
English sentence, it seems to say “the number_of_bars is equal to the number_
of_bars plus three.” It may seem to say that, but what it really says is “Make
the new value of number_of_bars equal to the old value of number_of_bars
plus three.” The equal sign in C++ is not used the same way that it is used in
English or in simple mathematics.

Assignment Statements

In an assignment statement, first the expression on the right-hand side of
the equal sign is evaluated, and then the variable on the left-hand side of
the equal sign is set equal to this value.

Syntax

Variable = Expression;

Examples

distance = rate * time;
count = count + 2;

48	 Chapter 2 /  C++ Basics

variable may receive a different value each time the program is run. Whenever a
program gives different output on exactly the same input data and without any
changes in the program itself, you should suspect an uninitialized variable.

One way to avoid an uninitialized variable is to initialize variables at the
same time they are declared. This can be done by adding an equal sign and a
value, as follows:

int minimum_number = 3;

This both declares minimum_number to be a variable of type int and sets
the value of the variable minimum_number equal to 3. You can use a more
complicated expression involving operations such as addition or multiplication
when you initialize a variable inside the declaration in this way. However, a
simple constant is what is most often used. You can initialize some, all, or
none of the variables in a declaration that lists more than one variable. For
example, the following declares three variables and initializes two of them:

double rate = 0.07, time, balance = 0.0;

C++ allows an alternative notation for initializing variables when they are
declared. This alternative notation is illustrated by the following, which is
equivalent to the preceding declaration:

double rate(0.07), time, balance(0.0);

Whether you initialize a variable when it is declared or at some later point in
the program depends on the circumstances. Do whatever makes your program
the easiest to understand.	 ■

Initializing Variables in Declarations

You can initialize a variable (that is, give it a value) at the time that you
declare the variable.

Syntax

Type_Name Variable_Name_1 = Expression_for_Value_1,
 Variable_Name_2 = Expression_for_Value_2, . . .;

Examples

int count = 0, limit = 10, fudge_factor = 2;
double distance = 999.99;

Alternative Syntax for Initializing in Declarations

Type_Name Variable_Name_1 (Expression_for_Value_1),
 Variable_Name_2 (Expression_for_Value_2), . . .;

(continued)

	 2.1  Variables and Assignments	 49

■ P rogramming Tip   Use Meaningful Names

Variable names and other names in a program should at least hint at the
meaning or use of the thing they are naming. It is much easier to understand a
program if the variables have meaningful names. Contrast the following:

x = y * z;

with the more suggestive:

distance = speed * time;

The two statements accomplish the same thing, but the second is easier to
understand.	 ■

Self-Test Exercises

  1.	G ive the declaration for two variables called feet and inches. Both
variables are of type int and both are to be initialized to zero in the
declaration. Use both initialization alternatives.

  2.	G ive the declaration for two variables called count and distance. count
is of type int and is initialized to zero. distance is of type double and is
initialized to 1.5.

  3.	G ive a C++ statement that will change the value of the variable sum to the
sum of the values in the variables n1 and n2. The variables are all of type
int.

  4.	G ive a C++ statement that will increase the value of the variable length by
8.3. The variable length is of type double.

  5.	G ive a C++ statement that will change the value of the variable product to
its old value multiplied by the value of the variable n. The variables are all
of type int.

  6.	 Write a program that contains statements that output the value of five or
six variables that have been declared, but not initialized. Compile and run
the program. What is the output? Explain.

Examples

int count(0), limit(10), fudge_factor(2);
double distance(999.99);

50	 Chapter 2 /  C++ Basics

  7.	G ive good variable names for each of the following:

		 a.	 A variable to hold the speed of an automobile
		 b.	 A variable to hold the pay rate for an hourly employee
		 c.	 A variable to hold the highest score in an exam

2.2  Input and Output

Garbage in means garbage out.

Programmers’ Saying

There are several different ways that a C++ program can perform input and
output. We will describe what are called streams. An input stream is simply
the stream of input that is being fed into the computer for the program to
use. The word stream suggests that the program processes the input in the
same way no matter where the input comes from. The intuition for the word
stream is that the program sees only the stream of input and not the source
of the stream, like a mountain stream whose water flows past you but whose
source is unknown to you. In this section we will assume that the input
comes from the keyboard. In Chapter 6 we will discuss how a program can
read its input from a file; as you will see there, you can use the same kinds of
input statements to read input from a file as those that you use for reading
input from the keyboard. Similarly, an output stream is the stream of output
generated by the program. In this section we will assume the output is going
to a terminal screen; in Chapter 6 we will discuss output that goes to a file.

Output Using cout

The values of variables as well as strings of text may be output to the screen using
cout. There may be any combination of variables and strings to be output. For
example, consider the following line from the program in Display 2.1:

cout << number_of_bars << " candy bars\n";

This statement tells the computer to output two items: the value of the variable
number_of_bars and the quoted string " candy bars\n". Notice that you do
not need a separate copy of the word cout for each item output. You can
simply list all the items to be output preceding each item to be output with
the arrow symbols <<. The above single cout statement is equivalent to the
following two cout statements:

cout << number_of_bars;
cout << " candy bars\n";

You can include arithmetic expressions in a cout statement as shown by
the following example, where price and tax are variables:

cout << "The total cost is $" << (price + tax);

	 2.2  Input and Output	 51

The parentheses around arithmetic expressions, like price + tax, are required
by some compilers, so it is best to include them.

The symbol < is the same as the “less than” symbol. The two < symbols
should be typed without any space between them. The arrow notation << is often
called the insertion operator. The entire cout statement ends with a semicolon.

Whenever you have two cout statements in a row, you can combine them
into a single long cout statement. For example, consider the following lines
from Display 2.1:

 cout << number_of_bars << " candy bars\n";
 cout << one_weight << " ounces each\n";

These two statements can be rewritten as the single following statement, and
the program will perform exactly the same:

cout << number_of_bars << " candy bars\n" << one_weight
 << " ounces each\n";

If you want to keep your program lines from running off the screen, you will
have to place such a long cout statement on two or more lines. A better way to
write the previous long cout statement is

cout << number_of_bars << " candy bars\n"
 << one_weight << " ounces each\n";

You should not break a quoted string across two lines, but otherwise you can
start a new line anywhere you can insert a space. Any reasonable pattern of
spaces and line breaks will be acceptable to the computer, but the previous
example and the sample programs are good models to follow. A good policy
is to use one cout for each group of output that is intuitively considered a
unit. Notice that there is just one semicolon for each cout, even if the cout
statement spans several lines.

Pay particular attention to the quoted strings that are output in the program
in Display 2.1. Notice that the strings must be included in double quotes. The
double quote symbol used is a single key on your keyboard; do not type two
single quotes. Also, notice that the same double quote symbol is used at each
end of the string; there are not separate left and right quote symbols.

Also, notice the spaces inside the quotes. The computer does not insert
any extra space before or after the items output by a cout statement. That is
why the quoted strings in the samples often start and/or end with a blank.
The blanks keep the various strings and numbers from running together. If all
you need is a space and there is no quoted string where you want to insert the
space, then use a string that contains only a space, as in the following:

cout << first_number << " " << second_number;

As we noted in Chapter 1, \n tells the computer to start a new line of
output. Unless you tell the computer to go to the next line, it will put all the
output on the same line. Depending on how your screen is set up, this can

52	 Chapter 2 /  C++ Basics

produce anything from arbitrary line breaks to output that runs off the screen.
Notice that the \n goes inside of the quotes. In C++, going to the next line is
considered to be a special character (special symbol) and the way you spell
this special character inside a quoted string is \n, with no space between the
two symbols in \n. Although it is typed as two symbols, C++ considers \n to
be a single character that is called the new-line character.

Include Directives and Namespaces

We have started all of our programs with the following two lines:

#include <iostream>
using namespace std;

These two lines make the library iostream available. This is the library that
includes, among other things, the definitions of cin and cout. So if your
program uses either cin or cout, you should have these two lines at the start
of the file that contains your program.

The following line is known as an include directive. It “includes” the
library iostream in your program so that you have cin and cout available:

#include <iostream>

The operators cin and cout are defined in a file named iostream and the
above include directive is equivalent to copying that named file into your
program. The second line is a bit more complicated to explain.

C++ divides names into namespaces. A namespace is a collection
of names, such as the names cin and cout. A statement that specifies a
namespace in the way illustrated by the following is called a using directive.

using namespace std;

This particular using directive says that your program is using the std
(“standard”) namespace. This means that the names you use will have the
meaning defined for them in the std namespace. In this case, the important
thing is that when names such as cin and cout were defined in iostream,
their definitions said they were in the std namespace. So to use names like
cin and cout, you need to tell the compiler you are using namespace std;.

That is all you need to know (for now) about namespaces, but a brief
clarifying remark will remove some of the mystery that might surround the
use of namespace. The reason that C++ has namespaces at all is because there
are so many things to name. As a result, sometimes two or more items receive
the same name; that is, a single name can get two different definitions. To
eliminate these ambiguities, C++ divides items into collections so that no two
items in the same collection (the same namespace) have the same name.

Note that a namespace is not simply a collection of names. It is a body of
C++ code that specifies the meaning of some names, such as some definitions
and/or declarations. The function of namespaces is to divide all the C++ name

	 2.2  Input and Output	 53

specifications into collections (called namespaces) such that each name in a
namespace has only one specification (one “definition”) in that namespace.
A namespace divides up the names, but it takes a lot of C++ code along with
the names.

What if you want to use two items in two different namespaces such that
both items have the same name? It can be done and is not too complicated,
but that is a topic for later in the book. For now, we do not need to do this.

Some versions of C++ use the following, older form of the include
directive (without any using namespace):

#include <iostream.h>

If your programs do not compile or do not run with

#include <iostream>
using namespace std;

then try using the following line instead of the previous two lines:

#include <iostream.h>

If your program requires iostream.h instead of iostream, then you have an
old C++ compiler and should obtain a more recent compiler.

Escape Sequences

The backslash, \, preceding a character tells the compiler that the character
following the \ does not have the same meaning as the character appearing
by itself. Such a sequence is called an escape sequence. The sequence is
typed in as two characters with no space between the symbols. Several escape
sequences are defined in C++.

If you want to put a \ or a " into a string constant, you must escape the
ability of the " to terminate a string constant by using \", or the ability of the
\ to escape, by using \\. The \\ tells the compiler you mean a real backslash,
\, not an escape sequence backslash, and \" means a real quote, not a string
constant end.

A stray \, say \z, in a string constant will on one compiler simply give
back a z; on another it will produce an error. The ANSI Standard provides
that the unspecified escape sequences have undefined behavior. This means
a compiler can do anything its author finds convenient. The consequence
is that code that uses undefined escape sequences is not portable. You
should not use any escape sequences other than those provided. We list a
few here.

new line \n
horizontal tab \t
alert \a
backslash \\
double quote \"

54	 Chapter 2 /  C++ Basics

Alternately, C++11 supports a format called raw string literals, which
is convenient if you have many escape characters. In this format use an R
followed by the string in parentheses. For example, the following line outputs
the literal string “c:\files\”:

cout << R"(c:\files\)";

If you wish to insert a blank line in the output, you can output the new-
line character \n by itself:

cout << "\n";

Another way to output a blank line is to use endl, which means essentially the
same thing as "\n". So you can also output a blank line as follows:

cout << endl;

Although "\n" and endl mean the same thing, they are used slightly
differently; \n must always be inside of quotes and endl should not be placed
in quotes.

A good rule for deciding whether to use \n or endl is the following: If you
can include the \n at the end of a longer string, then use \n as in the following:

cout << "Fuel efficiency is "
 << mpg << " miles per gallon\n";

On the other hand, if the \n would appear by itself as the short string "\n",
then use endl instead:

cout << "You entered " << number << endl;

Starting New Lines in Output

To start a new output line, you can include \n in a quoted string, as in
the following example:

cout << "You have definitely won\n"
 << "one of the following prizes:\n";

Recall that \n is typed as two symbols with no space in between the two
symbols.

Alternatively, you can start a new line by outputting endl. An equivalent
way to write the above cout statement is as follows:

cout << "You have definitely won" << endl
 << "one of the following prizes:" << endl;

	 2.2  Input and Output	 55

■ P rogramming Tip   End Each Program with a \n or endl

It is a good idea to output a new-line instruction at the end of every program.
If the last item to be output is a string, then include a \n at the end of the
string; if not, output an endl as the last action in your program. This serves two
purposes. Some compilers will not output the last line of your program unless
you include a new-line instruction at the end. On other systems, your program
may work fine without this final new-line instruction, but the next program that
is run will have its first line of output mixed with the last line of the previous
program. Even if neither of these problems occurs on your system, putting a
new-line instruction at the end will make your programs more portable.	 ■

Formatting for Numbers with a Decimal Point

When the computer outputs a value of type double, the format may not be
what you would like. For example, the following simple cout statement can
produce any of a wide range of outputs:

cout << "The price is $" << price << endl;

If price has the value 78.5, the output might be

The price is $78.500000

or it might be

The price is $78.5

or it might be output in the following notation (which we will explain in
Section 2.3):

The price is $7.850000e01

But it is extremely unlikely that the output will be the following, even though
this is the format that makes the most sense:

The price is $78.50

To ensure that the output is in the form you want, your program should contain
some sort of instructions that tell the computer how to output the numbers.

There is a “magic formula” that you can insert in your program to cause
numbers that contain a decimal point, such as numbers of type double, to be
output in everyday notation with the exact number of digits after the decimal
point that you specify. If you want two digits after the decimal point, use the
following magic formula:

cout.setf(ios::fixed);
cout.setf(ios::showpoint);
cout.precision(2);

If you insert the preceding three statements in your program, then any cout
statement that follows these three statements will output values of type
double in ordinary notation, with exactly two digits after the decimal point.

56	 Chapter 2 /  C++ Basics

For example, suppose the following cout statement appears somewhere after
this magic formula and suppose the value of price is 78.5:

cout << "The price is $" << price << endl;

The output will then be as follows:

The price is $78.50

You may use any other nonnegative whole number in place of 2 to specify a
different number of digits after the decimal point. You can even use a variable
of type int in place of the 2. We will explain this magic formula in detail
in Chapter 6. For now you should think of this magic formula as one long
instruction that tells the computer how you want it to output numbers that
contain a decimal point.

If you wish to change the number of digits after the decimal point so that
different values in your program are output with different numbers of digits,
you can repeat the magic formula with some other number in place of 2.
However, when you repeat the magic formula, you only need to repeat the last
line of the formula. If the magic formula has already occurred once in your
program, then the following line will change the number of digits after the
decimal point to 5 for all subsequent values of type double that are output:

cout.precision(5);

Input Using cin

You use cin for input more or less the same way you use cout for output. The
syntax is similar, except that cin is used in place of cout and the arrows point in
the opposite direction. For example, in the program in Display 2.1, the variables
number_of_bars and one_weight were filled by the following cin statements
(shown along with the cout statements that tell the user what to do):

Outputting Values of Type double

If you insert the following “magic formula” in your program, then all
numbers of type double (or any other type that allows for digits after
the decimal point) will be output in ordinary, everyday notation with two
digits after the decimal point:

cout.setf(ios::fixed);
cout.setf(ios::showpoint);
cout.precision(2);

You can use any other nonnegative whole number in place of the 2 to
specify a different number of digits after the decimal point. You can even
use a variable of type int in place of the 2.

	 2.2  Input and Output	 57

cout << "Enter the number of candy bars in a package\n";
cout << "and the weight in ounces of one candy bar.\n";
cout << "Then press return.\n";
cin >> number_of_bars;
cin >> one_weight;

You can list more than one variable in a single cin statement. So the preceding
lines could be rewritten to the following:

cout << "Enter the number of candy bars in a package\n";
cout << "and the weight in ounces of one candy bar.\n";
cout << "Then press return.\n";
cin >> number_of_bars >> one_weight;

If you prefer, the cin statement can be written on two lines as follows:

cin >> number_of_bars
 >> one_weight;

Notice that, as with the cout statement, there is just one semicolon for each
occurrence of cin.

When a program reaches a cin statement, it waits for input to be entered from
the keyboard. It sets the first variable equal to the first value typed at the keyboard,
the second variable equal to the second value typed, and so forth. However, the
program does not read the input until the user presses the Return key. This allows
the user to backspace and correct mistakes when entering a line of input.

Numbers in the input must be separated by one or more spaces or by a line
break. If, for instance, you want to enter the two numbers 12 and 5 and instead
you enter the numbers without any space between them, then the computer
will think you have entered the single number 125. When you use cin
statements, the computer will skip over any number of blanks or line breaks
until it finds the next input value. Thus, it does not matter whether input
numbers are separated by one space or several spaces or even a line break.

cin Statements

A cin statement sets variables equal to values typed in at the keyboard.

Syntax

cin >> Variable_1 >> Variable_2 >> ... ;

Example

cin >> number >> size;
cin >> time_to_go
 >> points_needed;

58	 Chapter 2 /  C++ Basics

Designing Input and Output

Input and output, or, as it is often called, I/O, is the part of the program that
the user sees, so the user will not be happy with a program unless the program
has well-designed I/O.

When the computer executes a cin statement, it expects some data
to be typed in at the keyboard. If none is typed in, the computer simply
waits for it. The program must tell the user when to type in a number (or
other data item). The computer will not automatically ask the user to enter
data. That is why the sample programs contain output statements like the
following:

cout << "Enter the number of candy bars in a package\n";
cout << "and the weight in ounces of one candy bar.\n";
cout << "Then press return.\n";

These output statements prompt the user to enter the input. Your programs
should always prompt for input.

When entering input from a terminal, the input appears on the screen
as it is typed in. Nonetheless, the program should always write out the
input values some time before it ends. This is called echoing the input, and
it serves as a check to see that the input was read in correctly. Just because
the input looks good on the screen when it is typed in does not mean that
it was read correctly by the computer. There could be an unnoticed typing
mistake or other problem. Echoing input serves as a test of the integrity of
the input data.

■ P rogramming Tip   Line Breaks in I/O

It is possible to keep output and input on the same line, and sometimes it can
produce a nicer interface for the user. If you simply omit a \n or endl at the
end of the last prompt line, then the user’s input will appear on the same line
as the prompt. For example, suppose you use the following prompt and input
statements:

cout << "Enter the cost per person: $";
cin >> cost_per_person;

When the cout statement is executed, the following will appear on the screen:

Enter the cost per person: $

When the user types in the input, it will appear on the same line, like this:

Enter the cost per person: $1.25

■

	 2.2  Input and Output	 59

Self-Test Exercises

	  8.	G ive an output statement that will produce the following message on the
screen:

The answer to the question of
Life, the Universe, and Everything is 42.

	  9.	G ive an input statement that will fill the variable the_number (of type
int) with a number typed in at the keyboard. Precede the input statement
with a prompt statement asking the user to enter a whole number.

	10.	 What statements should you include in your program to ensure that,
when a number of type double is output, it will be output in ordinary
notation with three digits after the decimal point?

	11.	 Write a complete C++ program that writes the phrase Hello world to the
screen. The program does nothing else.

	12.	 Write a complete C++ program that reads in two whole numbers and outputs
their sum. Be sure to prompt for input, echo input, and label all output.

	13.	G ive an output statement that produces the new-line character and a tab
character.

	14.	 Write a short program that declares and initializes double variables
one, two, three, four, and five to the values 1.000, 1.414, 1.732,
2.000, and 2.236, respectively. Then write output statements to
generate the following legend and table. Use the tab escape sequence
\t to line up the columns. If you are unfamiliar with the tab character,
you should experiment with it while doing this exercise. A tab works
like a mechanical stop on a typewriter. A tab causes output to begin in
a next column, usually a multiple of eight spaces away. Many editors
and most word processors will have adjustable tab stops. Our output
does not.

		 The output should be:

N	 Square Root

1	 1.000

2	 1.414

3	 1.732

4	 2.000

5	 2.236

60	 Chapter 2 /  C++ Basics

2.3  Data Types and Expressions

They’ll never be happy together. He’s not her type.

Overheard at a Cocktail Party

The Types int and double

Conceptually, the numbers 2 and 2.0 are the same number. But C++
considers them to be of different types. The whole number 2 is of type
int; the number 2.0 is of type double, because it contains a fraction part
(even though the fraction is 0). Once again, the mathematics of computer
programming is a bit different from what you may have learned in
mathematics classes. Something about the practicalities of computers makes
a computer’s numbers differ from the abstract definitions of these numbers.
The whole numbers in C++ behave as you would expect them to. The type
int holds no surprises. But values of type double are more troublesome.
Because it can store only a limited number of significant digits, the computer
stores numbers of type double as approximate values. Numbers of type int
are stored as exact values. The precision with which double values are stored
varies from one computer to another, but you can expect them to be stored
with 14 or more digits of accuracy. For most applications this is likely to be
sufficient, though subtle problems can occur even in simple cases. Thus, if
you know that the values in some variable will always be whole numbers in
the range allowed by your computer, it is best to declare the variable to be
of type int.

Number constants of type double are written differently from those of
type int. Constants of type int must not contain a decimal point. Constants
of type double may be written in either of two forms. The simple form for
double constants is like the everyday way of writing decimal fractions. When

What Is Doubled?

Why is the type for numbers with a fraction part called double? Is there
a type called “single” that is half as big? No, but something like that
is true. Many programming languages traditionally used two types for
numbers with a fractional part. One type used less storage and was
very imprecise (that is, it did not allow very many significant digits).
The second type used double the amount of storage and was therefore
much more precise; it also allowed numbers that were larger (although
programmers tend to care more about precision than about size).
The kind of numbers that used twice as much storage were called

(continued)

	 2.3  Data Types and Expressions	 61

written in this form, a double constant must contain a decimal point. There
is, however, one thing that constants of type double and constants of type int
have in common: No number in C++ may contain a comma.

The more complicated notation for constants of type double is frequently
called scientific notation or floating-point notation and is particularly handy
for writing very large numbers and very small fractions. For instance,

3.67 × 1017

which is the same as

367000000000000000.0

is best expressed in C++ by the constant 3.67e17. The number

5.89 × 10–6

which is the same as

0.00000589

is best expressed in C++ by the constant 5.89e-6. The e stands for exponent and
means “multiply by 10 to the power that follows.”

This e notation is used because keyboards normally have no way to write
exponents as superscripts. Think of the number after the e as telling you the
direction and number of digits to move the decimal point. For example, to
change 3.49e4 to a numeral without an e, you move the decimal point four
places to the right to obtain 34900.0, which is another way of writing the
same number. If the number after the e is negative, you move the decimal
point the indicated number of spaces to the left, inserting extra zeros if need
be. So, 3.49e-2 is the same as 0.0349.

The number before the e may contain a decimal point, although it is
not required. However, the exponent after the e definitely must not contain a
decimal point.

Since computers have size limitations on their memory, numbers are
typically stored in a limited number of bytes (that is, a limited amount of
storage). Hence, there is a limit to how large the magnitude of a number can

double-precision numbers; those that used less storage were called
single-precision. Following this tradition, the type that (more or less)
corresponds to this double-precision type was named double in C++.
The type that corresponds to single-precision in C++ was called float.
C++ also has a third type for numbers with a fractional part, which is
called long double. These types are described in the subsection entitled
“Other Number Types.” However, we will rarely use the types float and
long double in this book.

62	 Chapter 2 /  C++ Basics

be, and this limit is different for different number types. The largest allowable
number of type double is always much larger than the largest allowable
number of type int. Most current implementations of C++ will allow values
of type int as large as 2,147,483,647 and values of type double up to about
10308.

Other Number Types

C++ has other numeric types besides int and double. Some are described
in Display 2.2. The various number types allow for different size numbers
and for more or less precision (that is, more or fewer digits after the decimal
point). In Display 2.2, the values given for memory used, size range, and
precision are only one sample set of values, intended to give you a general feel
for how the types differ. The values vary from one system to another and may
be different on your system.

Although some of these other numeric types are spelled as two words,
you declare variables of these other types just as you declare variables of types
int and double. For example, the following declares one variable of type long
double:

long double big_number;

The type names long and long int are two names for the same type.
Thus, the following two declarations are equivalent:

long big_total;

and the equivalent

long int big_total;

Of course, in any one program, you should use only one of the above two
declarations for the variable big_total, but it does not matter which one you
use. Also, remember that the type name long by itself means the same thing
as long int, not the same thing as long double.

The types for whole numbers, such an int and similar types, are called
integer types. The type for numbers with a decimal point—such as the
type double and similar types—are called floating-point types. They are
called floating-point because when the computer stores a number written
in the usual way, like 392.123, it first converts the number to something
like e notation, in this case something like 3.92123e2. When the computer
performs this conversion, the decimal point floats (that is, moves) to a new
position.

You should be aware that there are other numeric types in C++. However,
in this book we will use only the types int, double, and occasionally long.
For most simple applications, you should not need any types except int and
double. However, if you are writing a program that uses very large whole
numbers, then you might need to use the type long.

	 2.3  Data Types and Expressions	 63

C++11 Types

The size of integer data types can vary from one machine to another. For
example, on a 32-bit machine an integer might be 4 bytes while on a 64-bit
machine an integer might be 8 bytes. Sometimes this is problematic if you
need to know exactly what range of values can be stored in an integer type.
To address this problem, new integer types were added to C++11 that specify
exactly the size and whether or not the data type is signed or unsigned. These
types are accessible by including <cstdint>. Display 2.3 illustrates some of
these number types. In this text we will primarily use the more ambiguous
types of int and long, but consider the C++11 types if you want to specify an
exact size.

C++11 also includes a type named auto that deduces the type of a variable
based on an expression on the right side of the equal sign. For example, the
following line of code defines a variable named x whose data type matches
whatever is computed from “expression”:

auto x = expression;

This feature doesn’t buy us much at this point but will save us some long,
messy code when we start to work with longer data types that we define
ourselves.

Display 2.2   Some Number Types

Type Name Memory Used Size Range Precision

short (also called
short int)

2 bytes -32,768 to 32,767 (not applicable)

int 4 bytes -2,147,483,648 to
2,147,483,647

(not applicable)

long (also called
long int)

4 bytes -2,147,483,648 to
2,147,483,647

(not applicable)

float 4 bytes approximately
10-38 to 1038

7 digits

double 8 bytes approximately
10-308 to 10308

15 digits

long double 10 bytes approximately
10-4932 to 104932

19 digits

These are only sample values to give you a general idea of how the types differ. The values for any of these entries may be
different on your system. Precision refers to the number of meaningful digits, including digits in front of the decimal
point. The ranges for the types float, double, and long double are the ranges for positive numbers. Negative
numbers have a similar range, but with a negative sign in front of each number.

64	 Chapter 2 /  C++ Basics

In the other direction, C++11 also introduces a way to determine the type
of a variable or expression. decltype (expr) is the declared type of variable or
expression expr and can be used in declarations:

int x = 10;
decltype (x*3.5) y;

This code declares y to be the same type as x*3.5. The expression x*3.5 is a
double so y is declared as a double.

The Type char

We do not want to give you the impression that computers and C++ are used
only for numeric calculations, so we will introduce some nonnumeric types
now, though eventually we will see other more complicated nonnumeric
types. Values of the type char, which is short for character, are single symbols
such as a letter, digit, or punctuation mark. Values of this type are frequently
called characters in books and in conversation, but in a C++ program this type
must always be spelled in the abbreviated fashion char. For example, the
variables symbol and letter of type char are declared as follows:

char symbol, letter;

A variable of type char can hold any single character on the keyboard. So,
for example, the variable symbol could hold an 'A' or a '+' or an 'a'. Note that
uppercase and lowercase versions of a letter are considered different characters.

The text in double quotes that are output using cout are called string
values. For example, the following, which occurs in the program in Display 2.1,
is a string:

Display 2.3  S ome C++11 Fixed Width Integer Types

Type Name	 Memory Used	S ize Range

int8_t	 1 byte	 -128 to 127

uint8_t	 1 byte	 0 to 255

int16_t	 2 bytes	 -32,768 to 32,767

uint16_t	 2 bytes	 0 to 65,535

int32_t	 4 bytes	 -2,147,483,648 to 2,147,483,647

uint32_t	 4 bytes	 0 to 4,294,967,295

int64_t	 8 bytes	 -9,223,372,036,854,775,808 to
		 9,223,372,036,854,775,807

uint64_t	 8 bytes	 0 to 18,446,744,073,709,551,615

long long	 At least 8 bytes

VideoNote
C++11 Fixed Width
Integer Types

	 2.3  Data Types and Expressions	 65

Display 2.4   The Type char

	1 #include <iostream>
	2 using namespace std;
	3 int main()
	4 {
	5 char symbol1, symbol2, symbol3;

	6 cout << "Enter two initials, without any periods:\n";
	7 cin >> symbol1 >> symbol2;
	8 cout << "The two initials are:\n";
	9 cout << symbol1 << symbol2 << endl;
	10 cout << "Once more with a space:\n";
	11 symbol3 = ' ';
	12 cout << symbol1 << symbol3 << symbol2 << endl;
	13 cout << "That's all.";
	14 return 0;
	15 }

Sample Dialogue

Enter two initials, without any periods:

J B

The two initials are:

JB

Once more with a space:

J B

That's all.

"Enter the number of candy bars in a package\n"

Be sure to notice that string constants are placed inside of double quotes,
while constants of type char are placed inside of single quotes. The two kinds
of quotes mean different things. In particular, 'A' and "A" mean different
things. 'A' is a value of type char and can be stored in a variable of type char.
"A" is a string of characters. The fact that the string happens to contain only
one character does not make "A" a value of type char. Also notice that, for
both strings and characters, the left and right quotes are the same.

The use of the type char is illustrated in the program shown in Display 2.4.
Notice that the user types a space between the first and second initials.
Yet the program skips over the blank and reads the letter B as the second
input character. When you use cin to read input into a variable of type
char, the computer skips over all blanks and line breaks until it gets to
the first nonblank character and reads that nonblank character into the

66	 Chapter 2 /  C++ Basics

variable. It makes no difference whether there are blanks in the input or not.
The program in Display 2.4 will give the same output whether the user types
in a blank between initials, as shown in the sample dialogue, or the user types
in the two initials without a blank, like so:

JB

The Type bool

The next type we discuss here is the type bool. This type was added to
the C++ language by the ISO/ANSI (International Standards Organization/
American National Standards Organization) committee in 1998. Expressions
of type bool are called Boolean after the English mathematician George Boole
(1815–1864), who formulated rules for mathematical logic.

Boolean expressions evaluate to one of the two values, true or false.
Boolean expressions are used in branching and looping statements that we
study in Section 2.4. We will say more about Boolean expressions and the type
bool in that section.

Introduction to the Class string

Although C++ lacks a native data type to directly manipulate strings, there is
a string class that may be used to process strings in a manner similar to the
data types we have seen thus far. The distinction between a class and a native
data type is discussed in Chapter 10. Further details about the string class are
discussed in Chapter 8.

To use the string class we must first include the string library:

#include <string>

Your program must also contain the following line of code, normally placed
at the start of the file:

using namespace std;

You declare variables of type string just as you declare variables of types int
or double. For example, the following declares one variable of type string
and stores the text "Monday" in it:

string day;
day = "Monday";

You may use cin and cout to read data into strings, as shown in Display 2.5.
If you place the ‘+’ symbol between two strings, then this operator concate-
nates the two strings together to create one longer string. For example, the
code:

string day, day1, day2;
day1 = “Monday”;

	 2.3  Data Types and Expressions	 67

Display 2.5   The string Class

  1 #include <iostream>
	  2 #include <string>
  3 using namespace std;
  4 int main()
  5 {
  6 string middle_name, pet_name;
  7 string alter_ego_name;
  8
  9 cout << "Enter your middle name and the name of your pet.\n";
 10 cin >> middle_name;
 11 cin >> pet_name;
 12
 13 alter_ego_name = pet_name + " " + middle_name;
 14
 15 cout << "The name of your alter ego is ";
 16 cout << alter_ego_name << "." << endl;
 17
 18 return 0;
 19
 20 }

Sample Dialogue 1

Enter your middle name and the name of your pet.

Parker Pippen

The name of your alter ego is Pippen Parker.

Sample Dialogue 2

Enter your middle name and the name of your pet.

Parker

Mr. Bojangles

The name of your alter ego is Mr. Parker.

day2 = “Tuesday”;
day = day1 + day2;

Results in the concatenated string of:

"MondayTuesday"

Note that a space is not automatically added between the strings. If you
wanted a space between the two days, then a space must be added explicitly:

day1 + " " + day2

68	 Chapter 2 /  C++ Basics

When you use cin to read input into a string variable, the computer only
reads until it encounters a whitespace character. Whitespace characters are all
the characters that are displayed as blank spaces on the screen, including the
blank or space character, the tab character, and the new-line character '\n'.
This means that you cannot input a string that contains spaces. This may
sometimes cause errors, as indicated in Display 2.5, Sample Dialogue 2. In
this case, the user intends to enter "Mr. Bojangles" as the name of the pet,
but the string is only read up to "Mr." since the next character is a space. The
"Bojangles" string is ignored by this program but would be read next if there
was another cin statement. Chapter 8 describes a technique to input a string
that may include spaces.

Type Compatibilities

As a general rule, you cannot store a value of one type in a variable of another
type. For example, most compilers will object to the following:

int int_variable;
int_variable = 2.99;

The problem is a type mismatch. The constant 2.99 is of type double and the
variable int_variable is of type int. Unfortunately, not all compilers will
react the same way to the above assignment statement. Some will issue an
error message, some will give only a warning message, and some compilers
will not object at all. But even if the compiler does allow you to use this
assignment, it will probably give int_variable the int value 2, not the value 3.
Since you cannot count on your compiler accepting this assignment, you
should not assign a double value to a variable of type int.

The same problem arises if you use a variable of type double instead of
the constant 2.99. Most compilers will also object to the following:

int int_variable;
double double_variable;
double_variable = 2.00;
int_variable = double_variable;

The fact that the value 2.00 “comes out even” makes no difference. The value
2.00 is of type double, not of type int. As you will see shortly, you can replace
2.00 with 2 in the preceding assignment to the variable double_variable,
but even that is not enough to make the assignment acceptable. The variables
int_variable and double_variable are of different types, and that is the
cause of the problem.

Even if the compiler will allow you to mix types in an assignment
statement, in most cases you should not. Doing so makes your program less
portable, and it can be confusing. For example, if your compiler lets you
assign 2.99 to a variable of type int, the variable will receive the value 2,

	 2.3  Data Types and Expressions	 69

rather than 2.99, which can be confusing since the program seems to say the
value will be 2.99.

There are some special cases where it is permitted to assign a value of one
type to a variable of another type. It is acceptable to assign a value of type
int to a variable of type double. For example, the following is both legal and
acceptable style:

double double_variable;
double_variable = 2;

The above will set the value of the variable named double_variable equal
to 2.0.

Although it is usually a bad idea to do so, you can store an int value
such as 65 in a variable of type char and you can store a letter such as 'Z'
in a variable of type int. For many purposes, the C language considers the
characters to be small integers; and perhaps unfortunately, C++ inherited this
from C. The reason for allowing this is that variables of type char consume
less memory than variables of type int and so doing arithmetic with variables
of type char can save some memory. However, it is clearer to use the type int
when you are dealing with integers and to use the type char when you are
dealing with characters.

The general rule is that you cannot place a value of one type in a variable
of another type—though it may seem that there are more exceptions to the
rule than there are cases that follow the rule. Even if the compiler does not
enforce this rule very strictly, it is a good rule to follow. Placing data of one
type in a variable of another type can cause problems, since the value must
be changed to a value of the appropriate type and that value may not be what
you would expect.

Values of type bool can be assigned to variables of an integer type
(short, int, long) and integers can be assigned to variables of type bool.
However, it is poor style to do this and you should not use these features. For
completeness and to help you read other people’s code, we do give the details:
When assigned to a variable of type bool, any nonzero integer will be stored
as the value true. Zero will be stored as the value false. When assigning a
bool value to an integer variable, true will be stored as 1 and false will be
stored as 0.

Arithmetic Operators and Expressions

In a C++ program, you can combine variables and/or numbers using the
arithmetic operators + for addition, – for subtraction, * for multiplication,
and / for division. For example, the following assignment statement, which
appears in the program in Display 2.1, uses the * operator to multiply the
numbers in two variables. (The result is then placed in the variable on the left-
hand side of the equal sign.)

total_weight = one_weight * number_of_bars;

70	 Chapter 2 /  C++ Basics

All of the arithmetic operators can be used with numbers of type int,
numbers of type double, and even with one number of each type. However,
the type of the value produced and the exact value of the result depends
on the types of the numbers being combined. If both operands (that is,
both numbers) are of type int, then the result of combining them with
an arithmetic operator is of type int. If one, or both, of the operands is of
type double, then the result is of type double. For example, if the variables
base_amount and increase are of type int, then the number produced by the
following expression is of type int:

base_amount + increase

However, if one or both of the two variables is of type double, then the result
is of type double. This is also true if you replace the operator + with any of the
operators –, *, or /.

The type of the result can be more significant than you might suspect.
For example, 7.0/2 has one operand of type double, namely 7.0. Hence,
the result is the type double number 3.5. However, 7/2 has two operands of
type int and so it yields the type int, which is the result 3. Even if the result
“comes out even,” there is a difference. For example, 6.0/2 has one operand
of type double, namely 6.0. Hence, the result is the type double number
3.0, which is only an approximate quantity. However, 6/2 has two operands
of type int, so it yields the result 3, which is of type int and so is an exact
quantity. The division operator is the operator that is affected most severely by
the type of its arguments.

When used with one or both operands of type double, the division
operator, /, behaves as you might expect. However, when used with two
operands of type int, the division operator, /, yields the integer part resulting
from division. In other words, integer division discards the part after the
decimal point. So, 10/3 is 3 (not 3.3333), 5/2 is 2 (not 2.5), and 11/3 is 3
(not 3.6666). Notice that the number is not rounded; the part after the decimal
point is discarded no matter how large it is.

The operator % can be used with operands of type int to recover the
information lost when you use / to do division with numbers of type int.
When used with values of type int, the two operators/ and % yield the two
numbers produced when you perform the long division algorithm you learned
in grade school. For example, 17 divided by 5 yields 3 with a remainder of 2.
The / operation yields the number of times one number “goes into” another.
The % operation gives the remainder. For example, the statements

cout << "17 divided by 5 is " << (17/5) << endl;
cout << "with a remainder of " << (17%5) << endl;

yield the following output:

17 divided by 5 is 3
with a remainder of 2

	 2.3  Data Types and Expressions	 71

When used with negative values of type int, the result of the operators /
and % can be different for different implementations of C++. Thus, you
should use / and % with int values only when you know that both values
are nonnegative.

Any reasonable spacing will do in arithmetic expressions. You can insert
spaces before and after operations and parentheses, or you can omit them. Do
whatever produces a result that is easy to read.

You can specify the order of operations by inserting parentheses, as
illustrated in the following two expressions:

(x + y) * z

 x + (y * z)

To evaluate the first expression, the computer first adds x and y and then
multiplies the result by z. To evaluate the second expression, it multiplies
y and z and then adds the result to x. Although you may be used to using
mathematical formulas that contain square brackets and various other forms
of parentheses, that is not allowed in C++. C++ allows only one kind of
parentheses in arithmetic expressions. The other varieties are reserved for
other purposes.

If you omit parentheses, the computer will follow rules called precedence
rules that determine the order in which the operators, such as + and *, are
performed. These precedence rules are similar to rules used in algebra and
other mathematics classes. For example,

x + y * z

is evaluated by first doing the multiplication and then the addition. Except in
some standard cases, such as a string of additions or a simple multiplication
embedded inside an addition, it is usually best to include the parentheses,
even if the intended order of operations is the one dictated by the precedence
rules. The parentheses make the expression easier to read and less prone
to programmer error. A complete set of C++ precedence rules is given in
Appendix 2.

Display 2.7 shows some examples of common kinds of arithmetic
expressions and how they are expressed in C++.

Precedence and Arithmetic
Operators

VideoNote

Display 2.6   Integer Division

	 4 	 12/3		 4 	 14/3
	 3   12 			 3   14 	
	 12 			 12 	
	 0	 12%3		 2	 14%3

Display 2.6 illustrates how / and % work with values of type int.

72	 Chapter 2 /  C++ Basics

Pitfall   Whole Numbers in Division

When you use the division operator / on two whole numbers, the result is a whole
number. This can be a problem if you expect a fraction. Moreover, the problem
can easily go unnoticed, resulting in a program that looks fine but is producing
incorrect output without your even being aware of the problem. For example,
suppose you are a landscape architect who charges $5,000 per mile to landscape a
highway, and suppose you know the length of the highway you are working on in
feet. The price you charge can easily be calculated by the following C++ statement:

total_price = 5000 * (feet/5280.0);

This works because there are 5,280 feet in a mile. If the stretch of highway you
are landscaping is 15,000 feet long, this formula will tell you that the total price is

5000 * (15000/5280.0)

Your C++ program obtains the final value as follows: 15000/5280.0 is
computed as 2.84. Then the program multiplies 5000 by 2.84 to produce the
value 14200.00. With the aid of your C++ program, you know that you should
charge $14,200 for the project.

Now suppose the variable feet is of type int, and you forget to put in the
decimal point and the zero, so that the assignment statement in your program
reads:

total_price = 5000 * (feet/5280);

It still looks fine but will cause serious problems. If you use this second form
of the assignment statement, you are dividing two values of type int, so
the result of the division feet/5280 is 15000/5280, which is the int value
2 (instead of the value 2.84, which you think you are getting). So the value
assigned to total_cost is 5000 * 2, or 10000.00. If you forget the decimal
point, you will charge $10,000. However, as we have already seen, the correct
value is $14,200. A missing decimal point has cost you $4,200. Note that this
will be true whether the type of total_price is int or double; the damage is
done before the value is assigned to total_price.	 ■

Display 2.7   Arithmetic Expressions

Mathematical Formula C++ Expression

b2 – 4ac b*b – 4*a*c

x(y + z) x*(y + z)

 1
x2 + x + 3

1/(x*x + x + 3)

a + b
c – d

(a + b)/(c – d)

	 2.3  Data Types and Expressions	 73

Self-Test Exercises

	15.	 Convert each of the following mathematical formulas to a C++ expression:

 	 3x	 3x + y	 x + y	 3x + y
	 7	 z + 2

	16.	 What is the output of the following program lines when embedded in a
correct program that declares all variables to be of type char?

a = 'b';
b = 'c';
c = a;
cout << a << b << c << 'c';

	17.	 What is the output of the following program lines when embedded in a
correct program that declares number to be of type int?

number = (1/3) * 3;
cout << "(1/3) * 3 is equal to " << number;

	18.	 Write a complete C++ program that reads two whole numbers into two
variables of type int and then outputs both the whole-number part and
the remainder when the first number is divided by the second. This can be
done using the operators / and %.

	19.	G iven the following fragment that purports to convert from degrees
Celsius to degrees Fahrenheit, answer the following questions:

double c = 20;
double f;
f = (9/5) * c + 32.0;

		 a.  What value is assigned to f?
		 b. � Explain what is actually happening, and what the programmer likely

wanted.
		 c.  Rewrite the code as the programmer intended.

	20.	 What is the output of the following program lines when embedded in
a correct program that declares month, day, year, and date to be of type
string?

month = "03";
day = "04";
year = "06";
date = month + day + year;
cout << date << endl;

74	 Chapter 2 /  C++ Basics

More Assignment Statements

There is a shorthand notation that combines the assignment operator (=) and
an arithmetic operator so that a given variable can have its value changed
by adding, subtracting, multiplying by, or dividing by a specified value. The
general form is

Variable Op= Expression

which is equivalent to

Variable = Variable Op (Expression)

Op is an operator such as +, *, or *. The Expression can be another variable,
a constant, or a more complicated arithmetic expression. Following are
examples:

Example Equivalent to:

count += 2; count = count + 2;

total –= discount; total = total – discount;

bonus *= 2; bonus = bonus * 2;

time /= rush_factor; time = time / rush_factor;

change %= 100; change = change % 100;

amount *= cnt1 + cnt2; amount = amount * (cnt1 + cnt2);

2.4  Simple Flow of Control

“If you think we’re wax-works,” he said, “you ought to pay, you know.
Wax-works weren’t made to be looked at for nothing. Nohow!”

“Contrariwise,” added the one marked “DEE,” “if you think we’re alive,
you ought to speak.”

LEWIS CARROLL, Through the Looking-Glass

The programs you have seen thus far each consist of a simple list of
statements to be executed in the order given. However, to write more
sophisticated programs, you will also need some way to vary the order in
which statements are executed. The order in which statements are executed
is often referred to as flow of control. In this section we will present
two simple ways to add some flow of control to your programs. We will
discuss a branching mechanism that lets your program choose between
two alternative actions, choosing one or the other depending on the values
of variables. We will also present a looping mechanism that lets your
program repeat an action a number of times.

	 2.4  Simple Flow of Control	 75

A Simple Branching Mechanism

Sometimes it is necessary to have a program choose one of two alternatives,
depending on the input. For example, suppose you want to design a program
to compute a week’s salary for an hourly employee. Assume the firm pays an
overtime rate of one-and-one-half times the regular rate for all hours after the
first 40 hours worked. As long as the employee works 40 or more hours, the
pay is then equal to

rate * 40 + 1.5 * rate * (hours - 40)

However, if there is a possibility that the employee will work less than
40 hours, this formula will unfairly pay a negative amount of overtime.
(To see this, just substitute 10 for hours, 1 for rate, and do the arithmetic. The
poor employee will get a negative paycheck.) The correct pay formula for an
employee who works less than 40 hours is simply

rate * hours

If both more than 40 hours and less than 40 hours of work are possible,
then the program will need to choose between the two formulas. In order to
compute the employee’s pay, the program action should be

Decide whether or not (hours > 40) is true.

If it is, do the following assignment statement:
 gross_pay = rate * 40 + 1.5 * rate * (hours - 40);

If it is not, do the following:
 gross_pay = rate * hours;

There is a C++ statement that does exactly this kind of branching action. The
if-else statement chooses between two alternative actions. For example,
the wage calculation we have been discussing can be accomplished with the
following C++ statement:

if (hours > 40)
 gross_pay = rate * 40 + 1.5 * rate * (hours - 40);
else
 gross_pay = rate * hours;

A complete program that uses this statement is given in Display 2.8.
Two forms of an if-else statement are described in Display 2.9. The

first is the simple form of an if-else statement; the second form will be
discussed in the subsection entitled “Compound Statements.” In the first form
shown, the two statements may be any executable statements. The Boolean_
Expression is a test that can be checked to see if it is true or false, that is, to
see if it is satisfied or not. For example, the Boolean_Expression in the earlier
if-else statement is

hours > 40

76	 Chapter 2 /  C++ Basics

When the program reaches the if-else statement, exactly one of the two
embedded statements is executed. If the Boolean_Expression is true (that is, if
it is satisfied), then the Yes_Statement is executed; if the Boolean_Expression
is false (that is, if it is not satisfied), then the No_Statement is executed.
Notice that the Boolean_Expression must be enclosed in parentheses. (This is
required by the syntax rules for if-else statements in C++.) Also notice that
an if-else statement has two smaller statements embedded in it.

Display 2.8   An if-else Statement (part 1 of 2)

 	1 #include <iostream>
	 2 using namespace std;
	 3 int main()
 	4 {
	 5 int hours;
	 6 double gross_pay, rate;
	 7 cout << "Enter the hourly rate of pay: $";
	 8 cin >> rate;
	 9 cout << "Enter the number of hours worked,\n"
	10 << "rounded to a whole number of hours: ";
	11 cin >> hours;
	12 if (hours > 40)
	13 gross_pay = rate * 40 + 1.5 * rate * (hours - 40);
	14 else
	15 gross_pay = rate * hours;

	16 cout.setf(ios::fixed);
	17 cout.setf(ios::showpoint);
	18 cout.precision(2);
	19 cout << "Hours = “ << hours << endl;
	20 cout << "Hourly pay rate = $" << rate << endl;
	21 cout << "Gross pay = $" << gross_pay << endl;
	22 return 0;
	23 }

Sample Dialogue 1

Enter the hourly rate of pay: $20.00

Enter the number of hours worked,

rounded to a whole number of hours: 30

Hours = 30

Hourly pay rate = $20.00

Gross pay = $600.00

(continued)

	 2.4  Simple Flow of Control	 77

Display 2.8   An if-else Statement (part 2 of 2)

Sample Dialogue 2

Enter the hourly rate of pay: $10.00

Enter the number of hours worked,

rounded to a whole number of hours: 41

Hours = 41

Hourly pay rate = $10.00

Gross pay = $415.00

Display 2.9   Syntax for an if-else Statement

A Single Statement for Each Alternative:

	 1 if (Boolean_Expression)
	 2 Yes_Statement
	 3 else
	 4 No_Statement

A Sequence of Statements for Each Alternative:

	 5 if (Boolean_Expression)
	 6 {
	 7 Yes_Statement_1
	 8 Yes_Statement_2
	 9 ...
	10 Yes_Statement_Last
	10 }
	12 else
	13 {
	14 No_Statement_1
	15 No_Statement_2
	16 ...
	17 No_Statement_Last
	18 }

A Boolean expression is any expression that is either true or false. An
if-else statement always contains a Boolean_Expression. The simplest form
for a Boolean_Expression consists of two expressions, such as numbers or
variables, that are compared with one of the comparison operators shown in
Display 2.10. Notice that some of the operators are spelled with two symbols:
for example, ==, !=, <=, >=. Be sure to notice that you use a double equal == for

78	 Chapter 2 /  C++ Basics

the equal sign, and you use the two symbols != for not equal. Such operators
should not have any space between the two symbols. The part of the compiler
that separates the characters into C++ names and symbols will see the !=,
for example, and tell the rest of the compiler that the programmer meant
to test for INEQUALITY. When an if-else statement is executed, the two
expressions being compared are evaluated and compared using the operator.
If the comparison turns out to be true, then the first statement is performed.
If the comparison fails, then the second statement is executed.

You can combine two comparisons using the “and” operator, which is
spelled && in C++. For example, the following Boolean expression is true (that
is, is satisfied) provided x is greater than 2 and x is less than 7:

(2 < x) && (x < 7)

When two comparisons are connected using a &&, the entire expression is
true, provided both of the comparisons are true (that is, provided both are
satisfied); otherwise, the entire expression is false.

You can also combine two comparisons using the “or” operator, which is
spelled || in C++. For example, the following is true provided y is less than 0
or y is greater than 12:

(y < 0) || (y > 12)

When two comparisons are connected using a ||, the entire expression is
true provided that one or both of the comparisons are true (that is, satisfied);
otherwise, the entire expression is false.

Remember that when you use a Boolean expression in an if-else
statement, the Boolean expression must be enclosed in parentheses. Therefore,
an if-else statement that uses the && operator and two comparisons is
parenthesized as follows:

if ((temperature >= 95) && (humidity >= 90))
 . . .

Display 2.10   Comparison Operators

Math Symbol English C++ Notation C++ Sample Math Equivalent

= equal to == × + 7 == 2 * y x + 7 = 2y

≠ not equal to != ans != ‘n’ ans ≠ ‘n’

< less than < count < m + 3 count < m + 3

≤
less than
or equal to

<= time <= limit time ≤ limit

> greater than > time > limit time > limit

≥
greater than
or equal to

>= age >= 21 age ≥ 21

	 2.4  Simple Flow of Control	 79

The inner parentheses around the comparisons are not required, but they do
make the meaning clearer, and we will normally include them.

You can negate any Boolean expression using the ! operator. If you
want to negate a Boolean expression, place the expression in parentheses
and place the ! operator in front of it. For example,!(x < y)means “x is
not less than y.”

The “and” Operator &&

You can form a more elaborate Boolean expression by combining two
simple tests using the “and” operator &&.

Syntax (For a Boolean Expression Using &&)

(Comparison_1) && (Comparison_2)

Example (Within an if-else Statement)

if ((score > 0) && (score < 10))
 cout << “score is between 0 and 10\n”;
else
 cout << “score is not between 0 and 10.\n”;

If the value of score is greater than 0 and the value of score is also less
than 10, then the first cout statement will be executed; otherwise, the
second cout statement will be executed.

Since the Boolean expression in an if-else statement must be enclosed
in parentheses, you should place a second pair of parentheses around the
negated expression when it is used in an if-else statement. For example, an
if-else statement might begin as follows:

if (!(x < y))
 ...

The ! operator can usually be avoided. For example, our hypothetical if-else
statement can instead begin with the following, which is equivalent and easier
to read:

if (x >= y)
 ...

We will not have much call to use the ! operator until later in this book, so we
will postpone any detailed discussion of it until then.

80	 Chapter 2 /  C++ Basics

The “or” Operator ||

You can form a more elaborate Boolean expression by combining two
simple tests using the “or” operator ||.

Syntax (For a Boolean Expression Using ||)

(Comparison_1) || (Comparison_2)

Example (Within an if-else Statement)

if ((x == 1) || (x == y))
 cout << "x is 1 or x equals y.\n";
else
 cout << "x is neither 1 nor equal to y.\n";

If the value of x is equal to 1 or the value of x is equal to the value of y
(or both), then the first cout statement will be executed; otherwise, the
second cout statement will be executed.

Sometimes you want one of the two alternatives in an if-else statement
to do nothing at all. In C++ this can be accomplished by omitting the else
part. These sorts of statements are referred to as if statements to distinguish
them from if-else statements. For example, the first of the following two
statements is an if statement:

if (sales >= minimum)
 salary = salary + bonus;
cout << "salary = $" << salary;

If the value of sales is greater than or equal to the value of minimum, the
assignment statement is executed and then the following cout statement is
executed. On the other hand, if the value of sales is less than minimum, then
the embedded assignment statement is not executed, so the if statement
causes no change (that is, no bonus is added to the base salary), and the
program proceeds directly to the cout statement.

Pitfall   Strings of Inequalities

Do not use a string of inequalities such as the following in your program:

if (x < z < y)
 cout << "z is between x and y.";

Do not do this!

	 2.4  Simple Flow of Control	 81

If you do use this type of expression, your program will probably compile
and run, but it will undoubtedly give incorrect output. We will explain why
this happens after we learn more details about the C++ language. The same
problem will occur with a string of comparisons using any of the comparison
operators; the problem is not limited to < comparisons. The correct way to
express a string of inequalities is to use the “and” operator && as follows:

if ((x < z) && (z < y))
 cout << "z is between x and y.";
	 ■

 correct form

Common Bugs with
= and ==

VideoNote

Pitfall   Using = in place of ==

Unfortunately, you can write many things in C++ that you would think
are incorrectly formed C++ statements but turn out to have some obscure
meaning. This means that if you mistakenly write something that you
would expect to produce an error message, you may find out that the
program compiles and runs with no error messages, but gives incorrect
output. Since you may not realize you wrote something incorrectly, this
can cause serious problems. By the time you realize something is wrong,
the mistake may be very hard to find. One common mistake is to use the
symbol = when you mean ==. For example, consider an if-else statement
that begins as follows:

if (x = 12)
 Do_Something
else
 Do_Something_Else

Suppose you wanted to test to see if the value of x is equal to 12 so that you
really meant to use == rather than =. You might think the compiler will catch
your mistake. The expression

x = 12

is not something that is satisfied or not. It is an assignment statement, so
surely the compiler will give an error message. Unfortunately, that is not the
case. In C++ the expression x = 12 is an expression that returns (or has) a
value, just like x + 12 or 2 + 3. An assignment expression’s value is the value
transferred to the variable on the left. For example, the value of x = 12 is
12. We saw in our discussion of Boolean value compatibility that int values
may be converted to true or false. Since 12 is not zero, it is converted to
true. If you use x = 12 as the Boolean expression in an if statement, the
Boolean expression is always true, so the first branch (Do_Something) is
always executed.

This error is very hard to find because it looks correct! The compiler can
find the error without any special instructions if you put the 12 on the left side
of the comparison, as in

82	 Chapter 2 /  C++ Basics

if (12 == x)
 Do_Something;
else
 Do_Something_Else;

Then, the compiler will give an error message if you mistakenly use = instead of ==.
Remember that dropping one of the = in an == is a common error that

is not caught by many compilers, is very hard to see, and is almost certainly
not what you wanted. In C++, many executable statements can also be used
as almost any kind of expression, including as a Boolean expression for an
if-else statement. If you put an assignment statement where a Boolean
expression is expected, the assignment statement will be interpreted as a
Boolean expression. Of course the result of the “test” will undoubtedly not be
what you intended as the Boolean expression. The if-else statement above
looks fine at a quick glance and it will compile and run. But, in all likelihood,
it will produce puzzling results when it is run.	 ■

Compound Statements

You will often want the branches of an if-else statement to execute more
than one statement each. To accomplish this, enclose the statements for each
branch between a pair of braces, { and }, as indicated in the second syntax
template in Display 2.9 and illustrated in Display 2.11. A list of statements
enclosed in a pair of braces is called a compound statement. A compound
statement is treated as a single statement by C++ and may be used anywhere
that a single statement may be used. (Thus, the second syntax template in
Display 2.9 is really just a special case of the first one.) Display 2.11 contains
two compound statements, embedded in an if-else statement.

Syntax rules for if-else demand that the Yes statement and No statement
be exactly one statement. If more statements are desired for a branch, the
statements must be enclosed in braces to convert them to one compound
statement. If two or more statements not enclosed by braces are placed
between the if and the else, then the compiler will give an error message.

Display 2.11   Compound Statements Used With if-else

 	1 if (my_score > your_score)
	 2 {
	 3 cout << "I win!\n";
	 4 wager = wager + 100;
	 5 }
	 6 else
	 7 {
	 8 cout << "I wish these were golf scores.\n";
	 9 wager = 0;
	10 }

	 2.4  Simple Flow of Control	 83

Self-Test Exercises

21. Write an if-else statement that outputs the word High if the value of the
variable score is greater than 100 and Low if the value of score is at most
100. The variable score is of type int.

22. Suppose savings and expenses are variables of type double that have
been given values. Write an if-else statement that outputs the word
Solvent, decreases the value of savings by the value of expenses, and
sets the value of expenses to 0, provided that savings is at least as large
as expenses. If, however, savings is less than expenses, the if-else
statement simply outputs the word Bankrupt and does not change the
value of any variables.

23. Write an if-else statement that outputs the word Passed provided the
value of the variable exam is greater than or equal to 60 and the value
of the variable programs_done is greater than or equal to 10. Otherwise,
the if-else statement outputs the word Failed. The variables exam and
programs_done are both of type int.

24. Write an if-else statement that outputs the word Warning provided
that either the value of the variable temperature is greater than or equal
to 100, or the value of the variable pressure is greater than or equal to
200, or both. Otherwise, the if-else statement outputs the word OK. The
variables temperature and pressure are both of type int.

25. Consider a quadratic expression, say

x2 - x - 2

		 Describing where this quadratic is positive (that is, greater than 0),
involves describing a set of numbers that are either less than the smaller
root (which is -1) or greater than the larger root (which is +2). Write a C++
Boolean expression that is true when this formula has positive values.

26. Consider the quadratic expression

x2 - 4x + 3

		 Describing where this quadratic is negative involves describing a set of
numbers that are simultaneously greater than the smaller root (+1) and
less than the larger root (+3). Write a C++ Boolean expression that is true
when the value of this quadratic is negative.

27. What is the output of the following cout statements embedded in these
if-else statements? You are to assume that these are embedded in a
complete correct program. Explain your answer.

84	 Chapter 2 /  C++ Basics

a. if (0)
 cout << "0 is true";
 else
 cout << "0 is false";
 cout << endl;
b. if (1)
 cout << "1 is true";
 else
 cout << "1 is false";
 cout << endl;
c. if (-1)
 cout << "-1 is true";
 else
 cout << "-1 is false";
 cout << endl;

Note: This is an exercise only. This is not intended to illustrate
programming style you should follow.

Simple Loop Mechanisms

Most programs include some action that is repeated a number of times. For
example, the program in Display 2.8 computes the gross pay for one worker.
If the company employs 100 workers, then a more complete payroll program
would repeat this calculation 100 times. A portion of a program that repeats
a statement or group of statements is called a loop. The C++ language has a
number of ways to create loops. One of these constructions is called a while
statement or while loop. We will first illustrate its use with a short toy
example and then do a more realistic example.

The program in Display 2.12 contains a simple while statement shown in
color. The portion between the braces, { and }, is called the body of the while
loop; it is the action that is repeated. The statements inside the braces are
executed in order, then they are executed again, then again, and so forth until
the while loop ends. In the first sample dialogue, the body is executed three
times before the loop ends, so the program outputs Hello three times. Each
repetition of the loop body is called an iteration of the loop, and so the first
sample dialogue shows three iterations of the loop.

The meaning of a while statement is suggested by the English word
while. The loop is repeated while the Boolean expression in the parentheses is
satisfied. In Display 2.12 this means that the loop body is repeated as long as
the value of the variable count_down is greater than 0. Let’s consider the first
sample dialogue and see how the while loop performs. The user types in 3 so
the cin statement sets the value of count_down to 3. Thus, in this case, when
the program reaches the while statement, it is certainly true that count_down
is greater than 0, so the statements in the loop body are executed. Every time
the loop body is repeated, the following two statements are executed:

	 2.4  Simple Flow of Control	 85

Display 2.12   A while Loop

 1 #include <iostream>
 2 using namespace std;
 3 int main()
 4 {
 5 int count_down;
 6 cout << "How many greetings do you want? ";
 7 cin >> count_down;

 8 while (count_down > 0)
 9 {
10 cout << "Hello ";
11 count_down = count_down - 1;
12 }
13 cout << endl;
14 cout << "That's all!\n";
	15 return 0;
16 }
17

Sample Dialogue 1

How many greetings do you want? 3

Hello Hello Hello

That's all!

Sample Dialogue 2

How many greetings do you want? 1

Hello

That's all!

Sample Dialogue 3

How many greetings do you want? 0

That's all!

The loop body
is executed
zero times.

cout << "Hello ";
count_down = count_down - 1;

Therefore, every time the loop body is repeated, "Hello " is output and the
value of the variable count_down is decreased by one. After the computer
repeats the loop body three times, the value of count_down is decreased to 0

86	 Chapter 2 /  C++ Basics

Display 2.13   Syntax of the while Statement

A Loop Body with Several Statements:

 1 while (Boolean_Expression)
 2 {
 3 Statement_1
 4 Statement_2
 5 ...
 6 Statement_Last
 7 }

A Loop Body with a Single Statement:

 8 while (Boolean_Expression)
 9 Statement

Do NOT put a
semicolon here.

body

body

and the program in Display 2.12 and the Boolean expression in parentheses
are no longer satisfied. So, this while statement ends after repeating the loop
body three times.

The syntax for a while statement is given in Display 2.13. The Boolean_
Expressions allowed are exactly the same as the Boolean expressions
allowed in an if-else statement. Just as in if-else statements, the
Boolean expression in a while statement must be enclosed in parentheses.
In Display 2.13 we have given the syntax templates for two cases: the case
when there is more than one statement in the loop body and the case
when there is just a single statement in the loop body. Note that when
there is only a single statement in the loop body, you need not include the
braces { and }.

Let’s go over the actions performed by a while statement in greater detail.
When the while statement is executed, the first thing that happens is that the
Boolean expression following the word while is checked. It is either true or
false. For example, the comparison

count_down > 0

is true if the value of count_down is positive. If it is false, then no action
is taken and the program proceeds to the next statement after the while
statement. If the comparison is true, then the entire body of the loop is
executed. At least one of the expressions being compared typically contains
something that might be changed by the loop body, such as the value of
count_down in the while statement in Display 2.12. After the body of the loop
is executed, the comparison is again checked. This process is repeated again
and again as long as the comparison continues to be true. After each iteration
of the loop body, the comparison is again checked and if it is true, then the
entire loop body is executed again. When the comparison is no longer true,
the while statement ends.

	 2.4  Simple Flow of Control	 87

The first thing that happens when a while statement is executed is that the
Boolean expression is checked. If the Boolean expression is not true when the
while statement begins, then the loop body is never executed. That is exactly
what happens in Sample Dialogue 3 of Display 2.12. In many programming
situations you want the possibility of executing the loop body zero times. For
example, if your while loop is reading a list consisting of all the failing scores
on an exam and nobody failed the exam, then you want the loop body to be
executed zero times.

 As we just noted, a while loop might execute its loop body zero times,
which is often what you want. If, on the other hand, you know that under all
circumstances your loop body should be executed at least one time, then you
can use a do-while statement. A do-while statement is similar to a while
statement except that the loop body is always executed at least once. The
syntax for a do-while statement is given in Display 2.14. A program with a
sample do-while loop is given in Display 2.15. In that do-while loop, as in
any do-while loop, the first thing that happens is that the statements in the
loop body are executed. After that first iteration of the loop body, the do-
while statement behaves the same as a while loop. The Boolean expression is
checked. If the Boolean expression is true, the loop body is executed again; the
Boolean expression is checked again, and so forth.

Increment and Decrement Operators

We discussed binary operators in the section entitled “Arithmetic Operators
and Expressions.” Binary operators have two operands. Unary operators have
only one operand. You already know of two unary operators, + and –, as used
in the expressions +7 and –7. The C++ language has two other very common
unary operators, ++ and ––. The ++ operator is called the increment operator

Display 2.14   Syntax of the do-while Statement

A Loop Body with Several Statements:

 1 do
 2 {
 3 Statement_1
 4 Statement_2
 5 ...
 6 Statement_Last
 7 } while (Boolean_Expression);

A Loop Body with a Single Statement:

 8 do
 9 Statement
10 while (Boolean_Expression);

body

Do not forget the
final semicolon.

body

88	 Chapter 2 /  C++ Basics

Display 2.15   A do-while Loop

 1 #include <iostream>
 2 using namespace std;
 3 int main()
 4 {
 5 char ans;

 6 do
 7 {
 8	 cout << "Hello\n";
 9	 cout << "Do you want another greeting?\n"
	10 << "Press y for yes, n for no,\n"
	11 << "and then press return: ";
	12 cin >> ans;
	13 } while (ans == 'y' || ans == 'Y');
	14 cout << "Good-Bye\n";
	15 return 0;
	16 }

Sample Dialogue

Hello

Do you want another greeting?

Press y for yes, n for no, and then press return: y

Hello

Do you want another greeting?

Press y for yes, n for no, and then press return: Y

Hello

Do you want another greeting?

Press y for yes, n for no, and then press return: n

Good-Bye

and the –– operator is called the decrement operator. They are usually used
with variables of type int. If n is a variable of type int, then n++ increases the
value of n by one and n–– decreases the value of n by one. So n++ and n––
(when followed by a semicolon) are executable statements. For example, the
statements

int n = 1, m = 7;
n++;
cout << "The value of n is changed to " << n << endl;
m––;
cout << "The value of m is changed to " << m << endl;

	 2.4  Simple Flow of Control	 89

Charge Card Balance

yield the following output:

The value of n is changed to 2

The value of m is changed to 6

And now you know where the “++” came from in the name “C++.”
Increment and decrement statements are often used in loops. For example,

we used the following statement in the while loop in Display 2.12:

count_down = count_down - 1;

However, most experienced C++ programmers would use the decrement
operator rather than the assignment statement, so the entire while loop would
read as follows:

while (count_down > 0)
{
 cout << "Hello ";
 count_down–;
}

 P rogramming Example

Suppose you have a bank charge card with a balance owed of $50 and
suppose the bank charges you 2% per month interest. How many months
can you let pass without making any payments before your balance owed will
exceed $100? One way to solve this problem is to simply read each monthly
statement and count the number of months that go by until your balance
reaches $100 or more. Better still, you can calculate the monthly balances
with a program rather than waiting for the statements to arrive. In this way
you will obtain an answer without having to wait so long (and without
endangering your credit rating).

After one month the balance would be $50 plus 2% of $50, which is $51.
After two months the balance would be $51 plus 2% of $51, which is $52.02.
After three months the balance would be $52.02 plus 2% of $52.02, and so
on. In general, each month increases the balance by 2%. The program could
keep track of the balance by storing it in a variable called balance. The change
in the value of balance for one month can be calculated as follows:

balance = balance + 0.02 * balance ;

If we repeat this action until the value of balance reaches (or exceeds) 100.00
and we count the number of repetitions, then we will know the number
of months it will take for the balance to reach 100.00. To do this, we need
another variable to count the number of times the balance is changed. Let
us call this new variable count. The final body of our while loop will thus
contain the following statements:

90	 Chapter 2 /  C++ Basics

balance = balance + 0.02 * balance;
count++;

In order to make this loop perform correctly, we must give appropriate values
to the variables balance and count before the loop is executed. In this case,
we can initialize the variables when they are declared. The complete program
is shown in Display 2.16.	 .

Pitfall   Infinite Loops

A while loop or a do-while loop does not terminate as long as the Boolean
expression after the word while is true. This Boolean expression normally
contains a variable that will be changed by the loop body, and usually the
value of this variable eventually is changed in a way that makes the Boolean
expression false and therefore terminates the loop. However, if you make a
mistake and write your program so that the Boolean expression is always true,
then the loop will run forever. A loop that runs forever is called an infinite loop.

First let’s describe a loop that does terminate. The following C++ code will
write out the positive even numbers less than 12. That is, it will output the
numbers 2, 4, 6, 8, and 10, one per line, and then the loop will end.

x = 2;
while (x != 12)
{
 cout << x << endl;
 x = x + 2;
}

The value of x is increased by 2 on each loop iteration until it reaches 12.
At that point, the Boolean expression after the word while is no longer true,
so the loop ends.

Now suppose you want to write out the odd numbers less than 12, rather
than the even numbers. You might mistakenly think that all you need do is
change the initializing statement to

x = 1;

but this mistake will create an infinite loop. Because the value of x goes from
11 to 13, the value of x is never equal to 12, so the loop will never terminate.

This sort of problem is common when loops are terminated by checking
a numeric quantity using == or !=. When dealing with numbers, it is always
safer to test for passing a value. For example, the following will work fine as
the first line of our while loop:

while (x < 12)

With this change, x can be initialized to any number and the loop will still
terminate.

	 2.4  Simple Flow of Control	 91

Display 2.16   Charge Card Program

 1 #include <iostream>
 2 using namespace std;
 3 int main()
 4 {
 5 double balance = 50.00;
 6 int count = 0;
 7 cout << "This program tells you how long it takes\n"
 8 << "to accumulate a debt of $100, starting with\n"
 9 << "an initial balance of $50 owed.\n"
10 << "The interest rate is 2% per month.\n";

11 while (balance < 100.00)
12 {
13 balance = balance + 0.02 * balance;
14 count++;
15 }

16 cout << "After " << count << " months,\n";
17 cout.setf(ios::fixed);
18 cout.setf(ios::showpoint);
19 cout.precision(2);
20 cout << "your balance due will be $" << balance << endl;
21 return 0;
22 }
23

Sample Dialogue

This program tells you how long it takes

to accumulate a debt of $100, starting with

an initial balance of $50 owed.

The interest rate is 2% per month.

After 36 months,

your balance due will be $101.99

A program that is in an infinite loop will run forever unless some external
force stops it. Since you can now write programs that contain an infinite loop,
it is a good idea to learn how to force a program to terminate. The method
for forcing a program to stop varies from system to system. The keystrokes
Control-C will terminate a program on many systems. (To type a Control-C,
hold down the Control key while pressing the C key.)	 ■

92	 Chapter 2 /  C++ Basics

Self-Test Exercises

	28.	 What is the output produced by the following (when embedded in a
correct program with x declared to be of type int)?

x = 10;
while (x > 0)
{
 cout << x << endl;
 x = x - 3;
}

	29.	 What output would be produced in the previous exercise if the > sign were
replaced with < ?

	30.	 What is the output produced by the following (when embedded in a
correct program with x declared to be of type int)?

x = 10;
do
{
 cout << x << endl;
 x = x - 3;
} while (x > 0);

	31.	 What is the output produced by the following (when embedded in a
correct program with x declared to be of type int)?

x = -42;
do
{
 cout << x << endl;
 x = x - 3;
} while (x > 0);

	32.	 What is the most important difference between a while statement and a
do-while statement?

	33.	 What is the output produced by the following (when embedded in a
correct program with x declared to be of type int)?

x = 10;
while (x > 0)
{
 cout << x << endl;
 x = x + 3;
}

34. Write a complete C++ program that outputs the numbers 1 to 20, one per
line. The program does nothing else.

	 2.5  Program Style	 93

2.5  Program Style

In matters of grave importance, style, not sincerity, is the vital thing.

Oscar Wilde, The Importance of Being Earnest

All the variable names in our sample programs were chosen to suggest their
use. Our sample programs were laid out in a particular format. For example,
the declarations and statements were all indented the same amount. These
and other matters of style are of more than aesthetic interest. A program that
is written with careful attention to style is easier to read, easier to correct, and
easier to change.

Indenting

A program should be laid out so that elements that are naturally considered
a group are made to look like a group. One way to do this is to skip a line
between parts that are logically considered separate. Indenting can also help
to make the structure of the program clearer. A statement within a statement
should be indented. In particular, if-else statements, while loops, and do-
while loops should be indented either as in our sample programs or in some
similar manner.

The braces {} determine a large part of the structure of a program. Placing
each brace on a line by itself, as we have been doing, makes it easy to find the
matching pairs. Notice that we have indented some pairs of braces. When one
pair of braces is embedded in another pair, the embedded braces are indented
more than the outer braces. Look back at the program in Display 2.16. The
braces for the body of the while loop are indented more than the braces for
the main part of the program.

There are at least two schools of thought on where you should place
braces. The first, which we use in this book, is to reserve a separate line for
each brace. This form is easiest to read. The second school of thought holds
that the opening brace for a pair need not be on a line by itself. If used
with care, this second method can be effective, and it does save space. The
important point is to use a style that shows the structure of the program. The
exact layout is not precisely dictated, but you should be consistent within any
one program.

Comments

In order to make a program understandable, you should include some
explanatory notes at key places in the program. Such notes are called
comments. C++ and most other programming languages have provisions for
including such comments within the text of a program. In C++ the symbols //
are used to indicate the start of a comment. All of the text between the // and
the end of the line is a comment. The compiler simply ignores anything that

94	 Chapter 2 /  C++ Basics

follows // on a line. If you want a comment that covers more than one line,
place a // on each line of the comment. The symbols // are two slashes
(without a space between them).

In this book, comments will always be written in italic so that they stand
out from the program text. Some text editors indicate comments by showing
them in a different color from the rest of the program text.

There is another way to insert comments in a C++ program. Anything
between the symbol pair /* and the symbol pair */ is considered a
comment and is ignored by the compiler. Unlike the // comments, which
require an additional // on each line, the /* to */ comments can span
several lines, like so:

/*This is a comment that spans
three lines. Note that there is no comment
symbol of any kind on the second line.*/

Comments of the /* */ type may be inserted anywhere in a program
that a space or line break is allowed. However, they should not be inserted
anywhere except where they are easy to read and do not distract from the
layout of the program. Usually, comments are only placed at the ends of lines
or on separate lines by themselves.

There are differing opinions on which kind of comment is best to use.
Either variety (the // kind or the /* */ kind) can be effective if used with care.
We will use the // kind in this book.

It is difficult to say just how many comments a program should contain.
The only correct answer is “just enough,” which of course conveys little to the
novice programmer. It will take some experience to get a feel for when it is best
to include a comment. Whenever something is important and not obvious, it
merits a comment. However, too many comments are as bad as too few. A
program that has a comment on each line will be so buried in comments
that the structure of the program is hidden in a sea of obvious observations.
Comments like the following contribute nothing to understanding and
should not appear in a program:

distance = speed * time; //Computes the distance traveled

Notice the comment given at the start of the program in Display 2.17.
All programs should begin with a comment similar to the one shown
there. It gives all the essential information about the program: what file
the program is in, who wrote the program, how to contact the person who
wrote the program, what the program does, the date that the program was
last modified, and any other particulars that are appropriate, such as the
assignment number, if the program is a class assignment. Exactly what
you include in this comment will depend on your particular situation.
We will not include such long comments in the programs in the rest of
this book, but you should always begin your programs with a similar
comment.

	 2.5  Program Style	 95

Naming Constants

There are two problems with numbers in a computer program. The first is
that they carry no mnemonic value. For example, when the number 10 is
encountered in a program, it gives no hint of its significance. If the program
is a banking program, it might be the number of branch offices or the number
of teller windows at the main office. In order to understand the program,

Display 2.17   Comments and Named Constants

 1 //File Name: health.cpp (Your system may require some suffix other than cpp.)
 2 //Author: Your Name Goes Here.
 3 //Email Address: you@yourmachine.bla.bla
 4 //Assignment Number: 2
 5 //Description: Program to determine if the user is ill.
 6 //Last Changed: September 23, 2014
 7
 8 #include <iostream>
 9 using namespace std;
10 int main()
11 {
12 const double NORMAL = 98.6; //degrees Fahrenheit
13 double temperature;
14
15 cout << "Enter your temperature: ";
16 cin >> temperature;
17
18 if (temperature > NORMAL)
19 {
20 cout << "You have a fever.\n";
21 cout << "Drink lots of liquids and get to bed.\n";
22 }
23 else
24 {
25 cout << "You don't have a fever.\n";
26 cout << "Go study.\n";
27 }
28
29 return 0;
30 }

Sample Dialogue

Enter your temperature: 98.6

You don't have a fever.

Go study.

Your programs should always begin
with a comment similar to this one.

96	 Chapter 2 /  C++ Basics

you need to know the significance of each constant. The second problem is
that when a program needs to have some numbers changed, the changing
tends to introduce errors. Suppose that 10 occurs twelve times in a banking
program, that four of the times it represents the number of branch offices,
and that eight of the times it represents the number of teller windows at the
main office. When the bank opens a new branch and the program needs to be
updated, there is a good chance that some of the 10s that should be changed
to 11 will not be, or some that should not be changed will be. The way to
avoid these problems is to name each number and use the name instead of
the number within your program. For example, a banking program might
have two constants with the names BRANCH_COUNT and WINDOW_COUNT. Both
these numbers might have a value of 10, but when the bank opens a new
branch, all you need do in order to update the program is to change the
definition of BRANCH_COUNT.

How do you name a number in a C++ program? One way is to initialize a
variable to that number value, as in the following example:

int BRANCH_COUNT = 10;
int WINDOW_COUNT = 10;

There is, however, one problem with this method of naming number
constants: You might inadvertently change the value of one of these variables.
C++ provides a way of marking an initialized variable so that it cannot be
changed. If your program tries to change one of these variables, it produces
an error condition. To mark a variable declaration so that the value of the
variable cannot be changed, precede the declaration with the word const
(which is an abbreviation of constant). For example:

const int BRANCH_COUNT = 10;
const int WINDOW_COUNT = 10;

If the variables are of the same type, it is possible to combine the previous
lines into one declaration, as follows:

const int BRANCH_COUNT = 10, WINDOW_COUNT = 10;

However, most programmers find that placing each name definition on a
separate line is clearer. The word const is often called a modifier, because it
modifies (restricts) the variables being declared.

A variable declared using the const modifier is often called a declared
constant. Writing declared constants in all uppercase letters is not required by
the C++ language, but it is standard practice among C++ programmers.

Once a number has been named in this way, the name can then be used
anywhere the number is allowed, and it will have exactly the same meaning
as the number it names. To change a named constant, you need change only
the initializing value in the const variable declaration. The meaning of all
occurrences of BRANCH_COUNT, for instance, can be changed from 10 to 11 simply
by changing the initializing value of 10 in the declaration of BRANCH_COUNT.

	 2.5  Program Style	 97

Self-Test Exercises

	35.	 The following if-else statement will compile and run without any
problems. However, it is not laid out in a way that is consistent with the other
if-else statements we have used in our programs. Rewrite it so that the
layout (indenting and line breaks) matches the style we used in this chapter.

if (x < 0) {x = 7; cout << "x is now positive.";}
else {x = - 7; cout << "x is now negative.";}

	36.	 What output would be produced by the following two lines (when
embedded in a complete and correct program)?

//cout << "Hello from";
cout << "Self-Test Exercise";

	37.	 Write a complete C++ program that asks the user for a number of gallons
and then outputs the equivalent number of liters. There are 3.78533 liters
in a gallon. Use a declared constant. Since this is just an exercise, you need
not have any comments in your program.

Naming Constants with the const Modifier

When you initialize a variable inside a declaration, you can mark the
variable so that the program is not allowed to change its value. To do
this, place the word const in front of the declaration, as described
below:

Syntax

const Type_Name Variable_Name = Constant;

Examples

const int MAX_TRIES = 3;
const double PI = 3.14159;

Although unnamed numeric constants are allowed in a program, you
should seldom use them. It often makes sense to use unnamed number
constants for well-known, easily recognizable, and unchangeable quantities,
such as 100 for the number of centimeters in a meter. However, all other
numeric constants should be given names in the fashion we just described.
This will make your programs easier to read and easier to change.

Display 2.17 contains a simple program that illustrates the use of the
declaration modifier const.

98	 Chapter 2 /  C++ Basics

Chapter Summary

■	 Use meaningful names for variables.

■	 Be sure to check that variables are declared to be of the correct data type.

■	 Be sure that variables are initialized before the program attempts to use their
value. This can be done when the variable is declared or with an assignment
statement before the variable is first used.

■	 Use enough parentheses in arithmetic expressions to make the order of
operations clear.

■	 Always include a prompt line in a program whenever the user is expected to
enter data from the keyboard, and always echo the user’s input.

■	 An if-else statement allows your program to choose one of two alternative
actions. An if statement allows your program to decide whether to perform
some one particular action.

■	 A do-while loop always executes its loop body at least once. In some situa-
tions, a while loop might not execute the body of the loop at all.

■	 Almost all number constants in a program should be given meaningful
names that can be used in place of the numbers. This can be done by using
the modifier const in a variable declaration.

■	 Use an indenting, spacing, and line-break pattern similar to the sample
programs.

■	 Insert comments to explain major subsections or any unclear part of a
program.

Answers to Self-Test Exercises

  1.	 int feet = 0, inches = 0;
		 int feet(0), inches(0);

  2.	 int count = 0;
double distance = 1.5;

		 Alternatively, you could use

int count(0);
double distance(1.5);

  3.	 sum = n1 + n2;

  4.	 length = length + 8.3;

  5.	 product = product * n;

	 Answers to Self-Test Exercises	 99

	  6.	 The actual output from a program such as this is dependent on the system
and the history of the use of the system.

#include <iostream>
using namespace std;
int main()
{
 int first, second, third, fourth, fifth;
 cout << first << " " << second << " " << third
 << " " << fourth << " " << fifth << endl;
 return 0;
}

	  7.	 There is no unique right answer for this one. Below are possible answers:

		 a.	 speed
		 b.	 pay_rate
		 c.	 highest or max_score

	  8.	 cout << "The answer to the question of\n"
 << "Life, the Universe, and Everything is 42.\n";

	  9.	 cout << "Enter a whole number and press return: ";
cin >> the_number;

	10.	 cout.setf(ios::fixed);
cout.setf(ios::showpoint);
cout.precision(3);

	11.	 #include <iostream>
using namespace std;
int main()
{
 cout << "Hello world\n";
 return 0;
}

	12.	 #include <iostream>
using namespace std;

int main()
{
 int n1, n2, sum;
 cout << "Enter two whole numbers\n";
 cin >> n1 >> n2;
 sum = n1 + n2;
 cout << "The sum of " << n1 << " and "
 << n2 << " is " << sum << endl;
 return 0;
}

100	 Chapter 2 /  C++ Basics

	13.	 cout << endl << "\t";

	14.	 #include <iostream>
using namespace std;

int main()
{
 double one(1.0), two(1.414), three(1.732),
 four(2.0),five(2.236);
 cout << "\tN\tSquare Root\n";
 cout << "\t1\t" << one << endl
 << "\t2\t" << two << endl
 << "\t3\t" << three << endl
 << "\t4\t" << four << endl
 << "\t5\t" << five << endl;
 return 0;
}

	15.	 3 * x
3 * x + y
(x + y) / 7 Note that x + y / 7 is not correct.
(3 * x + y) / (z + 2)

	16.	 bcbc

	17.	 (1/3) * 3 is equal to 0

Since 1 and 3 are of type int, the / operator performs integer
division, which discards the remainder, so the value of 1/3 is 0, not
0.3333. This makes the value of the entire expression 0 * 3, which
of course is 0.

	18.	 #include <iostream>
using namespace std;

int main()
{
 int number1, number2;

 cout << "Enter two whole numbers: ";
 cin >> number1 >> number2;
 cout << number1 << " divided by " << number2
 << " equals " << (number1/number2) << endl
 << "with a remainder of " << (number1%number2)
 << endl;
 return 0;
}

	19.	 a.	 52.0

	 Answers to Self-Test Exercises	 101

		 b.	� 9/5 has int value 1; since numerator and denominator are both int,
integer division is done; the fractional part is discarded.

			 f = (9.0 / 5) * c + 32.0;

	 or this

			 f = 1.8 * c + 32.0;

	20.	 030406
The strings are concatenated with the + operator.

21.	 if (score > 100)
 cout << "High";
else
 cout << "Low";

You may want to add \n to the end of these quoted strings depending on
the other details of the program.

	22.	 if (savings >= expenses)
{
 savings = savings - expenses;
 expenses = 0;
 cout << "Solvent";
}
else
{
 cout << "Bankrupt";
}

You may want to add \n to the end of these quoted strings depending on
the other details of the program.

	23.	 if ((exam >= 60) && (programs_done >= 10))
 cout << "Passed";
else
 cout << "Failed";

You may want to add \n to the end of these quoted strings depending on
the other details of the program.

	24.	 if ((temperature >= 100) || (pressure >= 200))
 cout << "Warning";
else
 cout << "OK";

You may want to add \n to the end of these quoted strings depending on
the other details of the program.

	25.	 (x < -1) || (x > 2)

102	 Chapter 2 /  C++ Basics

	26.	 (1 < x) && (x < 3)

	27.	 a. � 0 is false. In the section on type compatibility, it is noted that the int
value 0 converts to false.

		 b. � 1 is true. In the section on type compatibility, it is noted that a nonzero
int value converts to true.

		 c. � -1 is true. In the section on type compatibility, it is noted that a non-
zero int value converts to true.

	28.	 10
7
4
1

	29.	 There would be no output, since the Boolean expression (x < 0) is
not satisfied and so the while statement ends without executing the
loop body.

	30.	 The output is exactly the same as it was for Self-Test Exercise 27.

	31.	 The body of the loop is executed before the Boolean expression is checked,
the Boolean expression is false, and so the output is

-42

	32.	 With a do-while statement the loop body is always executed at least once.
With a while statement there can be conditions under which the loop body
is not executed at all.

	33.	 This is an infinite loop. The output would begin with the following and
conceptually go on forever:

10
13
16
19

(Once the value of x becomes larger than the largest integer allowed on
your computer, the program may stop or exhibit other strange behavior,
but the loop is conceptually an infinite loop.)

	34.	 #include <iostream>
using namespace std;

int main()
{
 int n = 1;
 while (n <= 20)
 {

	 Practice Programs	 103

 cout << n << endl;
 n++;
 }
 return 0;
}

	35.	 if (x < 0)
{
 x = 7;
 cout << "x is now positive.";
}
else
{
 x = -7;
 cout << "x is now negative.";
}

	36.	 The first line is a comment and is not executed. So the entire output is just
the following line:

Self-Test Exercise

	37.	 #include <iostream>
using namespace std;

int main()
{
 const double LITERS_PER_GALLON = 3.78533;
 double gallons, liters;

 cout << "Enter the number of gallons:\n";
 cin >> gallons;

 liters = gallons*LITERS_PER_GALLON;
 cout << "There are " << liters << " in "
 << gallons << " gallons.\n";

 return 0;
}

Practice ProgramS

Practice Programs can generally be solved with a short program that directly applies
the programming principles presented in this chapter.

	1.	 A metric ton is 35,273.92 ounces. Write a program that will read the weight
of a package of breakfast cereal in ounces and output the weight in metric
tons as well as the number of boxes needed to yield 1 metric ton of cereal.
Your program should allow the user to repeat this calculation as often as
the user wishes.

104	 Chapter 2 /  C++ Basics

	  2.	 The Babylonian algorithm to compute the square root of a number n is as
follows:

		 1.	M ake a guess at the answer (you can pick n/2 as your initial guess).

		 2.	 Compute r = n / guess

		 3.	S et guess = (guess + r) / 2

		 4.	�G o back to step 2 for as many iterations as necessary. The more that
steps 2 and 3 are repeated, the closer guess will become to the square
root of n.

Write a program that inputs a double for n and iterates through the
Babylonian algorithm 100 times. For a more challenging version, iterate
until guess is within 1% of the previous guess, and outputs the answer as
a double.

	  3.	M any treadmills output the speed of the treadmill in miles per hour
(mph) on the console, but most runners think of speed in terms of a pace.
A common pace is the number of minutes and seconds per mile instead
of mph.

Write a program that starts with a quantity in mph and converts the
quantity into minutes and seconds per mile. As an example, the proper
output for an input of 6.5 mph should be 9 minutes and 13.8 seconds per
mile. If you need to convert a double to an int, which will discard any
value after the decimal point, then you may use

intValue = static_cast<int>(dblVal);

	  4.	 Write a program that plays the game of Mad Lib. Your program should
prompt the user to enter the following strings:

	 ■ The first or last name of your instructor

	 ■ Your name

	 ■ A food

	 ■ A number between 100 and 120

	 ■ An adjective

	 ■ A color

	 ■ An animal

After the strings are input, they should be substituted into the story below
and output to the console.

Solution to Practice
Program 2.3

VideoNote

	 Programming Projects	 105

Dear Instructor [Instructor Name],

I am sorry that I am unable to turn in my homework at this time. First,
I ate a rotten [Food], which made me turn [Color] and extremely ill. I
came down with a fever of [Number 100-120]. Next, my [Adjective] pet
[Animal] must have smelled the remains of the [Food] on my homework,
because he ate it. I am currently rewriting my homework and hope you
will accept it late.

Sincerely,
[Your Name]

	  5.	 The following is a short program that computes the volume of a sphere
given the radius. It will compile and run, but it does not adhere to the
program style recommended in Section 2.5. Rewrite the program using
the style described in the chapter for indentation, adding comments, and
appropriately named constants.

#include <iostream>
using namespace std;
int main()
{
 double radius, vm;
 cout << “Enter radius of a sphere.” << endl; cin >> radius;
 vm = (4.0 / 3.0) * 3.1415 * radius * radius * radius;
 cout << “ The volume is “ << vm << endl;
 return 0;
}

Programming Projects

Programming Projects require more problem-solving than Practice Programs and
can usually be solved many different ways. Visit www.myprogramminglab.com to
complete many of these Programming Projects online and get instant feedback.

	1.	 A government research lab has concluded that an artificial sweetener
commonly used in diet soda pop will cause death in laboratory mice. A
friend of yours is desperate to lose weight but cannot give up soda pop.
Your friend wants to know how much diet soda pop it is possible to drink
without dying as a result. Write a program to supply the answer. The input
to the program is the amount of artificial sweetener needed to kill a mouse
(use 5 grams), the mass of the mouse (use 35 grams), and the weight of
the dieter (use 45400 grams for a 100 pound person). Assume that the
lethal dose for a mouse is proportional to the lethal dose for the human.
A single can of soda pop has a mass of 350 grams. To ensure the safety of
your friend, be sure the program requests the weight at which the dieter
will stop dieting, rather than the dieter’s current weight. Assume that diet

www.myprogramminglab.com

106	 Chapter 2 /  C++ Basics

soda contains 1/10th of 1% artificial sweetener. Use a variable declaration
with the modifier const to give a name to this fraction. You may want to
express the percent as the double value 0.001. Your program should allow
the calculation to be repeated as often as the user wishes.

	2.	 Workers at a particular company have won a 7.6% pay increase retroactive
for 6 months. Write a program that takes an employee’s previous annual
salary as input, and outputs the amount of retroactive pay due the em-
ployee, the new annual salary, and the new monthly salary. Use a variable
declaration with the modifier const to express the pay increase. Your pro-
gram should allow the calculation to be repeated as often as the user wishes.

	3.	M odify your program from Programming Project 2 so that it calculates the
retroactive salary for a worker for any number of months, instead of just
6 months. The number of months is entered by the user.

	4.	 Negotiating a consumer loan is not always straightforward. One form of
loan is the discount installment loan, which works as follows. Suppose a
loan has a face value of $1,000, the interest rate is 15%, and the duration
is 18 months. The interest is computed by multiplying the face value of
$1,000 by 0.15, to yield $150. That figure is then multiplied by the loan
period of 1.5 years to yield $225 as the total interest owed. That amount is
immediately deducted from the face value, leaving the consumer with only
$775. Repayment is made in equal monthly installments based on the face
value. So the monthly loan payment will be $1,000 divided by 18, which
is $55.56. This method of calculation may not be too bad if the consumer
needs $775 dollars, but the calculation is a bit more complicated if the
consumer needs $1,000. Write a program that will take three inputs: the
amount the consumer needs to receive, the interest rate, and the duration
of the loan in months. The program should then calculate the face value
required in order for the consumer to receive the amount needed. It should
also calculate the monthly payment. Your program should allow the calcu-
lations to be repeated as often as the user wishes.

	5.	 Write a program that determines whether a meeting room is in violation
of fire law regulations regarding the maximum room capacity. The pro-
gram will read in the maximum room capacity and the number of people
attending the meeting. If the number of people is less than or equal to the
maximum room capacity, the program announces that it is legal to hold
the meeting and tells how many additional people may legally attend. If
the number of people exceeds the maximum room capacity, the program
announces that the meeting cannot be held as planned due to fire regula-
tions and tells how many people must be excluded in order to meet the
fire regulations. For a harder version, write your program so that it allows
the calculation to be repeated as often as the user wishes. If this is a class
exercise, ask your instructor whether you should do this harder version.

	 Programming Projects	 107

	6.	 An employee is paid at a rate of $16.78 per hour for the first 40 hours
worked in a week. Any hours over that are paid at the overtime rate of one-
and-one-half times that. From the worker’s gross pay, 6% is withheld for
Social Security tax, 14% is withheld for federal income tax, 5% is withheld
for state income tax, and $10 per week is withheld for union dues. If the
worker has three or more dependents, then an additional $35 is withheld
to cover the extra cost of health insurance beyond what the employer pays.
Write a program that will read in the number of hours worked in a week
and the number of dependents as input and will then output the worker’s
gross pay, each withholding amount, and the net take-home pay for the
week. For a harder version, write your program so that it allows the calcula-
tion to be repeated as often as the user wishes. If this is a class exercise, ask
your instructor whether you should do this harder version.

	7.	 It is difficult to make a budget that spans several years, because prices are
not stable. If your company needs 200 pencils per year, you cannot sim-
ply use this year’s price as the cost of pencils 2 years from now. Because
of inflation the cost is likely to be higher than it is today. Write a program
to gauge the expected cost of an item in a specified number of years. The
program asks for the cost of the item, the number of years from now that
the item will be purchased, and the rate of inflation. The program then
outputs the estimated cost of the item after the specified period. Have
the user enter the inflation rate as a percentage, like 5.6 (percent). Your
program should then convert the percent to a fraction, like 0.056, and
should use a loop to estimate the price adjusted for inflation. (Hint: This
is similar to computing interest on a charge card account, which was dis-
cussed in this chapter.)

	8.	 You have just purchased a stereo system that cost $1,000 on the following
credit plan: no down payment, an interest rate of 18% per year (and hence
1.5% per month), and monthly payments of $50. The monthly payment of
$50 is used to pay the interest and whatever is left is used to pay part of the
remaining debt. Hence, the first month you pay 1.5% of $1,000 in interest.
That is $15 in interest. So, the remaining $35 is deducted from your debt,
which leaves you with a debt of $965.00. The next month you pay interest
of 1.5% of $965.00, which is $14.48. Hence, you can deduct $35.52 (which
is $50 – $14.48) from the amount you owe. Write a program that will tell
you how many months it will take you to pay off the loan, as well as the
total amount of interest paid over the life of the loan. Use a loop to calculate
the amount of interest and the size of the debt after each month. (Your final
program need not output the monthly amount of interest paid and remain-
ing debt, but you may want to write a preliminary version of the program
that does output these values.) Use a variable to count the number of loop
iterations and hence the number of months until the debt is zero. You may
want to use other variables as well. The last payment may be less than $50.
Do not forget the interest on the last payment. If you owe $50, then your

108	 Chapter 2 /  C++ Basics

monthly payment of $50 will not pay off your debt, although it will come
close. One month’s interest on $50 is only 75 cents.

	  9.	 Write a program that reads in ten whole numbers and that outputs the
sum of all the numbers greater than zero, the sum of all the numbers less
than zero (which will be a negative number or zero), and the sum of all
the numbers, whether positive, negative, or zero. The user enters the ten
numbers just once each and the user can enter them in any order. Your
program should not ask the user to enter the positive numbers and the
negative numbers separately.

	10.	M odify your program from Programming Project 9 so that it outputs the
sum of all positive numbers, the average of all positive numbers, the sum
of all nonpositive numbers, the average of all nonpositive numbers, the
sum of all positive and nonpositive numbers, and the average of all num-
bers entered.

	11.	S ound travels through air as a result of collisions between the molecules in
the air. The temperature of the air affects the speed of the molecules, which
in turn affects the speed of sound. The velocity of sound in dry air can be
approximated by the formula:

velocity ≈ 331.3 + 0.61 × Tc

where Tc is the temperature of the air in degrees Celsius and the velocity is
in meters/second.

Write a program that allows the user to input a starting and an ending
temperature. Within this temperature range, the program should output
the temperature and the corresponding velocity in 1° increments. For
example, if the user entered 0 as the start temperature and 2 as the end
temperature, then the program should output

At 0 degrees Celsius the velocity of sound is 331.3 m/s
At 1 degrees Celsius the velocity of sound is 331.9 m/s
At 2 degrees Celsius the velocity of sound is 332.5 m/s

	12.	Many private water wells produce only 1 or 2 gallons of water per min-
ute. One way to avoid running out of water with these low-yield wells
is to use a holding tank. A family of four will use about 250 gallons of
water per day. However, there is a “natural” water holding tank in the
casing (that is, the hole) of the well itself. A deeper well stores more
water that can be pumped out for household use. But how much water
will be available?

Write a program that allows the user to input the radius of the well
casing in inches (a typical well will have a 3-inch radius) and the depth
of the well in feet (assume water will fill this entire depth, although in

VideoNote
Solution to Programming
Project 2.12

	 Programming Projects	 109

practice that will not be true since the static water level will generally be
50 feet or more below the ground surface). The program should output
the number of gallons stored in the well casing. For your reference, the
volume of a cylinder is p r2h, where r is the radius and h is the height, and
1 cubic foot = 7.48 gallons of water.

For example, a 300-foot-well full of water with a radius of 3 inches for the
casing holds about 441 gallons of water—plenty for a family of four and
no need to install a separate holding tank.

	13.	 The Harris–Benedict equation estimates the number of calories your body
needs to maintain your weight if you do no exercise. This is called your
basal metabolic rate, or BMR.

The formula for the calories needed for a woman to maintain her weight is

BMR = 655 + (4.3 × weight in pounds) + (4.7 × height in inches) –
(4.7 × age in years)

The formula for the calories needed for a man to maintain his weight is

BMR = 66 + (6.3 × weight in pounds) + (12.9 × height in inches) –
(6.8 × age in years)

A typical chocolate bar will contain around 230 calories. Write a program
that allows the user to input his or her weight in pounds, height in
inches, age in years, and the character M for male and F for female. The
program should then output the number of chocolate bars that should
be consumed to maintain one’s weight for the appropriate sex of the
specified weight, height, and age.

	14.	 Write a program that calculates the total grade for N classroom exercises
as a percentage. The user should input the value for N followed by each of
the N scores and totals. Calculate the overall percentage (sum of the total
points earned divided by the total points possible) and output it as a per-
centage. Sample input and output is shown below.

How many exercises to input? 3

Score received for exercise 1: 10
Total points possible for exercise 1: 10

Score received for exercise 2: 7
Total points possible for exercise 2: 12

Score received for exercise 3: 5
Total points possible for exercise 3: 8

Your total is 22 out of 30, or 73.33%.

110	 Chapter 2 /  C++ Basics

	15.	 It is important to consider the effect of thermal expansion when building a
structure that must withstand changes in temperature. For example, a metal
beam will expand in hot temperatures. The additional stress could cause
the structure to fail. Similarly, a material will contract in cold temperatures.
The linear change in length of a material if it is allowed to freely expand is
described by the following equation:

L∆ = L0T∆

Here, L0 is the initial length of the material in meters, L∆ is the displacement
in meters, T∆ is the change in temperature in Celsius, and  is a coefficient
for linear expansion.

Write a program that inputs , L∆, and T∆, then calculates and outputs
the linear displacement. If the displacement is positive then output
that “The material will expand by” the displacement in meters. If the
displacement is negative then output that “The material will contract by”
the displacement in meters. You shouldn’t output the displacement as a
negative number. Here are some values for  for different materials.

Aluminum	 2.31 × 10-5

Copper	 1.70 × 10-5

Glass	 8.50 × 10-6

Steel	 1.20 × 10-5

More Flow of Control

3.1  Using Boolean Expressions  112
Evaluating Boolean Expressions  112
Pitfall: Boolean Expressions Convert to int

Values  116
Enumeration Types (Optional)  119

3.2  Multiway Branches  120
Nested Statements  120
Programming Tip: Use Braces in Nested

Statements  121
Multiway if-else Statements  123
Programming Example: State Income Tax  125
The switch Statement  128
Pitfall: Forgetting a break in a switch

Statement  132
Using switch Statements for Menus  133
Blocks  135
Pitfall: Inadvertent Local Variables  138

3.3 � More about C++ Loop
Statements  139

The while Statements Reviewed  139
Increment and Decrement Operators

Revisited  141
The for Statement  144
Pitfall: Extra Semicolon in a for Statement  149
What Kind of Loop to Use  150
Pitfall: Uninitialized Variables and

Infinite Loops  152
The break Statement  153
Pitfall: The break Statement in Nested Loops  154

3.4  Designing Loops  155
Loops for Sums and Products  155
Ending a Loop  157
Nested Loops  160
Debugging Loops  162

3

Chapter Summary  165
Answers to Self-Test Exercises  166

Practice Programs  172
Programming Projects  174

Introduction

The order in which the statements in your program are performed is called
flow of control. The if-else statement, the while statement, and the do-
while statement are three ways to specify flow of control. This chapter explores
some new ways to use these statements and introduces two new statements
called the switch statement and the for statement, which are also used for
flow of control. The actions of an if-else statement, a while statement, or
a do-while statement are controlled by Boolean expressions. We begin by
discussing Boolean expressions in more detail.

Prerequisites

This chapter uses material from Chapter 2.

3.1  Using Boolean Expressions

“Contrariwise,” continued Tweedledee. “If it was so, it might be; and if it
were so, it would be; but as it isn’t, it ain’t. That’s logic.”

Lewis Carroll, Through the Looking-Glass

Evaluating Boolean Expressions

A Boolean expression is an expression that can be thought of as being true or
false (that is, true if satisfied or false if not satisfied). Thus far you have used
Boolean expressions as the test condition in if-else statements and as the
controlling expression in loops, such as a while loop. However, a Boolean
expression has an independent identity apart from any if-else statement
or loop statement you might use it in. The C++ type bool provides you the
ability to declare variables that can carry the values true and false.

A Boolean expression can be evaluated in the same way that an arithmetic
expression is evaluated. The only difference is that an arithmetic expression
uses operations such as +, *, and / and produces a number as the final result,
whereas a Boolean expression uses relational operations such as == and < and
Boolean operations such as &&, ||, and ! to produce one of the two values
true and false as the final result. Note that ==, !=, <, <=, and so forth operate
on pairs of any built-in type to produce a Boolean value true or false.

112

When you come to a fork in the road, take it.

Attributed to Yogi Berra

	 3.1  Using Boolean Expressions	 113

If you understand the way Boolean expressions are evaluated, you will be
able to write and understand complex Boolean expressions and be able to use
Boolean expressions for the value returned by a function.

First let’s review evaluating an arithmetic expression; the same technique
will work to evaluate Boolean expressions. Consider the following arithmetic
expression:

(x + 1) * (x + 3)

Assume that the variable x has the value 2. To evaluate this arithmetic expression,
you evaluate the two sums to obtain the numbers 3 and 5, then you combine
these two numbers 3 and 5 using the * operator to obtain 15 as the final value.
Notice that in performing this evaluation, you do not multiply the expressions
(x + 1) and (x + 3). Instead, you multiply the values of these expressions.
You use 3; you do not use (x + 1). You use 5; you do not use (x + 3).

The computer evaluates Boolean expressions the same way.
Subexpressions are evaluated to obtain values, each of which is either true or
false. These individual values of true or false are then combined according
to the rules in the tables shown in Display 3.1. For example, consider the
Boolean expression

!((y < 3) || (y > 7))

which might be the controlling expression for an if-else statement or a
while statement. Suppose the value of y is 8. In this case, (y < 3) evaluates
to false and (y > 7) evaluates to true, so the Boolean expression above is
equivalent to

!(false || true)

Consulting the tables for || (which is labeled OR in Display 3.1), the
computer sees that the expression inside the parentheses evaluates to true.
Thus, the computer sees that the entire expression is equivalent to

!(true)

Consulting the tables again, the computer sees that !(true) evaluates to false,
and so it concludes that false is the value of the original Boolean expression.

Almost all the examples we have constructed thus far have been fully
parenthesized to show exactly how each &&, ||, and ! is used to construct
an expression. Parentheses are not always required. If you omit parentheses,
the default precedence is as follows: perform ! first, then evaluate relational
operators such as <, then evaluate &&, and then evaluate ||. However, it is a
good practice to include most parentheses in order to make the expression
easier to understand. One place where parentheses can safely be omitted is
a simple string of &&’s or ||’s (but not a mixture of the two). The following
expression is acceptable in terms of both the C++ compiler and readability:

(temperature > 90) && (humidity > 0.90) && (pool_gate == OPEN)

114	 Chapter 3 /  More Flow of Control

Since the relational operations > and == are evaluated before the && operation, you
could omit the parentheses in the expression above and it would have the same
meaning, but including some parentheses makes the expression easier to read.

When parentheses are omitted from an expression, the computer groups
items according to rules known as precedence rules. Some of the precedence
rules for C++ are given in Display 3.2. If one operation is evaluated before
another, the operation that is evaluated first is said to have higher precedence.
Binary operations of equal precedence are evaluated in left-to-right order.
Unary operations of equal precedence are evaluated in right-to-left order. A
complete set of precedence rules is given in Appendix 2.

Notice that the precedence rules include both arithmetic operators such as
+ and * as well as Boolean operators such as && and ||. This is because many
expressions combine arithmetic and Boolean operations, as in the following
simple example:

(x + 1) > 2 || (x + 1) < -3

If you check the precedence rules given in Display 3.2, you will see that this
expression is equivalent to

((x + 1) > 2) || ((x + 1) < -3)

because > and < have higher precedence than ||. In fact, you could omit all
the parentheses in the expression above and it would have the same meaning,

AND

OR

NOT

Exp_1 Exp_2 Exp_1 || Exp_2

Exp_1 Exp_2 Exp_1 && Exp_2

false true true

false false false

false

false

false false

false true false

true false false

true true

true true true

true true true

!(Exp)Exp

false true

falsetrue

Display 3.1   Truth Tables

	 3.1  Using Boolean Expressions	 115

although it would be harder to read. Although we do not advocate omitting all the
parentheses, it might be instructive to see how such an expression is interpreted
using the precedence rules. Here is the expression without any parentheses:

x + 1 > 2 || x + 1 < -3

The precedence rules say first apply the unary 2, then apply the + signs, then
do the > and the <, and finally do the ||, which is exactly what the fully
parenthesized version says to do.

The preceding description of how a Boolean expression is evaluated
is basically correct, but in C++, the computer actually takes an occasional
shortcut when evaluating a Boolean expression. Notice that in many cases you
need to evaluate only the first of two subexpressions in a Boolean expression.
For example, consider the following:

(x >= 0) && (y > 1)

If x is negative, then (x >= 0) is false, and as you can see in the tables in
Display 3.1, when one subexpression in an && expression is false, then the
whole expression is false, no matter whether the other expression is true or
false. Thus, if we know that the first expression is false, there is no need to
evaluate the second expression. A similar thing happens with || expressions. If
the first of two expressions joined with the || operator is true, then you know
the entire expression is true, no matter whether the second expression is true
or false. The C++ language uses this fact to sometimes save itself the trouble
of evaluating the second subexpression in a logical expression connected with
an && or an ||. C++ first evaluates the leftmost of the two expressions joined
by an && or an ||. If that gives it enough information to determine the final
value of the expression (independent of the value of the second expression),
then C++ does not bother to evaluate the second expression. This method of
evaluation is called short-circuit evaluation.

Display 3.2   Precedence Rules

The unary operators +, −, ++, ––, and !

The binary arithmetic operations *, /, %

The binary arithmetic operations +, −

The Boolean operations < , >, <= , >=

The Boolean operations ==, ! =

The Boolean operations &&

The Boolean operations | |

Highest precedence
(done first)

Lowest precedence
(done last)

116	 Chapter 3 /  More Flow of Control

Some languages, other than C++, use complete evaluation. In complete
evaluation, when two expressions are joined by an && or an ||, both
subexpressions are always evaluated and then the truth tables are used to
obtain the value of the final expression.

Both short-circuit evaluation and complete evaluation give the same
answer, so why should you care that C++ uses short-circuit evaluation? Most
of the time you need not care. As long as both subexpressions joined by the
&& or the || have a value, the two methods yield the same result. However, if
the second subexpression is undefined, you might be happy to know that C++
uses short-circuit evaluation.

Let’s look at an example that illustrates this point. Consider the following
statement:

if ((kids != 0) && ((pieces/kids) >= 2))
 cout << "Each child may have two pieces!";

If the value of kids is not zero, this statement involves no subtleties. However,
suppose the value of kids is zero and consider how short-circuit evaluation
handles this case. The expression (kids!= 0) evaluates to false, so there
would be no need to evaluate the second expression. Using short-circuit
evaluation, C++ says that the entire expression is false, without bothering to
evaluate the second expression. This prevents a run-time error, since evaluating
the second expression would involve dividing by zero.

C++ sometimes uses integers as if they were Boolean values. In particular,
C++ converts the integer 1 to true and converts the integer 0 to false. The
situation is even a bit more complicated than simply using 1 for true and 0 for
false. The compiler will treat any nonzero number as if it were the value true
and will treat 0 as if it were the value false. As long as you make no mistakes
in writing Boolean expressions, this conversion causes no problems and you
usually need not even be aware of it. However, when you are debugging, it
might help to know that the compiler is happy to combine integers using the
Boolean operators &&, ||, and !.

Boolean (bool) values are true and false

In C++, a Boolean expression evaluates to the bool value true when it is
satisfied and to the bool value false when it is not satisfied.

Pitfall   Boolean Expressions Convert to int Values

Suppose you want to use a Boolean expression in an if-else statement,
and you want it to be true provided that time has not yet run out (in some
game or process). To phrase it a bit more precisely, suppose you want to use
a Boolean expression in an if-else statement and you want it to be true
provided the value of a variable time of type int is not greater than the value

	 3.1  Using Boolean Expressions	 117

of a variable called limit. You might write the following (where Something
and Something_Else are some C++ statements):

if (!time > limit)
 Something
else
 Something_Else

This sounds right if you read it out loud: “not time greater than limit.”
The Boolean expression is wrong, however, and unfortunately, the compiler
will not give you an error message. We have been bitten by the precedence
rules of C++. The compiler will instead apply the precedence rules from
Display 3.2 and interpret your Boolean expression as the following:

(!time) > limit

This looks like nonsense, and intuitively it is nonsense. If the value of
time is, for example, 36, what could possibly be the meaning of (!time)?
After all, that is equivalent to “not 36.” But in C++, any nonzero integer
converts to true and 0 is converted to false. Thus, !36 is interpreted as
“not true” and so it evaluates to false, which is in turn converted back to 0
because we are comparing to an int.

What we want as the value of this Boolean expression and what C++ gives
us are not the same. If time has a value of 36 and limit has a value of 60, you
want the displayed Boolean expression above to evaluate to true (because it
is not true that time > limit). Unfortunately, the Boolean expression instead
evaluates as follows: (!time) evaluates to false, which is converted to 0, so
the entire Boolean expression is equivalent to

0 > limit

That in turn is equivalent to 0 > 60, because 60 is the value of limit.
This evaluates to false. Thus, the above logical expression evaluates to false,
when you want it to evaluate to true.

There are two ways to correct this problem. One way is to use the !
operator correctly. When using the operator !, be sure to include parentheses
around the argument. The correct way to write the preceding Boolean
expression is as follows:

if (!(time > limit))
 Something
else
 Something_Else

Another way to correct this problem is to completely avoid using the !
operator. For example, the following is also correct and easier to read:

if (time <= limit)
 Something
else
 Something_Else

Wrong for what we want

118	 Chapter 3 /  More Flow of Control

You can almost always avoid using the ! operator, and some programmers
advocate avoiding it as much as possible. They say that just as not in English
can make things not undifficult to read, so too can the “not” operator !
make C++ programs difficult to read. There is no need to be obsessive in
avoiding the ! operator, but before using it, you should see if you can
express the same thing more clearly without using the ! operator.	 ■

Avoid using “not”

The Type bool Is New

Older versions of C++ have no type bool, but instead use the integers 1
and 0 for true and false. If you have an older version of C++ that does
not have the type bool, you should obtain a new compiler.

Self-Test Exercises

	  1.	D etermine the value, true or false, of each of the following Boolean
expressions, assuming that the value of the variable count is 0 and the
value of the variable limit is 10. Give your answer as one of the values
true or false.

		 a.	 (count == 0) && (limit < 20)
		 b.	 count == 0 && limit < 20
		 c.	 (limit > 20) || (count < 5)
		 d.	 !(count == 12)
		 e.	 (count == 1) && (x < y)
		 f.	 (count < 10) || (x < y)
		 g.	 !(((count < 10) || (x < y)) && (count >= 0))
		 h.	 ((limit/count) > 7) || (limit < 20)
		 i.	 (limit < 20) || ((limit/count) > 7)
		 j.	 ((limit/count) > 7) && (limit < 0)
		 k.	 (limit < 0) && ((limit/count) > 7)
		 l.	 (5 && 7) + (!6)

	  2.	 Name two kinds of statements in C++ that alter the order in which actions
are performed. Give some examples.

	  3.	I n college algebra we see numeric intervals given as

2 < x < 3

In C++ this interval does not have the meaning you may expect. Explain
and give the correct C++ Boolean expression that specifies that x lies
between 2 and 3.

	 3.1  Using Boolean Expressions	 119

	  4.	D oes the following sequence produce division by zero?

j = -1;
if ((j > 0) && (1/(j + 1) > 10))
 cout << i << endl;

Enumeration Types (Optional)

An enumeration type is a type whose values are defined by a list of constants
of type int. An enumeration type is very much like a list of declared constants.

When defining an enumeration type, you can use any int values and can
have any number of constants defined in an enumeration type. For example, the
following enumeration type defines a constant for the length of each month:

enum MonthLength { JAN_LENGTH = 31, FEB_LENGTH = 28,
MAR_LENGTH = 31, APR_LENGTH = 30, MAY_LENGTH = 31,
JUN_LENGTH = 30, JUL_LENGTH = 31, AUG_LENGTH = 31,
SEP_LENGTH = 30, OCT_LENGTH = 31, NOV_LENGTH = 30,
DEC_LENGTH = 31 };

As this example shows, two or more named constants in an enumeration type
can receive the same int value.

If you do not specify any numeric values, the identifiers in an enumeration-
type definition are assigned consecutive values beginning with 0. For example,
the type definition

enum Direction { NORTH = 0, SOUTH = 1, EAST = 2, WEST = 3 };

is equivalent to

enum Direction { NORTH, SOUTH, EAST, WEST };

The form that does not explicitly list the int values is normally used when
you just want a list of names and do not care about what values they have.

If you initialize only some enumeration constant to some values, say

enum MyEnum { ONE = 17, TWO, THREE, FOUR = -3, FIVE };

then ONE takes the value 17, TWO takes the next int value 18, THREE takes the
next value 19, FOUR takes -3, and FIVE takes the next value, -2.

In short, the default for the first enumeration constant is 0. The rest
increase by 1 unless you set one or more of the enumeration constants.

C++11 introduced a new version of enumerations called strong enums or
enum classes that avoids some problems of conventional enums. For example,
you may not want an enum to act as an integer. Additionally, enums are global
in scope so you can’t have the same enum value twice. To define a strong enum,
add the word class after enum. You can qualify an enum value by providing
the enum name followed by two colons followed by the value. For example:

enum class Days { Sun, Mon, Tue, Wed };
enum class Weather { Rain, Sun };

120	 Chapter 3 /  More Flow of Control

Days d = Days::Tue;
Weather w = Weather::Sun;

The variables d and w are not integers so we can’t treat them as such. For
example, it would be illegal to check if (d == 0) whereas this is legal in a
traditional enum. It is legal to check if (d == Days::Sun).

3.2  Multiway Branches

“Would you tell me, please, which way I ought to go from here?”

“That depends a good deal on where you want to get to,” said the Cat.

Lewis Carroll, Alice in Wonderland

Any programming construct that chooses one from a number of alternative
actions is called a branching mechanism. The if-else statement chooses
between two alternatives. In this section we will discuss methods for choosing
from among more than two alternatives.

Nested Statements

As you have seen, if-else statements and if statements contain smaller
statements within them. Thus far we have used compound statements
and simple statements such as assignment statements as these smaller
substatements, but there are other possibilities. In fact, any statement at all
can be used as a subpart of an if-else statement, of an if statement, of a
while statement, or of a do-while statement. This is illustrated in Display 3.3.
The statement in that display has three levels of nesting, as indicated by the
boxes. Two cout statements are nested within an if-else statement, and that
if-else statement is nested within an if statement.

When nesting statements, you normally indent each level of nested
substatements. In Display 3.3 there are three levels of nesting, so there are

Display 3.3   An if-else Statement Within an if Statement

1

2

3 cout << "count > 0 and score > 5\n";

4

5 cout << "count > 0 and score <= 5\n";

if (count > 0)

if (score > 5)

else

	 3.2  Multiway Branches	 121

three levels of indenting. Both cout statements are indented the same amount
because they are both at the same level of nesting. Later in this chapter, you
will see some specific cases where it makes sense to use other indenting
patterns, but unless there is some rule to the contrary, you should indent each
level of nesting as illustrated in Display 3.3.

■ P rogramming Tip   Use Braces in Nested Statements

Suppose we want to write an if-else statement to use in an onboard
computer monitoring system for a racing car. This part of the program warns
the driver when fuel is low but tells the driver to bypass pit stops if the fuel
tank is close to full. In all other situations the program gives no output so as
not to distract the driver. We design the following pseudocode:

If the fuel gauge is below 3/4 full, then:
 Check whether the fuel gauge is below 1/4 full and issue a low fuel
 warning if it is.
Otherwise (that is, if fuel gauge is over 3/4 full):
 Output a statement telling the driver not to stop.

If we are not being too careful, we might implement the pseudocode as
follows:

if (fuel_gauge_reading < 0.75)
 if (fuel_gauge_reading < 0.25)
 cout << "Fuel very low. Caution!\n";
else
 cout << "Fuel over 3/4. Don't stop now!\n";

Read text to see what
 is wrong with this.

This implementation looks fine, and it is indeed a correctly formed C++
statement that the compiler will accept and that will run with no error messages.
However, it does not implement the pseudocode. Notice that this statement has
two occurrences of if and only one else. The compiler must decide which if
gets paired with the one else. We have nicely indented this nested statement
to show that the else should be paired with the first if, but the compiler does
not care about indenting. To the compiler, the preceding nested statement is the
same as the following version, which differs only in how it is indented:

if (fuel_gauge_reading < 0.75)
 if (fuel_gauge_reading < 0.25)
 cout << "Fuel very low. Caution!\n";
 else
 cout << "Fuel over 3/4. Don't stop now!\n";

Unfortunately for us, the compiler will use the second interpretation and will
pair the one else with the second if rather than the first if. This is sometimes
called the dangling else problem; it is illustrated by the program in Display 3.4.

The compiler always pairs an else with the nearest previous if that is not
already paired with some else. But, do not try to work within this rule. Ignore

122	 Chapter 3 /  More Flow of Control

Display 3.4   The Importance of Braces

 1 //Illustrates the importance of using braces in if-else statements.
 2 #include <iostream>
 3 using namespace std;
 4 int main()
 5 {
 6 double fuel_gauge_reading;
 7
 8 cout << "Enter fuel gauge reading: ";
 9 cin >> fuel_gauge_reading;
10
11 cout << "First with braces:\n";
12 if (fuel_gauge_reading < 0.75)
13 {
14 if (fuel_gauge_reading < 0.25)
15 cout << "Fuel very low. Caution!\n";
16 }
17 else
18 {
19 cout << "Fuel over 3/4. Don't stop now!\n";
20 }
21
22 cout << "Now without braces:\n";
23 if (fuel_gauge_reading < 0.75)
24 if (fuel_gauge_reading < 0.25)
25 cout << "Fuel very low. Caution!\n";
26 else
27 cout << "Fuel over 3/4. Don't stop now!\n";
28
29 return 0;
30 }

Sample Dialogue 1

Enter fuel gauge reading: 0.1

First with braces:

Fuel very low. Caution!

Now without braces:

Fuel very low. Caution!

Sample Dialogue 2

Enter fuel gauge reading: 0.5

First with braces:

Now without braces:

Fuel over 3/4. Don't stop now!

This indenting is nice,
but is not what the
computer follows.

Braces make no difference in
this case, but see Dialogue 2.

There should be no output here,
and thanks to braces, there is none.

Incorrect output from the
version without braces.

	 3.2  Multiway Branches	 123

the rule! Change the rules! You are the boss! Always tell the compiler what you
want it to do and the compiler will then do what you want. How do you tell the
compiler what you want? You use braces. Braces in nested statements are like
parentheses in arithmetic expressions. The braces tell the compiler how to group
things, rather than leaving them to be grouped according to default conventions,
which may or may not be what you want. To avoid problems and to make your
programs easier to read, place braces, { and }, around substatements in if-else
statements, as we have done in the first if-else statement in Display 3.4.

For very simple substatements, such as a single assignment statement or
a single cout statement, you can safely omit the braces. In Display 3.4, the
braces around the following substatement (within the first if-else statement)
are not needed:

cout << "Fuel over 3/4. Don't stop now!\n";

However, even in these simple cases, the braces can sometimes aid readability.
Some programmers advocate using braces around even the simplest
substatements when they occur within if-else statements, which is what we
have done in the first if-else statement in Display 3.4.	 ■

Multiway if-else Statements

An if-else statement is a two-way branch. It allows a program to choose one
of two possible actions. Often you will want to have a three- or four-way branch
so that your program can choose between more than two alternative actions.
You can implement such multiway branches by nesting if-else statements. By
way of example, suppose you are designing a game-playing program in which
the user must guess the value of some number. The number can be in a variable
named number, and the guess can be in a variable named guess. If you wish to
give a hint after each guess, you might design the following pseudocode:

Output "Too high." when guess > number.
Output "Too low." when guess < number.
Output "Correct!" when guess == number.

Any time a branching action is described as a list of mutually
exclusive conditions and corresponding actions, as in this example, it can
be implemented by using a nested if-else statement. For example, this
pseudocode translates to the following code:

if (guess > number)
 cout << "Too high.";
else if (guess < number)
 cout << "Too low.";
else if (guess == number)
 cout << "Correct!";

The indenting pattern used here is slightly different from what we have
advocated previously. If we followed our indenting rules, we would produce
something like the following:

rule for
pairing else’s
with if’s

124	 Chapter 3 /  More Flow of Control

if (guess > number)
 cout << "Too high.";
else
 if (guess < number)
 cout << "Too low.";
 else
 if (guess == number)
 cout << "Correct!";

Use the previous
indenting pattern
rather than this one.

This is one of those rare cases in which you should not follow our general
guidelines for indenting nested statements. The reason is that by lining up all the
else’s, you also line up all the condition/action pairs and so make the layout of
the program reflect your reasoning. Another reason is that even for not-too-deeply
nested if-else statements, you can quickly run out of space on your page!

Since the conditions are mutually exclusive, the last if in the nested
if-else statement above is superfluous and can be omitted, but it is
sometimes best to include it in a comment as follows:

if (guess > number)
 cout << "Too high.";
else if (guess < number)
 cout << "Too low.";
else //(guess == number)
 cout << "Correct!";

You can use this form of multiple-branch if-else statement even if the
conditions are not mutually exclusive. Whether the conditions are mutually
exclusive or not, the computer will evaluate the conditions in the order in
which they appear until it finds the first condition that is true and then it will
execute the action corresponding to this condition. If no condition is true, no
action is taken. If the statement ends with a plain else without any if, then
the last statement is executed when all the conditions are false.

Multiway if-else Statement

Syntax

if (Boolean_Expression_1)
 Statement_1
else if (Boolean_Expression_2)
 Statement_2
 .
 .
 .
else if (Boolean_Expression_n)
 Statement_n
else
 Statement_For_All_Other_Possibilities

(continued)

	 3.2  Multiway Branches	 125

Example>

if ((temperature <-10) && (day == SUNDAY))
 cout << "Stay home.";
else if (temperature <-10) //and day != SUNDAY
 cout << "Stay home, but call work.";
else if (temperature <= 0) //and temperature >= -10
 cout << "Dress warm.";
else //temperature > 0
 cout << "Work hard and play hard.";

The Boolean expressions are checked in order until the first true Boolean
expression is encountered, and then the corresponding statement
is executed. If none of the Boolean expressions is true, then the
Statement_For_All_Other_Possibilities is executed.

Display 3.5 contains a program that uses a multiway if-else statement.
The program takes the taxpayer’s net income rounded to a whole number of
dollars and computes the state income tax due on this net income. This state
computes tax according to the following rate schedule:

	1.	 No tax is paid on the first $15,000 of net income.

	2.	 A tax of 5 percent is assessed on each dollar of net income from $15,001
to $25,000.

	3.	 A tax of 10 percent is assessed on each dollar of net income over $25,000.

The program defined in Display 3.5 uses a multiway if-else statement
with one action for each of these three cases. The condition for the second
case is actually more complicated than it needs to be. The computer will not
get to the second condition unless it has already tried the first condition and
found it to be false. Thus, you know that whenever the computer tries the
second condition, it will know that net_income is greater than 15000. Hence,
you can replace the line

else if ((net_income > 15000) && (net_income <= 25000))

with the following, and the program will perform exactly the same:

else if (net_income <= 25000)

 P rogramming Example State Income Tax

126	 Chapter 3 /  More Flow of Control

Display 3.5   Multiway if-else Statement

 1 //Program to compute state income tax.
 2 #include <iostream>
 3 using namespace std;
 4
 5 //This program outputs the amount of state income tax due computed
 6 //as follows: no tax on income up to $15,000; 5% on income between
 7 //$15,001 and $25,000; 10% on income over $25,000.
 8
 9 int main()
10 {
11 int net_income;
12 double tax_bill;
13 double five_percent_tax, ten_percent_tax;
14
15
16 cout << "Enter net income (rounded to whole dollars) $";
17 cin >> net_income;
18
19 if (net_income <= 15000)
20 tax_bill = 0;
21 else if ((net_income > 15000) && (net_income <= 25000))
22 //5% of amount over $15,000
23 tax_bill = (0.05 * (net_income - 15000));
24 else //net_income > $25,000
25 {
26 //five_percent_tax = 5% of income from $15,000 to $25,000.
27 five_percent_tax = 0.05 * 10000;
28 //ten_percent_tax = 10% of income over $25,000.
29 ten_percent_tax = 0.10 * (net_income - 25000);
30 tax_bill = (five_percent_tax + ten_percent_tax);
31 }
32
33 cout.setf(ios::fixed);
34 cout.setf(ios::showpoint);
35 cout.precision(2);
36 cout << "Net income = $" << net_income << endl
37 << "Tax bill = $" << tax_bill << endl;
38
39 return 0;
40 }

Sample Dialogue

Enter net income (rounded to whole dollars) $25100

Net income = $25100.00

Tax bill = $510.00

	 3.2  Multiway Branches	 127

Self-Test Exercises

	  5.	 What output will be produced by the following code, when embedded in
a complete program?

int x = 2;
cout << "Start\n";
if (x <= 3)
 if (x != 0)
 cout << "Hello from the second if.\n";
 else
 cout << "Hello from the else.\n";
cout << "End\n";

cout << "Start again\n";
if (x > 3)
 if (x != 0)
 cout << "Hello from the second if.\n";
 else
 cout << "Hello from the else.\n";
cout << "End again\n";

	  6.	 What output will be produced by the following code, when embedded in
a complete program?

int extra = 2;
if (extra < 0)
 cout << "small";
else if (extra = = 0)
 cout << "medium";
else
 cout << "large";

	  7.	 What would be the output in Self-Test Exercise 6 if the assignment were
changed to the following?

int extra = -37;

	  8.	 What would be the output in Self-Test Exercise 6 if the assignment were
changed to the following?

int extra = 0;

	  9.	 What output will be produced by the following code, when embedded in
a complete program?

int x = 200;
cout << "Start\n";
if (x < 100)
 cout << "First Output.\n";

128	 Chapter 3 /  More Flow of Control

else if (x > 10)
 cout << "Second Output.\n";
else
 cout << "Third Output.\n";
cout << "End\n";

	10.	 What would be the output in Self-Test Exercise 9 if the Boolean expression
(x > 10) were changed to (x > 100)?

	11.	 What output will be produced by the following code, when embedded in
a complete program?

int x = SOME_CONSTANT;
cout << "Start\n";
if (x < 100)
 cout << "First Output.\n";
else if (x > 100)
 cout << "Second Output.\n";
else
 cout << x << endl;
cout << "End\n";

SOME_CONSTANT is a constant of type int. Assume that neither "First
Output" nor "Second Output" is output. So, you know the value of x is
output.

	12.	 Write a multiway if-else statement that classifies the value of an
int variable n into one of the following categories and writes out an
appropriate message:

n < 0 or 0 ≤ n ≤ 100 or n > 100

	13.	G iven the following declaration and output statement, assume that this
has been embedded in a correct program and is run. What is the output?

enum Direction { N, S, E, W };
//...
cout << W << " " << E << " " << S << " " << N << endl;

	14.	G iven the following declaration and output statement, assume that this
has been embedded in a correct program and is run. What is the output?

enum Direction { N = 5, S = 7, E = 1, W };
// ...
cout << W << " " << E << " " << S << " " N << endl;

The switch Statement

You have seen if-else statements used to construct multiway branches. The
switch statement is another kind of C++ statement that also implements

	 3.2  Multiway Branches	 129

multiway branches. A sample switch statement is shown in Display 3.6. This
particular switch statement has four regular branches and a fifth branch for
illegal input. The variable grade determines which branch is executed. There
is one branch for each of the grades 'A', 'B', and 'C'. The grades 'D' and 'F'
cause the same branch to be taken, rather than having a separate action for each
of 'D' and 'F'. If the value of grade is any character other than 'A', 'B', 'C',
'D', or 'F', then the cout statement after the identifier default is executed.

Display 3.6   A switch Statement (part 1 of 2)

 1 //Program to illustrate the switch statement.
 2 #include <iostream>
 3 using namespace std;
 4 int main()
 5 {
 6 char grade;
 7 cout << "Enter your midterm grade and press Return: ";
 8 cin >> grade;
 9 switch (grade)
10 {
11 case 'A':
12 cout << "Excellent. "
13 << "You need not take the final.\n";
14 break;
15 case 'B':
16 cout << "Very good. ";
17 grade = 'A';
18 cout << "Your midterm grade is now "
19 << grade << endl;
20 break;
21 case 'C':
22 cout << "Passing.\n";
23 break;
24 case 'D':
25 case 'F':
26 cout << "Not good. "
27 << "Go study.\n";
28 break;
29 default:
30 cout << "That is not a possible grade.\n";
31 }
32 cout << "End of program.\n";
33 return 0;
34 }

(continued)

130	 Chapter 3 /  More Flow of Control

The syntax and preferred indenting pattern for the switch statement are
shown in the sample switch statement in Display 3.6 and in the box entitled
“switch Statement.”

When a switch statement is executed, one of a number of different
branches is executed. The choice of which branch to execute is determined by
a controlling expression given in parentheses after the keyword switch. The
controlling expression in the sample switch statement shown in Display 3.6
is of type char. The controlling expression for a switch statement must always
return either a bool value, an enum constant, one of the integer types, or a
character. When the switch statement is executed, this controlling expression
is evaluated and the computer looks at the constant values given after the
various occurrences of the case identifiers. If it finds a constant that equals
the value of the controlling expression, it executes the code for that case. For
example, if the expression evaluates to 'B', then it looks for the following and
executes the statements that follow this line:

case 'B':

Display 3.6   A switch Statement (part 2 of 2)

Sample Dialogue 1

Enter your midterm grade and press Return: A

Excellent. You need not take the final.

End of program.

Sample Dialogue 2

Enter your midterm grade and press Return: B

Very good. Your midterm grade is now A.

End of program.

Sample Dialogue 3

Enter your midterm grade and press Return: D

Not good. Go study.

End of program.

Sample Dialogue 4

Enter your midterm grade and press Return: E

That is not a possible grade.

End of program.

switch Statement Example
VideoNote

	 3.2  Multiway Branches	 131

Notice that the constant is followed by a colon. Also note that you cannot
have two occurrences of case with the same constant value after them, since
that would be an ambiguous instruction.

A break statement consists of the keyword break followed by a semicolon.
When the computer executes the statements after a case label, it continues
until it reaches a break statement. When the computer encounters a break
statement, the switch statement ends. If you omit the break statements, then
after executing the code for one case, the computer will go on to execute the
code for the next case.

Note that you can have two case labels for the same section of code. In
the switch statement in Display 3.6, the same action is taken for the values
'D' and 'F'. This technique can also be used to allow for both upper- and
lowercase letters. For example, to allow both lowercase 'a' and uppercase 'A'
in the program in Display 3.6, you can replace

case 'A':
 cout << "Excellent. "
 << "You need not take the final.\n";
 break;

with the following:

case 'A':
case 'a':
 cout << "Excellent. "
 << "You need not take the final.\n";
 break;

Of course, the same can be done for all the other letters.
If no case label has a constant that matches the value of the controlling

expression, then the statements following the default label are executed. You
need not have a default section. If there is no default section and no match is
found for the value of the controlling expression, then nothing happens when
the switch statement is executed. However, it is safest to always have a default
section. If you think your case labels list all possible outcomes, then you can
put an error message in the default section. This is what we did in Display 3.6.

switch Statement

Syntax

switch (Controlling_Expression)
{
 case Constant_1:
 Statement_Sequence_1
 break;

(continued)

132	 Chapter 3 /  More Flow of Control

Pitfall   Forgetting a break in a switch Statement

If you forget a break in a switch statement, the compiler will not issue an
error message. You will have written a syntactically correct switch statement,
but it will not do what you intended it to do. Consider the switch statement
in the box entitled “switch Statement.” If a break statement were omitted, as
indicated by the arrow, then when the variable vehicle_class has the value 1,
the case labeled

case 1:

 case Constant_2:
 Statement_Sequence_2
 break;
 .
 .
 .
 case Constant_n:
 Statement_Sequence_n
 break;
 default:
 Default_Statement_Sequence
}

Example

int vehicle_class;
cout << "Enter vehicle class: ";
cin >> vehicle_class;

switch (vehicle_class)
{
 case 1:
 cout << "Passenger car.";
 toll = 0.50;
 break;
 case 2:
 cout << "Bus.";
 toll = 1.50;
 break;
 case 3:
 cout << "Truck.";
 toll = 2.00;
 break;
 default:
 cout << "Unknown vehicle class!";
}

If you forget this break,
then passenger cars will
pay $1.50.

	 3.2  Multiway Branches	 133

would be executed as desired, but then the computer would go on to also
execute the next case. This would produce a puzzling output that says the
vehicle is a passenger car and then later says it is a bus; moreover, the final
value of toll would be 1.50, not 0.50 as it should be. When the computer
starts to execute a case, it does not stop until it encounters either a break or
the end of the switch statement. 	 ■

Using switch Statements for Menus

The multiway if-else statement is more versatile than the switch statement,
and you can use a multiway if-else statement anywhere you can use a
switch statement. However, sometimes the switch statement is clearer. For
example, the switch statement is perfect for implementing menus.

Display 3.7   A Menu (part 1 of 2)

 1 //Program to give out homework assignment information.
 2 #include <iostream>
 3 using namespace std;
 4
 5
 6 int main()
 7 {
 8 int choice;
 9
10 do
11 {
12 cout << endl
13 << "Choose 1 to see the next homework assignment.\n"
14 << "Choose 2 for your grade on the last assignment.\n"
15 << "Choose 3 for assignment hints.\n"
16 << "Choose 4 to exit this program.\n"
17 << "Enter your choice and press Return: ";
18 cin >> choice;
19
20 switch(choice)
21 {
22 case 1:
23 //code to display the next assignment on screen would go here.
24 break;
25 case 2:
26 //code to ask for a student number and give the corresponding
27 //grade would go here.
28 break;
29 case 3:
30 //code to display a hint for the current assignment would go

(continued)

134	 Chapter 3 /  More Flow of Control

A menu in a restaurant presents a list of alternatives for a customer to
choose from. A menu in a computer program does the same thing: It presents
a list of alternatives on the screen for the user to choose from. Display 3.7
shows the outline of a program designed to give students information on
homework assignments. The program uses a menu to let the student choose
which information she or he wants. A more readable way to implement the
menu actions is through functions. Functions are discussed in Chapter 4.

Display 3.7   A Menu (part 2 of 2)

31 //here.
32 break;
33 case 4:
34 cout << "End of Program.\n";
35 break;
36 default:
37 cout << "Not a valid choice.\n"
38 << "Choose again.\n";
39 }
40 } while (choice != 4);
41
42 return 0;
43 }

Sample Dialogue

Choose 1 to see the next homework assignment.

Choose 2 for your grade on the last assignment.

Choose 3 for assignment hints.

Choose 4 to exit this program.

Enter your choice and press Return: 3

Assignment hints:

Analyze the problem.

Write an algorithm in pseudocode.

Translate the pseudocode into a C++ program.

Choose 1 to see the next homework assignment.

Choose 2 for your grade on the last assignment.

Choose 3 for assignment hints.

Choose 4 to exit this program.

Enter your choice and press Return: 4

End of Program.

The exact
output will
depend on the
code inserted
into the switch
statement.

	 3.2  Multiway Branches	 135

Blocks

Each branch of a switch statement or of an if-else statement is a separate
subtask. As indicated in the previous Programming Tip, it is often best to
make the action of each branch a function call. That way the subtask for each
branch can be designed, written, and tested separately. On the other hand,
sometimes the action of one branch is so simple that you can just make it
a compound statement. Occasionally, you may want to give this compound
statement its own local variables. For example, consider the program in
Display 3.8. It calculates the final bill for a specified number of items at a
given price. If the sale is a wholesale transaction, then no sales tax is charged
(presumably because the tax will be paid when the items are resold to retail
buyers). If, however, the sale is a retail transaction, then sales tax must be
added. An if-else statement is used to produce different calculations for
wholesale and retail purchases. For the retail purchase, the calculation uses
a temporary variable called subtotal, and so that variable is declared within
the compound statement for that branch of the if-else statement.

As shown in Display 3.8, the variable subtotal is declared within a
compound statement. If we wanted to, we could have used the variable name
subtotal for something else outside of the compound statement in which it
is declared. A variable that is declared inside a compound statement is local
to the compound statement. Local variables are created when the compound
statement is executed and are destroyed when the compound statement is
completed. In other words, local variables exist only within the compound
statement in which they are declared. Within a compound statement, you can
use all the variables declared outside of the compound statement, as well as
the local variables declared inside the compound statement.

Display 3.8   Block with a Local Variable (part 1 of 2)

 1 //Program to compute bill for either a wholesale or a retail purchase.
 2 #include <iostream>
 3 using namespace std;
 4
 5
 6 int main()
 7 {
 8 const double TAX_RATE = 0.05; //5% sales tax
 9 char sale_type;
10 int number;
11 double price, total;
12
13 cout << "Enter price $";
14 cin >> price;

(continued)

136	 Chapter 3 /  More Flow of Control

Display 3.8   Block with a Local Variable (part 2 of 2)

15 cout << "Enter number purchased: ";
16 cin >> number;
17 cout << "Type W if this is a wholesale purchase.\n"
18 << "Type R if this is a retail purchase.\n"
19 << "Then press Return.\n";
20 cin >> sale_type;
21
22 if ((sale_type == 'W') || (sale_type == 'w'))
23 {
24 total = price * number;
25 }
26 else if ((sale_type == 'R') || (sale_type == 'r'))
27 {
28 double subtotal;
29 subtotal = price * number;
30 total = subtotal + subtotal * TAX_RATE;
31 }
32 else
33 {
34 cout << "Error in input.\n";
35 }
36 cout.setf(ios::fixed);
37 cout.setf(ios::showpoint);
38 cout.precision(2);
39 cout << number << " items at $" << price << endl;
40 cout << "Total Bill = $" << total;
41 if ((sale_type == 'R') || (sale_type == 'r'))
42 cout << " including sales tax.\n";
43
44 return 0;
45 }

Sample Dialogue

Enter price: $10.00

Enter number purchased: 2

Type W if this is a wholesale purchase.

Type R if this is a retail purchase.

Then press Return.

R

2 items at $10.00

Total Bill = $21.00 including sales tax.

Local to the block

	 3.2  Multiway Branches	 137

A compound statement with declarations is more than a simple
compound statement, so it has a special name. A compound statement that
contains variable declarations is usually called a block, and the variables
declared within the block are said to be local to the block or to have the
block as their scope. (A plain old compound statement that does not contain
any variable declarations is also called a block. Any code enclosed in braces is
called a block.)

In Chapter 4 we will show how to define functions. The body of a function
definition is also a block. There is no standard name for a block that is not the
body of a function. However, we want to talk about these kinds of blocks, so let
us create a name for them. Let’s call a block a statement block when it is not the
body of a function (and not the body of the main part of a program).

Statement blocks can be nested within other statement blocks, and
basically the same rules about local variable names apply to these nested
statement blocks as those we have already discussed, but applying the rules
can be tricky when statement blocks are nested. A better rule is to not nest
statement blocks. Nested statement blocks make a program hard to read.
If you feel the need to nest statement blocks, instead make some of the
statement blocks into function definitions and use function calls rather than
nested statement blocks. In fact, statement blocks of any kind should be
used sparingly. In most situations, a function call is preferable to a statement
block. For completeness, we include the scope rule for nested blocks in the
accompanying summary box.

Blocks

A block is some C++ code enclosed in braces. The variables declared
in a block are local to the block and so the variable names can be used
outside of the block for something else (such as being reused as the name
for a different variable).

Scope Rule for Nested Blocks

If an identifier is declared as a variable in each of two blocks, one within
the other, then these are two different variables with the same name.
One variable exists only within the inner block and cannot be accessed
outside of the inner block. The other variable exists only in the outer
block and cannot be accessed in the inner block. The two variables are
distinct, so changes made to one of these variables will have no effect on
the other of these two variables.

138	 Chapter 3 /  More Flow of Control

Pitfall   Inadvertent Local Variables

When you declare a variable within a pair of braces, { }, that variable becomes
a local variable for the block enclosed in the pair. This is true whether you
wanted the variable to be local or not. If you want a variable to be available
outside of the braces, then you must declare it outside of the braces.	 ■

Self-Test Exercises

	15.	 What output will be produced by the following code, when embedded in
a complete program?

int first_choice = 1;
switch (first_choice + 1)
{
 case 1:
 cout << "Roast beef\n";
 break;
 case 2:
 cout << "Roast worms\n";
 break;
 case 3:
 cout << "Chocolate ice cream\n";
 case 4:
 cout << "Onion ice cream\n";
 break;
 default:
 cout << "Bon appetit!\n";
}

	16.	 What would be the output in Self-Test Exercise 15 if the first line were
changed to the following?

int first_choice = 3;

	17.	 What would be the output in Self-Test Exercise 15 if the first line were
changed to the following?

int first_choice = 2;

	18.	 What would be the output in Self-Test Exercise 15 if the first line were
changed to the following?

int first_choice = 4;

	19.	 What output is produced by the following code, when embedded in a
complete program?

	 3.3  More About C++ Loop Statements	 139

int number = 22;
{
 int number = 42;
 cout << number << " ";
}
cout << number;

	20.	 Though we urge you not to program using this style, we are providing an
exercise that uses nested blocks to help you understand the scope rules.
Give the output that this code fragment would produce if embedded in an
otherwise complete, correct program.

{
 int x = 1;
 cout << x << endl;
 {
 cout << x << endl;
 int x = 2;
 cout << x << endl;
 {
 cout << x << endl;
 int x = 3;
 cout << x << endl;
 }
 cout << x << endl;
 }
 cout << x << endl;
}

3.3  More About C++ Loop Statements

It is not true that life is one damn thing after another—

It’s one damn thing over and over.

Edna St. Vincent Millay, Letter to Arthur Darison Ficke, October 24, 1930

A loop is any program construction that repeats a statement or sequence of
statements a number of times. The simple while loops and do-while loops
that we have already seen are examples of loops. The statement (or group of
statements) to be repeated in a loop is called the body of the loop, and each
repetition of the loop body is called an iteration of the loop. The two main
design questions when constructing loops are: What should the loop body be?
How many times should the loop body be iterated?

The while Statements Reviewed

The syntax for the while statement and its variant, the do-while statement, is
reviewed in Display 3.9. The important difference between the two types of loops

140	 Chapter 3 /  More Flow of Control

involves when the controlling Boolean expression is checked. When a while
statement is executed, the Boolean expression is checked before the loop body is
executed. If the Boolean expression evaluates to false, then the body is not executed
at all. With a do-while statement, the body of the loop is executed first and the
Boolean expression is checked after the loop body is executed. Thus, the do-while
statement always executes the loop body at least once. After this start-up, the while
loop and the do-while loop behave very much the same. After each iteration of
the loop body, the Boolean expression is again checked; if it is true, then the loop is
iterated again. If it has changed from true to false, then the loop statement ends.

Display 3.9   �Syntax of the while Statement and
do-while Statement

A while Statement with a Single Statement Body

 while (Boolean_Expression)
 Statement

A while Statement with a Multistatement Body

 while (Boolean_Expression)
 {
 Statement_1
 Statement_2
 .
 .
 .
 Statement_Last
 }

A do-while Statement with a Single Statement Body

 do
 Statement
 while (Boolean_Expression);

A do-while Statement with a Multistatement Body

 do
 {
 Statement_1
 Statement_2
 .
 .
 .
 Statement_Last
 } while (Boolean_Expression);

Body

Body

Body

Body

	 3.3  More About C++ Loop Statements	 141

The first thing that happens when a while loop is executed is that the
controlling Boolean expression is evaluated. If the Boolean expression
evaluates to false at that point, then the body of the loop is never executed.
It may seem pointless to execute the body of a loop zero times, but that is
sometimes the desired action. For example, a while loop is often used to
sum a list of numbers, but the list could be empty. To be more specific, a
checkbook balancing program might use a while loop to sum the values of
all the checks you have written in a month—but you might take a month’s
vacation and write no checks at all. In that case, there are zero numbers to
sum and so the loop is iterated zero times.

Increment and Decrement Operators Revisited

You have used the increment operator as a statement that increments the value
of a variable by 1. For example, the following will output 42 to the screen:

int number = 41;
number++;
cout << number;

Thus far we have always used the increment operator as a statement. But the
increment operator is also an operator, just like the + and ? operators. An
expression like number++ also returns a value, so number++ can be used in an
arithmetic expression such as

2 * (number++)

The expression number++ first returns the value of the variable number, and
then the value of number is increased by 1. For example, consider the following
code:

int number = 2;
int value_produced = 2 * (number++);
cout << value_produced << endl;
cout << number << endl;

This code will produce the following output:

4
3

Notice the expression 2  * (number++). When C++ evaluates this expression,
it uses the value that number has before it is incremented, not the value that
it has after it is incremented. Thus, the value produced by the expression
number++ is 2, even though the increment operator changes the value of
number to 3. This may seem strange, but sometimes it is just what you
want. And, as you are about to see, if you want an expression that behaves
differently, you can have it.

The expression v++ evaluates to the value of the variable v, and then the
value of the variable v is incremented by 1. If you reverse the order and place

executing the
body zero times

increment
operator in
expressions

142	 Chapter 3 /  More Flow of Control

the ++ in front of the variable, the order of these two actions is reversed. The
expression ++v first increments the value of the variable v and then returns
this increased value of v. For example, consider the following code:

int number = 2;
int value_produced = 2 * (++number);
cout << value_produced << endl;
cout << number << endl;

This code is the same as the previous piece of code except that the ++ is before
the variable, so this code produces the following output:

6
3

Notice that the two increment operators number++ and ++number have the
same effect on a variable number: They both increase the value of number by 1.
But the two expressions evaluate to different values. Remember, if the ++ is
before the variable, then the incrementing is done before the value is returned;
if the ++ is after the variable, then the incrementing is done after the value is
returned.

The program in Display 3.10 uses the increment operator in a while loop
to count the number of times the loop body is repeated. One of the main uses
of the increment operator is to control the iteration of loops in ways similar to
what is done in Display 3.10.

Display 3.10   �The Increment Operator as an Expression
(part 1 of 2)

 1 //Calorie-counting program.
 2 #include <iostream>
 3 using namespace std;
 4
 5 int main()
 6 {
 7 int number_of_items, count,
 8 calories_for_item, total_calories;
 9
10 cout << "How many items did you eat today? ";
11 cin >> number_of_items;
12
13 total_calories = 0;
14 count = 1;
15 cout << "Enter the number of calories in each of the\n"
16 << number_of_items << " items eaten:\n";
17
18 while (count++ <= number_of_items)

(continued)

	 3.3  More About C++ Loop Statements	 143

Everything we said about the increment operator applies to the decrement
operator as well, except that the value of the variable is decreased by 1 rather
than increased by 1. For example, consider the following code:

int number = 8;
int value_produced = number–-;
cout << value_produced << endl;
cout << number << endl;

This produces the output

8
7

On the other hand, the code

int number = 8;
int value_produced = -–number;
 cout << value_produced << endl;
 cout << number << endl;

produces the output

7
7

Display 3.10  � The Increment Operator as an Expression
(part 2 of 2)

19 {
20 cin >> calories_for_item;
21 total_calories = total_calories
22 + calories_for_item;
23 }
24
25 cout << "Total calories eaten today = "
26 << total_calories << endl;
27 return 0;
28 }
29

Sample Dialogue

How many items did you eat today?

7

Enter the number of calories in each of the

7 items eaten:

300 60 1200 600 150 1 120

Total calories eaten today = 2431

decrement
operator

144	 Chapter 3 /  More Flow of Control

number–– returns the value of number and then decrements number; on the
other hand, ––number first decrements number and then returns the value of
number.

You cannot apply the increment and decrement operators to anything
other than a single variable. Expressions such as (x + y)++, ––(x + y), 5++,
and so forth are all illegal in C++.

Self-Test Exercises

	21.	 What is the output of the following (when embedded in a complete
program)?

int count = 3;
while (count–– > 0)
 cout << count << " ";

	22.	 What is the output of the following (when embedded in a complete
program)?

int count = 3;
while (––count > 0)
 cout << count << " ";

	23.	 What is the output of the following (when embedded in a complete
program)?

int n = 1;
do
 cout << n << " ";
while (n++ <= 3);

	24.	 What is the output of the following (when embedded in a complete
program)?

int n = 1;
do
 cout << n << " ";
while (++n <= 3);

The for Statement

The while statement and the do-while statement are all the loop mechanisms
you absolutely need. In fact, the while statement alone is enough. However,
there is one sort of loop that is so common that C++ includes a special
statement for this. In performing numeric calculations, it is common to do a
calculation with the number 1, then with the number 2, then with 3, and so
forth, until some last value is reached. For example, to add 1 through 10, you

++ and –– can
only be used
with variables

	 3.3  More About C++ Loop Statements	 145

want the computer to perform the following statement ten times, with the
value of n equal to 1 the first time and with n increased by 1 each subsequent
time:

sum = sum + n;

The following is one way to accomplish this with a while statement:

sum = 0;
n = 1;
while (n <= 10)
{
 sum = sum + n;
 n++;
}

Although a while loop will do here, this sort of situation is just what the
for statement (also called the for loop) was designed for. The following for
statement will neatly accomplish the same task:

sum = 0;
for (n = 1; n <= 10; n++)
 sum = sum + n;

Let’s look at this for statement piece by piece.
First, notice that the while loop version and the for loop version

are made by putting together the same pieces: They both start with an
assignment statement that sets the variable sum equal to 0. In both cases,
this assignment statement for sum is placed before the loop statement itself
begins. The loop statements themselves are both made from the pieces.

n = 1; n <= 10; n++ and sum = sum + n;

These pieces serve the same function in the for statement as they do in the
while statement. The for statement is simply a more compact way of saying
the same thing. Although other things are possible, we will only use for
statements to perform loops controlled by one variable. In our example, that
would be the variable n. With the equivalence of the previous two loops to
guide us, let’s go over the rules for writing a for statement.

A for statement begins with the keyword for followed by three things in
parentheses that tell the computer what to do with the controlling variable.
The beginning of a for statement looks like the following:

for (Initialization_Action; Boolean_Expression; Update_Action)

The first expression tells how the variable is initialized, the second gives a
Boolean expression that is used to check for when the loop should end, and
the last expression tells how the loop control variable is updated after each
iteration of the loop body. For example, the above for loop begins

for (n = 1; n <= 10; n++)

146	 Chapter 3 /  More Flow of Control

The n = 1 says that n is initialized to 1. The n <= 10 says the loop will
continue to iterate the body as long as n is less than or equal to 10. The last
expression, n++, says that n is incremented by 1 after each time the loop body
is executed.

The three expressions at the start of a for statement are separated by
two, and only two, semicolons. Do not succumb to the temptation to place
a semicolon after the third expression. (The technical explanation is that
these three things are expressions, not statements, and so do not require a
semicolon at the end.)

Display 3.11 shows the syntax of a for statement and also describes the
action of the for statement by showing how it translates into an equivalent
while statement. Notice that in a for statement, as in the corresponding while
statement, the stopping condition is tested before the first loop iteration.
Thus, it is possible to have a for loop whose body is executed zero times.

Display 3.11   The for Statement (part 1 of 2)

for Statement

Syntax

1	 for (Initialization_Action; Boolean_Expression; Update_Action)
2 Body_Statement

Example

1 for (number = 100; number >= 0; number––)
2 cout << number
3 << " bottles of beer on the shelf.\n";

Equivalent while Loop

Equivalent Syntax

1 Initialization_Action;
2 while (Boolean_Expression)
3 {
4 Body_Statement
5 Update_Action;
6 }

Equivalent Example

1 number = 100;
2 while (number >= 0)

(continued)

	 3.3  More About C++ Loop Statements	 147

Display 3.12 shows a sample for statement embedded in a complete
(although very simple) program. The for statement in Display 3.12 is similar
to the one discussed above, but it has one new feature. The variable n is
declared when it is initialized to 1. So, the declaration of n is inside the for
statement. The initializing action in a for statement can include a variable
declaration. When a variable is used only within the for statement, this can
be the best place to declare the variable. However, if the variable is also used
outside of the for statement, then it is best to declare the variable outside of
the for statement.

The ANSI C++ standard requires that a C++ compiler claiming compliance
with the standard treat any declaration in a for loop initializer as if it were
local to the body of the loop. Earlier C++ compilers did not do this. You
should determine how your compiler treats variables declared in a for loop
initializer. In the interests of portability, you should not write code that
depends on this behavior. The ANSI C++ standard requires that variables
declared in the initialization expression of a for loop be local to the block of
the for loop. The next generation of C++ compilers will likely comply with
this rule, but compilers presently available may or may not comply.

Our description of a for statement was a bit less general than what is
allowed. The three expressions at the start of a for statement may be any C++
expressions and therefore they may involve more (or even fewer!) than one
variable. However, our for statements will always use only a single variable in
these expressions.

In the for statement in Display 3.12, the body was the simple assignment
statement

sum = sum + n;

Display 3.11   The for Statement (part 2 of 2)

3 {
4 cout << number
5 << " bottles of beer on the shelf.\n";
6 number––;
7 }

Output

100 bottles of beer on the shelf.

99 bottles of beer on the shelf.

 .

 .

 .

0 bottles of beer on the shelf.

declaring
variables within
a for statement

148	 Chapter 3 /  More Flow of Control

Display 3.12   A for Statement

 1 //Illustrates a for loop.
 2 #include <iostream>
 3 using namespace std;
 4
 5 int main()
 6 {
 7 int sum = 0;
 8
 9 for (int n = 1; n <= 10; n++) //Note that the variable n is a local
10 sum = sum + n; //variable of the body of the for loop!
11
12 cout << "The sum of the numbers 1 to 10 is "
13 << sum << endl;
14 return 0;
15 }

Output

The sum of the numbers 1 to 10 is 55

Initializing
action

Repeat the loop as
long as this is true.

Done after each
loop body iteration

Display 3.13   for Loop with a Multistatement Body

SYNTAX

 for (Initialization_Action; Boolean_Expression; Update_Action)
 {
 Statement_1
 Statement_2
 .
 .
 .
 Statement_Last
 }

EXAMPLE

 for (int number = 100; number >= 0; number--)
 {
 cout << number
 << " bottles of beer on the shelf.\n";
 if (number > 0)
 cout << "Take one down and pass it around.\n";
 }

Body

	 3.3  More About C++ Loop Statements	 149

The body may be any statement at all. In particular, the body may be a
compound statement. This allows us to place several statements in the body
of a for loop, as shown in Display 3.13.

Thus far, you have seen for loops that increase the loop control variable
by 1 after each loop iteration, and you have seen for loops that decrease
the loop control variable by 1 after each loop iteration. There are many
more possible kinds of variable updates. The variable can be incremented or
decremented by 2 or 3 or any number. If the variable is of type double, it can
be incremented or decremented by a fractional amount. All of the following
are legitimate for loops:

int n;
for (n = 1; n <= 10; n = n + 2)
 cout << "n is now equal to " << n << endl;

for (n = 0; n > -100; n = n - 7)
 cout << "n is now equal to " << n << endl;

for (double size = 0.75; size <= 5; size = size + 0.05)
 cout << "size is now equal to " << size << endl;

The update need not even be an addition or subtraction. Moreover, the
initialization need not simply set a variable equal to a constant. You can
initialize and change a loop control variable in just about any way you
wish. For example, the following demonstrates one more way to start a for
loop:

for (double x = pow(y, 3.0); x > 2.0; x = sqrt(x))
 cout << "x is now equal to " << x << endl;

Pitfall   Extra Semicolon in a for Statement

Do not place a semicolon after the closing parentheses at the beginning of a
for loop. To see what can happen, consider the following for loop:

for (int count = 1; count <= 10; count++);
 cout << "Hello\n";

more possible
update actions

Problem
semicolon

If you did not notice the extra semicolon, you might expect this for loop
to write Hello to the screen ten times. If you do notice the semicolon, you
might expect the compiler to issue an error message. Neither of those things
happens. If you embed this for loop in a complete program, the compiler will
not complain. If you run the program, only one Hello will be output instead
of ten Hellos. What is happening? To answer that question, we need a little
background.

One way to create a statement in C++ is to put a semicolon after
something. If you put a semicolon after x++, you change the expression

x++

150	 Chapter 3 /  More Flow of Control

into the statement

x++;

If you place a semicolon after nothing, you still create a statement. Thus, the
semicolon by itself is a statement, which is called the empty statement or
the null statement. The empty statement performs no action, but it is still
a statement. Therefore, the following is a complete and legitimate for loop,
whose body is the empty statement:

for (int count = 1; count <= 10; count++);

This for loop is indeed iterated ten times, but since the body is the empty
statement, nothing happens when the body is iterated. This loop does
nothing, and it does nothing ten times!

Now let’s go back and consider the for loop code labeled Problem
semicolon. Because of the extra semicolon, that code begins with a for loop
that has an empty body, and as we just discussed, that for loop accomplishes
nothing. After the for loop is completed, the following cout statement is
executed and writes Hello to the screen one time:

cout << "Hello\n";

You will eventually see some uses for for loops with empty bodies, but at this
stage, such a for loop is likely to be just a careless mistake.	 ■

What Kind of Loop to Use

When designing a loop, the choice of which C++ loop statement to use is
best postponed to the end of the design process. First design the loop using
pseudocode, then translate the pseudocode into C++ code. At that point it will
be easy to decide what type of C++ loop statement to use.

If the loop involves a numeric calculation using a variable that is changed
by equal amounts each time through the loop, use a for loop. In fact,
whenever you have a loop for a numeric calculation, you should consider
using a for loop. It will not always be suitable, but it is often the clearest and
easiest loop to use for numeric calculations.

In most other cases, you should use a while loop or a do-while loop;
it is fairly easy to decide which of these two to use. If you want to insist
that the loop body will be executed at least once, you may use a do-while
loop. If there are circumstances for which the loop body should not be
executed at all, then you must use a while loop. A common situation that
demands a while loop is reading input when there is a possibility of no
data at all. For example, if the program reads in a list of exam scores, there
may be cases of students who have taken no exams, and hence the input
loop may be faced with an empty list. This calls for a while loop.

	 3.3  More About C++ Loop Statements	 151

Self-Test Exercises

	25.	 What is the output of the following (when embedded in a complete
program)?

for (int count = 1; count < 5; count++)
 cout << (2 * count) << " ";

	26.	 What is the output of the following (when embedded in a complete
program)?

for (int n = 10; n > 0; n = n - 2)
{
 cout << "Hello ";
 cout << n << endl;
}

	27.	 What is the output of the following (when embedded in a complete
program)?

for (double sample = 2; sample > 0; sample = sample - 0.5)
 cout << sample << " ";

	28.	 For each of the following situations, tell which type of loop (while,
do-while, or for) would work best:

		 a.	 Summing a series, such as 1/2 + 1/3 + 1/4 + 1/5 + . . . + 1/10.

		 b.	R eading in the list of exam scores for one student.

		 c.	�R eading in the number of days of sick leave taken by employees in a
department.

		 d.	� Testing a function to see how it performs for different values of its
arguments.

	29.	R ewrite the following loops as for loops.

a. int i = 1;
 while (i <= 10)
 {
 if (i < 5 && i != 2)
 cout << 'X';
 i++;
 }

b. int i = 1;
 while (i <= 10)

152	 Chapter 3 /  More Flow of Control

 {
 cout << 'X';
 i = i + 3;
 }

c.	 long m = 100;
 do
 {
 cout << 'X';
 m = m + 100;
 } while (m < 1000);

	30.	 What is the output of this loop? Identify the connection between the
value of n and the value of the variable log.

int n = 1024;
int log = 0;
for (int i = 1; i < n; i = i * 2)
 log++;
cout << n << " " << log << endl;

	31.	 What is the output of this loop? Comment on the code.

int n = 1024;
int log = 0;
for (int i = 1; i < n; i = i * 2);
 log++;
cout << n << " " << log << endl;

	32.	 What is the output of this loop? Comment on the code.

int n = 1024;
int log = 0;
for (int i = 0; i < n; i = i * 2)
 log++;
cout << n << " " << log << endl;

Pitfall   Uninitialized Variables and Infinite Loops

When we first introduced simple while and do-while loops in Chapter 2, we
warned you of two pitfalls associated with loops. We said that you should be
sure all variables that need to have a value in the loop are initialized (that is,
given a value) before the loop is executed. This seems obvious when stated in
the abstract, but in practice it is easy to become so concerned with designing
a loop that you forget to initialize variables before the loop. We also said that
you should be careful to avoid infinite loops. Both of these cautions apply
equally well to for loops.	 ■

	 3.3  More About C++ Loop Statements	 153

The break Statement

You have already used the break statement as a way of ending a switch
statement. This same break statement can be used to exit a loop. Sometimes
you want to exit a loop before it ends in the normal way. For example, the
loop might contain a check for improper input and if some improper input is
encountered, then you may want to simply end the loop. The code in Display
3.14 reads a list of negative numbers and computes their sum as the value
of the variable sum. The loop ends normally provided the user types in ten
negative numbers. If the user forgets a minus sign, the computation is ruined
and the loop ends immediately when the break statement is executed.

Display 3.14   A break Statement in a Loop (part 1 of 2)

 1 //Sums a list of ten negative numbers.
 2 #include <iostream>
 3 using namespace std;
 4
 5 int main()
 6 {
 7 int number, sum = 0, count = 0;
 8 cout << "Enter 10 negative numbers:\n";
 9
10 while (++count <= 10)
11 {
12 cin >> number;
13
14 if (number >= 0)
15 {
16 cout << "ERROR: positive number"
17 << " or zero was entered as the\n"
18 << count << "th number! Input ends "
19 << "with the " << count << "th number.\n"
20 << count << "th number was not added in.\n";
21 break;
22 }
23
24 sum = sum + number;
25 }
26
27 cout << sum << " is the sum of the first "
28 << (count − 1) << " numbers.\n";
29
30 return 0;
31 }

(continued)

154	 Chapter 3 /  More Flow of Control

Pitfall   The break Statement in Nested Loops

A break statement ends only the innermost loop that contains it. If you have
a loop within a loop and a break statement in the inner loop, then the break
statement will end only the inner loop.	 ■

Self-Test Exercises

	33.	 What is the output of the following (when embedded in a complete
program)?

int n = 5;
while (––n > 0)
{
 if (n == 2)
 break;
 cout << n << " ";
}
cout << "End of Loop.";

Display 3.14   A break Statement in a Loop (part 2 of 2)

Sample Dialogue

Enter 10 negative numbers:

-1 -2 -3 4 -5 -6 -7 -8 -9 -10

ERROR: positive number or zero was entered as the

4th number! Input ends with the 4th number.

4th number was not added in.

-6 is the sum of the first 3 numbers.

The break Statement

The break statement can be used to exit a loop statement. When the
break statement is executed, the loop statement ends immediately and
execution continues with the statement following the loop statement.
The break statement may be used in any form of loop—in a while loop,
in a do-while loop, or in a for loop. This is the same break statement
that we have already used in switch statements.

	 3.4  Designing Loops	 155

	34.	 What is the output of the following (when embedded in a complete
program)?

int n = 5;
while (––n > 0)
{
 if (n == 2)
 exit(0);
 cout << n << " ";
}
cout << "End of Loop.";

	35.	 What does a break statement do? Where is it legal to put a break
statement?

3.4  Designing Loops

Round and round she goes, and where she stops nobody knows.

Traditional Carnival Barker’s Call

When designing a loop, you need to design three things:

	1.	 The body of the loop

	2.	 The initializing statements

	3.	 The conditions for ending the loop

We begin with a section on two common loop tasks and show how to design
these three elements for each of the two tasks.

Loops for Sums and Products

Many common tasks involve reading in a list of numbers and computing their
sum. If you know how many numbers there will be, such a task can easily be
accomplished by the following pseudocode. The value of the variable this_
many is the number of numbers to be added. The sum is accumulated in the
variable sum.

sum = 0;
repeat the following this_many times:
 cin >> next;
 sum = sum + next;
end of loop.

This pseudocode is easily implemented as the following for loop:

int sum = 0;
 for (int count = 1; count <= this_many; count++)

156	 Chapter 3 /  More Flow of Control

{
 cin >> next;
 sum = sum + next;
}

Notice that the variable sum is expected to have a value when the following
loop body statement is executed:

sum = sum + next;

Since sum must have a value the very first time this statement is executed, sum must
be initialized to some value before the loop is executed. In order to determine the
correct initializing value for sum, think about what you want to happen after one
loop iteration. After adding in the first number, the value of sum should be that
number. That is, the first time through the loop the value of sum + next should
equal next. To make this true, the value of sum must be initialized to 0.

Repeat “This Many Times”

A for statement can be used to produce a loop that repeats the loop
body a predetermined number of times.

Pseudocode

Repeat the following this_many times:
 Loop_Body

Equivalent for Statement

for (int count = 1; count <= this_many; count++)
 Loop_Body

Example

for (int count = 1; count <= 3; count++)
 cout << "Hip, Hip, Hurray\n";

You can form the product of a list of numbers in a way that is similar to
how we formed the sum of a list of numbers. The technique is illustrated by
the following code:

int product = 1;
for (int count = 1; count <= this_many; count++)
{
 cin >> next;
 product = product * next;
}

	 3.4  Designing Loops	 157

The variable product must be given an initial value. Do not assume that
all variables should be initialized to zero. If product were initialized to 0,
then it would still be zero after the loop above has finished. As indicated in
the C++ code shown earlier, the correct initializing value for product is 1.
To see that 1 is the correct initial value, notice that the first time through the
loop this will leave product equal to the first number read in, which is what
you want.

Ending a Loop

There are four commonly used methods for terminating an input loop. We
will discuss them in order.

	1.	 List headed by size

	2.	 Ask before iterating

	3.	 List ended with a sentinel value

	4.	R unning out of input

If your program can determine the size of an input list beforehand, either
by asking the user or by some other method, you can use a “repeat n times”
loop to read input exactly n times, where n is the size of the list. This method
is called list headed by size.

The second method for ending an input loop is simply to ask the user,
after each loop iteration, whether or not the loop should be iterated again. For
example:

sum = 0;
cout << "Are there any numbers in the list? (Type\n"
 << "Y and Return for Yes, N and Return for No): ";
char ans;
cin >> ans;
while ((ans = = 'Y') || (ans = = 'y'))
{
 cout << "Enter number: ";
 cin >> number;
 sum = sum + number;
 cout << "Are there any more numbers? (Type\n"
 << "Y for Yes, N for No. End with Return.): ";
 cin >> ans;
}

However, for reading in a long list, this is very tiresome to the user. Imagine
typing in a list of 100 numbers this way. The user is likely to progress from
happy to sarcastic and then to angry and frustrated. When reading in a long
list, it is preferable to include only one stopping signal, which is the method
we discuss next.

158	 Chapter 3 /  More Flow of Control

Perhaps the nicest way to terminate a loop that reads a list of values from
the keyboard is with a sentinel value. A sentinel value is one that is somehow
distinct from all the possible values on the list being read in and so can be
used to signal the end of the list. For example, if the loop reads in a list of
positive numbers, then a negative number can be used as a sentinel value to
indicate the end of the list. A loop such as the following can be used to add a
list of nonnegative numbers:

cout << "Enter a list of nonnegative integers.\n"
 << "Place a negative integer after the list.\n";
sum = 0;
cin >> number;
while (number >= 0)
{
 sum = sum + number;
 cin >> number;
}

Notice that the last number in the list is read but is not added into sum. To add
the numbers 1, 2, and 3, the user appends a negative number to the end of the
list like so:

1 2 3 -1

The final -1 is read in but not added into the sum.
To use a sentinel value this way, you must be certain there is at least one value

of the data type in question that definitely will not appear on the list of input
values and thus can be used as the sentinel value. If the list consists of integers that
might be any value whatsoever, then there is no value left to serve as the sentinel
value. In this situation, you must use some other method to terminate the loop.

When reading input from a file, you can use a sentinel value, but a more
common method is to simply check to see if all the input in the file has been
read and to end the loop when there is no more input left to be read. This
method of ending an input loop is discussed in Chapter 6 in the Programming
Tip section entitled “Checking for the End of a File” and in the section entitled
“The eof Member Function.”

The techniques we gave for ending an input loop are all special cases of
more general techniques that can be used to end loops of any kind. The more
general techniques are as follows:

•	Count-controlled loops
•	Ask before iterating
•	 Exit on a flag condition

A count-controlled loop is any loop that determines the number of
iterations before the loop begins and then iterates the loop body that many
times. The list-headed-by-size technique that we discussed for input loops is
an example of a count-controlled loop. All of our “repeat this many times”
loops are count-controlled loops.

	 3.4  Designing Loops	 159

We already discussed the ask-before-iterating technique. You can use it
for loops other than input loops, but the most common use for this technique
is for processing input.

Earlier in this section we discussed input loops that end when a sentinel
value is read. In our example, the program read nonnegative integers into a
variable called number. When number received a negative value, that indicated
the end of the input; the negative value was the sentinel value. This is an
example of a more general technique known as exit on a flag condition. A
variable that changes value to indicate that some event has taken place is often
called a flag. In our example input loop, the flag was the variable number;
when it becomes negative, that indicates that the input list has ended.

Ending a file input loop by running out of input is another example of the
exit-on-a-flag technique. In this case the flag condition is determined by the
system. The system keeps track of whether or not input reading has reached
the end of a file.

A flag can also be used to terminate loops other than input loops. For
example, the following sample loop can be used to find a tutor for a student.
Students in the class are numbered starting with 1. The loop checks each student
number to see if that student received a high grade and stops the loop as soon as
a student with a high grade is found. For this example, a grade of 90 or more is
considered high. The code compute_grade(n) is a call to a user-defined function.
In this case, the function will execute some code that will compute a numeric
value from 0 to 100 that corresponds to student n’s grade. The numeric value then
is copied into the variable grade. Chapter 4 discusses functions in more detail.

int n = 1;
grade = compute_grade(n);
while (grade < 90)
{
 n++;
 grade = compute_grade(n);
}
cout << "Student number " << n << " may be a tutor.\n"
 << "This student has a score of " << grade << endl;

In this example, the variable grade serves as the flag.
The previous loop indicates a problem that can arise when designing

loops. What happens if no student has a score of 90 or better? The answer
depends on the definition for the function compute_grade. If grade is defined
for all positive integers, it could be an infinite loop. Even worse, if grade is
defined to be, say, 100 for all arguments n that are not students, then it may
try to make a tutor out of a nonexistent student. In any event, something will
go wrong. If there is a danger of a loop turning into an infinite loop or even a
danger of it iterating more times than is sensible, then you should include a
check to see that the loop is not iterated too many times. For example, a better
condition for our example loop is the following, where the variable number_
of_students has been set equal to the number of students in the class:

160	 Chapter 3 /  More Flow of Control

int n = 1;
grade = compute_grade(n);
while ((grade < 90) && (n < number_of_students))
{
 n++;
 grade = compute_grade(n);
}
if (grade >= 90)
 cout << "Student number " << n << " may be a tutor.\n"
 << "This student has a score of " << grade << endl;
else
 cout << "No student has a high score.";

Nested Loops

The program in Display 3.15 was designed to help track the reproduction rate
of the green-necked vulture, an endangered species. In the district where this
vulture survives, conservationists annually perform a count of the number
of eggs in green-necked vulture nests. The program in Display 3.15 takes the
reports of each of the conservationists in the district and calculates the total
number of eggs contained in all the nests they observed.

Each conservationist’s report consists of a list of numbers. Each number is
the count of the number of eggs observed in one green-necked vulture nest. The
program reads in the report of one conservationist and calculates the total number
of eggs found by this conservationist. The list of numbers for each conservationist
has a negative number added to the end of the list. This serves as a sentinel
value. The program loops through the number of reports and calculates the total
number of eggs found for each report.

The body of a loop may contain any kind of statement, so it is possible
to have loops nested within loops (as well as eggs nested within nests). The
program in Display 3.15 contains a loop within a loop. The nested loop in
Display 3.15 is executed once for each value of count from 1 to number_of_
reports. For each such iteration of the outer for loop there is one complete
execution of the inner while loop. In Chapter 4 we’ll use subroutines to make
the program in Display 3.15 more readable.

Nested Loop Example
VideoNote

Display 3.15   Explicitly Nested Loops (part 1 of 2)

 1 //Determines the total number of green-necked vulture eggs
 2 //counted by all conservationists in the conservation district.
 3 #include <iostream>
 4 using namespace std;
 5
 6 int main()
 7 {
 8 cout << "This program tallies conservationist reports\n"
 9 << "on the green-necked vulture.\n"

(continued)

	 3.4  Designing Loops	 161

Display 3.15   Explicitly Nested Loops (part 2 of 2)

10 << "Each conservationist's report consists of\n"
11 << "a list of numbers. Each number is the count of\n"
12 << "the eggs observed in one"
13 << "green-necked vulture nest.\n"
14 << "This program then tallies
15 << "the total number of eggs.\n";
16
17 int number_of_reports;
18 cout << "How many conservationist reports are there? ";
19 cin >> number_of_reports;
20
21 int grand_total = 0, subtotal, count;
22 for (count = 1; count <= number_of_reports; count++)
23 {
24 cout << endl << "Enter the report of "
25 << "conservationist number " << count << endl;
26 cout << "Enter the number of eggs in each nest.\n"
27 << "Place a negative integer at the end of your list.\n";"
28 subtotal = 0;
29 int next;
30 cin >> next;
31 while (next >= 0)
32 {
33 subtotal = subtotal + next;
34 cin >> next;
35 }
36 cout << "Total egg count for conservationist "
37 << " number " << count << " is "
38 << subtotal << endl;
39 grand_total = grand_total + subtotal;
40 }
41
42 cout << endl << "Total egg count for all reports = "
43 << grand_total << endl;
44
45 return 0;
46 }

Self-Test Exercises

36.	 Write a loop that will write the word Hello to the screen ten times (when
embedded in a complete program).

37.	 Write a loop that will read in a list of even numbers (such as 2, 24, 8, 6)
and compute the total of the numbers on the list. The list is ended with
a sentinel value. Among other things, you must decide what would be a
good sentinel value to use.

162	 Chapter 3 /  More Flow of Control

38. Predict the output of the following nested loops:

int n, m;
for (n = 1; n <= 10; n++)
 for (m = 10; m >= 1; m–)
 cout << n << " times " << m
 << " = " << n * m << endl;

Debugging Loops

No matter how carefully a program is designed, mistakes will still sometimes
occur. In the case of loops, there is a pattern to the kinds of mistakes
programmers most often make. Most loop errors involve the first or last
iteration of the loop. If you find that your loop does not perform as expected,
check to see if the loop is iterated one too many or one too few times. Loops
that iterate one too many or one too few times are said to have an off-by-one
error; these errors are among the most common loop bugs. Be sure you are
not confusing less-than with less-than-or-equal-to. Be sure you have initialized
the loop correctly. Remember that a loop may sometimes need to be iterated
zero times and check that your loop handles that possibility correctly.

Infinite loops usually result from a mistake in the Boolean expression that
controls the stopping of the loop. Check to see that you have not reversed an
inequality, confusing less-than with greater-than. Another common source
of infinite loops is terminating a loop with a test for equality, rather than
something involving greater-than or less-than. With values of type double,
testing for equality does not give meaningful answers, since the quantities
being compared are only approximate values. Even for values of type int,
equality can be a dangerous test to use for ending a loop, since there is only
one way that it can be satisfied.

If you check and recheck your loop and can find no error, but your
program still misbehaves, then you will need to do some more sophisticated
testing. First, make sure that the mistake is indeed in the loop. Just because the
program is performing incorrectly does not mean the bug is where you think
it is. If your program is divided into functions, it should be easy to determine
the approximate location of the bug or bugs.

Once you have decided that the bug is in a particular loop, you should
watch the loop change the value of variables while the program is running.
This way you can see what the loop is doing and thus see what it is doing
wrong. Watching the value of a variable change while the program is running
is called tracing the variable. Many systems have debugging utilities that allow
you to easily trace variables without making any changes to your program. If
your system has such a debugging utility, it would be well worth your effort
to learn how to use it. If your system does not have a debugging utility, you
can trace a variable by placing a temporary cout statement in the loop body;
that way the value of the variable will be written to the screen on each loop
iteration.

First, localize the
problem

	 3.4  Designing Loops	 163

For example, consider the following piece of program code, which needs
to be debugged:

int next = 2, product = 1;
while (next < 5)
{
 next++;
 product = product * next;
}
//The variable product contains
//the product of the numbers 2 through 5.

The comment at the end of the loop tells what the loop is supposed to do,
but we have tested it and know that it gives the variable product an incorrect
value. We need to find out what is wrong. To help us debug this loop, we trace
the variables next and product. If you have a debugging utility, you could
use it. If you do not have a debugging facility, you can trace the variables by
inserting a cout statement as follows:

int next = 2, product = 1;
while (next < 5)
{
 next++;
 product = product * next;
 cout << "next = " << next
 << " product = " << product << endl;
}

When we trace the variables product and next, we find that after the first
loop iteration, the values of product and next are both 3. It is then clear to
us that we have multiplied only the numbers 3 through 5 and have missed
multiplying by 2.

There are at least two good ways to fix this bug. The easiest fix is to initialize
the variable next to 1, rather than 2. That way, when next is incremented the
first time through the loop, it will receive the value 2 rather than 3. Another way
to fix the loop is to place the increment after the multiplication, as follows:

int next = 2, product = 1;
while (next < 5)
{
 product = product * next;
 next++;
}

Let’s assume we fix the bug by moving the statement next++ as indicated
above. After we add this fix, we are not yet done. We must test this revised code.
When we test it, we will see that it still gives an incorrect result. If we again trace
variables, we will discover that the loop stops after multiplying by 4, and never
multiplies by 5. This tells us that the Boolean expression should now use a less-
than-or-equal sign, rather than a less-than sign. Thus, the correct code is

164	 Chapter 3 /  More Flow of Control

int next = 2, product = 1;
while (next <= 5)
{
 product = product * next;
 next++;
}

Every time you change a program, you should retest the program. Never assume
that your change will make the program correct. Just because you found one
thing to correct does not mean you have found all the things that need to be
corrected. Also, as illustrated by this example, when you change one part of
your program to make it correct, that change may require you to change some
other part of the program as well.

Every change
requires retesting

Testing a Loop

Every loop should be tested with inputs that cause each of the following
loop behaviors (or as many as are possible): zero iterations of the loop
body, one iteration of the loop body, the maximum number of iterations
of the loop body, and one less than the maximum number of iterations
of the loop body. (This is only a minimal set of test situations. You should
also conduct other tests that are particular to the loop you are testing.)

The techniques we have developed will help you find the few bugs that
may find their way into a well-designed program. However, no amount of
debugging can convert a poorly designed program into a reliable and readable
one. If a program or algorithm is very difficult to understand or performs
very poorly, do not try to fix it. Instead, throw it away and start over. This
will result in a program that is easier to read and that is less likely to contain
hidden errors. What may not be so obvious is that by throwing out the poorly
designed code and starting over, you will produce a working program faster
than if you try to repair the old code. It may seem like wasted effort to throw
out all the code that you worked so hard on, but that is the most efficient
way to proceed. The work that went into the discarded code is not wasted.
The lessons you learned by writing it will help you to design a better program
faster than if you started with no experience. The bad code itself is unlikely to
help at all.

Debugging a Very Bad Program

If your program is very bad, do not try to debug it. Instead, throw it out
and start over.

	 Chapter Summary	 165

Self-Test Exercises

39.	 What does it mean to trace a variable? How do you trace a variable?

40.	 What is an off-by-one loop error?

41.	 You have a fence that is to be 100 meters long. Your fence posts are to
be placed every 10 feet. How many fence posts do you need? Why is
the presence of this problem in a programming book not as silly as it
might seem? What problem that programmers have does this question
address?

Chapter Summary

■	 Boolean expressions are evaluated similarly to the way arithmetic expres-
sions are evaluated.

■	 Most modern compilers have a bool type having the values true and false.

■	 You can write a function so that it returns a value of true or false. A call
to such a function can be used as a Boolean expression in an if-else state-
ment or anywhere else that a Boolean expression is permitted.

■	O ne approach to solving a task or subtask is to write down conditions and
corresponding actions that need to be taken under each condition. This can
be implemented in C++ as a multiway if-else statement.

■	 A switch statement is a good way to implement a menu for the user of your
program.

■	 A block is a compound statement that contains variable declarations. The
variables declared in a block are local to the block. Among other uses, blocks
can be used for the action in one branch of a multiway branch statement,
such as a multiway if-else statement.

■	 A for loop can be used to obtain the equivalent of the instruction “repeat
the loop body n times.”

■	 There are four commonly used methods for terminating an input loop: list
headed by size, ask before iterating, list ended with a sentinel value, and
running out of input.

■	I t is usually best to design loops in pseudocode that does not specify a choice
of C++ looping mechanism. Once the algorithm has been designed, the
choice of which C++ loop statement to use is usually clear.

■	O ne way to simplify your reasoning about nested loops is to make the loop
body a function call.

166	 Chapter 3 /  More Flow of Control

■	 Always check loops to be sure that the variables used by the loop are prop-
erly initialized before the loop begins.

■	 Always check loops to be certain they are not iterated one too many or one
too few times.

■	 When debugging loops, it helps to trace key variables in the loop body.

■	I f a program or algorithm is very difficult to understand or performs very
poorly, do not try to fix it. Instead, throw it away and start over.

Answers to Self-Test Exercises

	1.	 a.  true.

		 b. � true. Note that expressions (a) and (b) mean exactly the same thing.
Because the operators == and < have higher precedence than &&, you
do not need to include the parentheses. The parentheses do, how-
ever, make it easier to read. Most people find the expression in (a)
easier to read than the expression in (b), even though they mean the
same thing.

		 c.  true.

		 d.  true.

		 e. � false. Since the value of the first subexpression (count == 1) is false,
you know that the entire expression is false without bothering to eval-
uate the second subexpression. Thus, it does not matter what the values
of x and y are. This is called short-circuit evaluation, which is what C++
does.

		 f. � true. Since the value of the first subexpression (count < 10) is true,
you know that the entire expression is true without bothering to evalu-
ate the second subexpression. Thus, it does not matter what the values
of x and y are. This is called short-circuit evaluation, which is what C++
does.

		 g. � false. Notice that the expression in (g) includes the expression in (f )
as a subexpression. This subexpression is evaluated using short-circuit
evaluation as we described for (f). The entire expression in (g) is equiva-
lent to

 !((true || (x < y)) && true)

		 � which in turn is equivalent to !(true && true), and that is equivalent
to !(true), which is equivalent to the final value of false.

		 h. � This expression produces an error when it is evaluated because the
first subexpression ((limit/count) > 7) involves a division by
zero.

	A nswers to Self-Test Exercises	 167

		 i. � true. Since the value of the first subexpression (limit < 20) is true,
you know that the entire expression is true without bothering to evalu-
ate the second subexpression. Thus, the second subexpression

 ((limit/count) > 7)

		 � is never evaluated and so the fact that it involves a division by zero is
never noticed by the computer. This is short-circuit evaluation, which is
what C++ does.

		 j. � This expression produces an error when it is evaluated because the first
subexpression ((limit/count) > 7) involves a division by zero.

		 k. � false. Since the value of the first subexpression (limit < 0) is false,
you know that the entire expression is false without bothering to eval-
uate the second subexpression. Thus, the second subexpression

 ((limit/count) > 7)

		 � is never evaluated and so the fact that it involves a division by zero is
never noticed by the computer. This is short-circuit evaluation, which is
what C++ does.

		 l. �I f you think this expression is nonsense, you are correct. The expression
has no intuitive meaning, but C++ converts the int values to bool values
and then evaluates the && and ! operations. Thus, C++ will evaluate this
mess. Recall that in C++, any nonzero integer converts to true, and 0
converts to false. C++ will evaluate

 (5 && 7) + (!6)

		 � as follows: In the expression (5 && 7), the 5 and 7 convert to true. true
&& true evaluates to true, which C++ converts to 1. In (!6), the 6 is
converted to true, so !(true) evaluates to false, which C++ converts
to 0. The entire expression thus evaluates to 1 + 0, which is 1. The final
value is thus 1. C++ will convert the number 1 to true, but the answer
has little intuitive meaning as true; it is perhaps better to just say the
answer is 1.

�There is no need to become proficient at evaluating these nonsense
expressions, but doing a few will help you to understand why the com-
piler does not give you an error message when you make the mistake
of incorrectly mixing numeric and Boolean operators in a single ex-
pression.

	2.	 To this point we have studied branching statements, iteration statements,
and function call statements. Examples of branching statements we have
studied are if and if-else statements. Examples of iteration statements
are while and do-while statements.

168	 Chapter 3 /  More Flow of Control

	3.	 The expression 2 < x < 3 is legal. It does not mean (2 < x)&&(x < 3)
as many would wish. It means (2 < x) < 3. Since (2 < x) is a Boolean
expression, its value is either true or false, which converts to 1 or 0, so
that 2 < x < 3 is always true. The output is “true” regardless of the value
of x.

	4.	 No. The Boolean expression j > 0 is false (j was just assigned -1).
The && uses short-circuit evaluation, which does not evaluate the second
expression if the truth value can be determined from the first expres-
sion. The first expression is false, so the entire expression evaluates to
false without evaluating the second expression. So, there is no division
by zero.

	5.		 Start
			 Hello from the second if.
			 End
			 Start again
			 End again

	6.		 large

	7.		 small

	8.		 medium

	9.	 Start
		 Second Output
		 End

	10.	 The statements are the same whether the second Boolean expression is
(x > 10) or (x > 100). So, the output is the same as in Self-Test Exercise 9.

	11.	 Start
100
End

	12.	 Both of the following are correct:

if (n < 0)
 cout << n << " is less than zero.\n";
else if ((0 <= n) && (n <= 100))
 cout << n << " is between 0 and 100 (inclusive).\n";
else if (n >100)
 cout << n << " is larger than 100.\n";

		 and

if (n < 0)
 cout << n << " is less than zero.\n";

	A nswers to Self-Test Exercises	 169

else if (n <= 100)
 cout << n << " is between 0 and 100 (inclusive).\n";
else
 cout << n << " is larger than 100.\n";

	13.	 enum constants are given default values starting at 0, unless otherwise
assigned. The constants increment by 1. The output is 3 2 1 0.

	14.	 enum constants are given values as assigned. Unassigned constants incre-
ment the previous value by 1. The output is 2 1 7 5.

	15.		R oast worms

	16.		O nion ice cream

	17.		 Chocolate ice cream
	O nion ice cream

		 (This is because there is no break statement in case 3.)

	18.		 Bon appetit!

	19.		 42 22

	20.	I t helps to slightly change the code fragment to understand to which
declaration each usage resolves.

{
 int x1 = 1;	 // output in this column
 cout << x1 << endl;	 // 1<cr>
 {
 cout << x1 << endl; // 1<cr>
 int x2 = 2;
 cout << x2 << endl; // 2<cr>
 {
 cout << x2 << endl; // 2<cr>
 int x3 = 3;
 cout << x3 << endl; // 3<cr>
 }
 cout << x2 << endl; // 2<cr>
 }
 cout << x1 << endl; // 1<cr>
}

		 Here <cr > indicates that the output starts a new line.

	21.		 2 1 0

	22.		 2 1

170	 Chapter 3 /  More Flow of Control

	23.		 1 2 3 4

	24.		 1 2 3

	25.		 2 4 6 8

	26.		 Hello 10
			 Hello 8
			 Hello 6
			 Hello 4
			 Hello 2

	27.		 2.000000 1.500000 1.000000 0.500000

	28.	 a.  A for loop

		 b.  and c. Both require a while loop since the input list might be empty.

		 c.  A do-while loop can be used since at least one test will be performed.

	29.	 a.  for (int i = 1; i <= 10; i++)
 if (i < 5 && i != 2)
 cout << 'X';

b. for (i = 1; i <= 10; i = i + 3)
 cout << 'X';

c. cout << 'X'; //necessary to keep output the same. Note
 //also the change in initialization of m
 for (long m = 200; m < 1000; m = m + 100)
 cout << 'X';

	30.	 The output is 1024 10. The second number is the base 2 log of the first
number.

	31.	 The output is: 1024 1. The ‘;’ after the for is probably a pitfall error.

	32.	 This is an infinite loop. Consider the update expression i = i * 2. It cannot
change i because its initial value is 0, so it leaves i at its initial value, 0.

	33.	 4 3 End of Loop

	34.	 4 3

		 Notice that since the exit statement ends the program, the phrase End of
Loop is not output.

	35.	 A break statement is used to exit a loop (a while, do-while, or for state-
ment) or to terminate a case in a switch statement. A break is not legal
anywhere else in a C++ program. Note that if the loops are nested, a break
statement only terminates one level of the loop.

	A nswers to Self-Test Exercises	 171

	36.	 for (int count = 1; count <= 10; count++)
 cout << "Hello\n";

	37.	 You can use any odd number as a sentinel value.

int sum = 0, next;
cout << "Enter a list of even numbers. Place an\n"
 << "odd number at the end of the list.\n";
cin >> next;
while ((next % 2) = = 0)
{
 sum = sum + next;
 cin >> next;
}

	38.	 The output is too long to reproduce here. The pattern is as follows:

1 times 10 = 10
1 times 9 = 9
 .
 .
 .
1 times 1 = 1
2 times 10 = 20
2 times 9 = 18
 .
 .
 .
2 times 1 = 2
3 times 10 = 30
 .
 .
 .

	39.	 Tracing a variable means watching a program variable change value
while the program is running. This can be done with special debug-
ging facilities or by inserting temporary output statements in the
program.

	40.	 Loops that iterate the loop body one too many or one too few times are
said to have an off-by-one error.

	41.	O ff-by-one errors abound in problem solving, not just writing loops. Typi-
cal reasoning from those who do not think carefully is

		 10 posts = 100 feet of fence / 10 feet between posts

		 This, of course, will leave the last 10 feet of fence without a post. You need
11 posts to provide 10 between-the-post 10-foot intervals to get 100 feet
of fence.

172	 Chapter 3 /  More Flow of Control

Practice Programs

Practice Programs can generally be solved with a short program that directly applies
the programming principles presented in this chapter.

	1.	 Write a program to score the paper-rock-scissor game. Each of two users
types in either P, R, or S. The program then announces the winner as well
as the basis for determining the winner: Paper covers rock, Rock breaks
scissors, Scissors cut paper, or Nobody wins. Be sure to allow the users
to use lowercase as well as uppercase letters. Your program should include
a loop that lets the user play again until the user says she or he is done.

	2.	 Write a program to compute the interest due, total amount due, and the
minimum payment for a revolving credit account. The program accepts the
account balance as input, then adds on the interest to get the total amount
due. The rate schedules are the following: The interest is 1.5 percent on the
first $1,000 and 1 percent on any amount over that. The minimum pay-
ment is the total amount due if that is $10 or less; otherwise, it is $10 or
10 percent of the total amount owed, whichever is larger. Your program
should include a loop that lets the user repeat this calculation until the user
says she or he is done.

	3.	 Write an astrology program. The user types in a birthday, and the program
responds with the sign and horoscope for that birthday. The month may
be entered as a number from 1 to 12. Then enhance your program so
that if the birthday is only one or two days away from an adjacent sign,
the program announces that the birthday is on a “cusp” and also out-
puts the horoscope for that nearest adjacent sign. This program will have a
long multiway branch. Make up a horoscope for each sign. Your program
should include a loop that lets the user repeat this calculation until the user
says she or he is done.

		 The horoscope signs and dates are:

		 Aries 	 March 21–April 19
		 Taurus 	 April 20–May 20
		G emini 	 May 21–June 21
		 Cancer 	 June 22–July 22
		 Leo 	 July 23–August 22
		 Virgo 	 August 23–September 22
		 Libra 	 September 23–October 22
		 Scorpio 	O ctober 23–November 21
		 Sagittarius 	 November 22–December 21
		 Capricorn 	D ecember 22–January 19
		 Aquarius 	 January 20–February 18

		 Pisces 	 February 19–March 20

	 Practice Programs	 173

	4.	 Horoscope Signs of the same Element are most compatible. There are 4
Elements in astrology, and 3 Signs in each: FIRE (Aries, Leo, Sagittarius),
EARTH (Taurus, Virgo, Capricorn), AIR (Gemini, Libra, Aquarius) , WATER
(Cancer, Scorpio, Pisces).

		 According to some astrologers, you are most comfortable with your own sign
and the other two signs in your Element. For example, Aries would be most
comfortable with other Aries and the two other FIRE signs, Leo and Sagittarius.

		 Modify your program from Practice Program 3 to also display the name of
the signs that will be compatible for the birthday.

	5.	 Write a program that finds and prints all of the prime numbers between 3
and 100. A prime number is a number such that 1 and itself are the only
numbers that evenly divide it (for example, 3, 5, 7, 11, 13, 17, …).

One way to solve this problem is to use a doubly nested loop. The
outer loop can iterate from 3 to 100 while the inner loop checks to see
if the counter value for the outer loop is prime. One way to see if num-
ber n is prime is to loop from 2 to n 21 and if any of these numbers
evenly divides n, then n cannot be prime. If none of the values from 2
to n 21 evenly divides n, then n must be prime. (Note that there are
several easy ways to make this algorithm more efficient.)

	6.	 Buoyancy is the ability of an object to float. Archimedes’ principle states
that the buoyant force is equal to the weight of the fluid that is displaced
by the submerged object. The buoyant force can be computed by

F
b
 = V × y

		 where F
b
 is the buoyant force, V is the volume of the submerged object,

and y is the specific weight of the fluid. If F
b
 is greater than or equal to the

weight of the object, then it will float, otherwise it will sink.

		 Write a program that inputs the weight (in pounds) and radius (in feet)
of a sphere and outputs whether the sphere will sink or float in water. Use
y = 62.4 lb/ft3 as the specific weight of water. The volume of a sphere is
computed by (4/3)πr3.

	7.	 Write a program that finds the temperature that is the same in both Celsius
and Fahrenheit. The formula to convert from Celsius to Fahrenheit is

		 Fahrenheit =
(9 × Celsius)

 + 32
5

		 Your program should create two integer variables for the temperature in
Celsius and Fahrenheit. Initialize the temperature to 100 degrees Celsius.
In a loop, decrement the Celsius value and compute the corresponding
temperature in Fahrenheit until the two values are the same.

174	 Chapter 3 /  More Flow of Control

Since you are working with integer values, the formula may not give an
exact result for every possible Celsius temperature. This will not affect
your solution to this particular problem.

Programming Projects

Programming Projects require more problem-solving than Practice Programs and
can usually be solved many different ways. Visit www.myprogramminglab.com to
complete many of these Programming Projects online and get instant feedback.

	1.	 Write a program that computes the cost of a long-distance call. The cost of
the call is determined according to the following rate schedule:

		 a. � Any call started between 8:00 am and 6:00 pm, Monday through Friday,
is billed at a rate of $0.40 per minute.

		 b. � Any call starting before 8:00 am or after 6:00 pm, Monday through
Friday, is charged at a rate of $0.25 per minute.

		 c. � Any call started on a Saturday or Sunday is charged at a rate of $0.15 per
minute.

		 The input will consist of the day of the week, the time the call started, and
the length of the call in minutes. The output will be the cost of the call. The
time is to be input in 24-hour notation, so the time 1:30 pm is input as

		 13:30

		 The day of the week will be read as one of the following pairs of character
values, which are stored in two variables of type char:

Mo Tu We Th Fr Sa Su

		 Be sure to allow the user to use either uppercase or lowercase letters or a
combination of the two. The number of minutes will be input as a value
of type int. (You can assume that the user rounds the input to a whole
number of minutes.) Your program should include a loop that lets the user
repeat this calculation until the user says she or he is done.

	2.	 (This Project requires that you know some basic facts about complex num-
bers, so it is only appropriate if you have studied complex numbers in
some mathematics class.)

		 Write a C++ program that solves a quadratic equation to find its roots. The
roots of a quadratic equation

ax2 + bx + c = 0

		 (where a is not zero) are given by the formula

(–b ± sqrt(b2 – 4ac)) / 2a

www.myprogramminglab.com

	 Programming Projects	 175

		 The value of the discriminant (b2 – 4ac) determines the nature of roots.
If the value of the discriminant is zero, then the equation has a single real
root. If the value of the discriminant is positive then the equation has two
real roots. If the value of the discriminant is negative, then the equation
has two complex roots.

		 The program takes values of a, b, and c as input and outputs the roots. Be
creative in how you output complex roots. Include a loop that allows the
user to repeat this calculation for new input values until the user says she
or he wants to end the program.

	3.	 Write a program that accepts a year written as a four-digit Arabic (ordi-
nary) numeral and outputs the year written in Roman numerals. Important
Roman numerals are V for 5, X for 10, L for 50, C for 100, D for 500, and M
for 1,000. Recall that some numbers are formed by using a kind of subtrac-
tion of one Roman “digit”; for example, IV is 4 produced as V minus I, XL
is 40, CM is 900, and so on. A few sample years: MCM is 1900, MCML is
1950, MCMLX is 1960, MCMXL is 1940, MCMLXXXIX is 1989. Assume the
year is between 1000 and 3000. Your program should include a loop that
lets the user repeat this calculation until the user says she or he is done.

	4.	 Write a program that scores a blackjack hand. In blackjack, a player receives
from two to five cards. The cards 2 through 10 are scored as 2 through
10 points each. The face cards—jack, queen, and king—are scored as 10
points. The goal is to come as close to a score of 21 as possible without
going over 21. Hence, any score over 21 is called “busted.” The ace can
count as either 1 or 11, whichever is better for the user. For example, an
ace and a 10 can be scored as either 11 or 21. Since 21 is a better score, this
hand is scored as 21. An ace and two 8s can be scored as either 17 or 27.
Since 27 is a “busted” score, this hand is scored as 17.

		 The user is asked how many cards she or he has, and the user responds with
one of the integers 2, 3, 4, or 5. The user is then asked for the card values. Card
values are 2 through 10, jack, queen, king, and ace. A good way to handle
input is to use the type char so that the card input 2, for example, is read as the
character '2', rather than as the number 2. Input the values 2 through 9 as the
characters '2' through '9'. Input the values 10, jack, queen, king, and ace as
the characters 't', 'j', 'q', 'k', and 'a'. (Of course, the user does not type in
the single quotes.) Be sure to allow upper- as well as lowercase letters as input.

		 After reading in the values, the program should convert them from charac-
ter values to numeric card scores, taking special care for aces. The output is
either a number between 2 and 21 (inclusive) or the word Busted. You are
likely to have one or more long multiway branches that use a switch state-
ment or nested if-else statement. Your program should include a loop that
lets the user repeat this calculation until the user says she or he is done.

176	 Chapter 3 /  More Flow of Control

	5.	I nterest on a loan is paid on a declining balance, and hence a loan with an
interest rate of, say, 14 percent can cost significantly less than 14 percent
of the balance. Write a program that takes a loan amount and interest rate
as input and then outputs the monthly payments and balance of the loan
until the loan is paid off. Assume that the monthly payments are one-
twentieth of the original loan amount, and that any amount in excess of
the interest is credited toward decreasing the balance due. Thus, on a loan
of $20,000, the payments would be $1,000 a month. If the interest rate is
10 percent, then each month the interest is one-twelfth of 10 percent of
the remaining balance. The first month, (10 percent of $20,000)/12, or
$166.67, would be paid in interest, and the remaining $833.33 would de-
crease the balance to $19,166.67. The following month the interest would
be (10 percent of $19,166.67)/12, and so forth. Also have the program
output the total interest paid over the life of the loan.

		 Finally, determine what simple annualized percentage of the original loan
balance was paid in interest. For example, if $1,000 was paid in interest on
a $10,000 loan and it took 2 years to pay off, then the annualized interest
is $500, which is 5 percent of the $10,000 loan amount. Your program
should allow the user to repeat this calculation as often as desired.

	6.	 The Fibonacci numbers Fn are defined as follows. F0 is 1, F1 is 1, and

Fi+2 = Fi + Fi+1

		 i = 0, 1, 2, … . In other words, each number is the sum of the previous
two numbers. The first few Fibonacci numbers are 1, 1, 2, 3, 5, and 8. One
place that these numbers occur is as certain population growth rates. If a
population has no deaths, then the series shows the size of the population
after each time period. It takes an organism two time periods to mature to
reproducing age, and then the organism reproduces once every time pe-
riod. The formula applies most straightforwardly to asexual reproduction
at a rate of one offspring per time period.

		 Assume that the green crud population grows at this rate and has a time pe-
riod of 5 days. Hence, if a green crud population starts out as 10 pounds of
crud, then in 5 days there is still 10 pounds of crud; in 10 days there is 20
pounds of crud, in 15 days 30 pounds, in 20 days 50 pounds, and so forth.
Write a program that takes both the initial size of a green crud population
(in pounds) and a number of days as input, and that outputs the number
of pounds of green crud after that many days. Assume that the population
size is the same for 4 days and then increases every fifth day. Your program
should allow the user to repeat this calculation as often as desired.

	7.	 The value ex can be approximated by the sum

1 + x + x2/2! + x3/3! + ... + xn/n!

	 Programming Projects	 177

		 Write a program that takes a value x as input and outputs this sum for n taken
to be each of the values 1 to 100. The program should also output ex calculated
using the predefined function exp. The function exp is a predefined function
such that exp(x) returns an approximation to the value ex. The function exp
is in the library with the header file cmath. Your program should repeat the
calculation for new values of x until the user says she or he is through.

		U se variables of type double to store the factorials or you are likely to produce
integer overflow (or arrange your calculation to avoid any direct calculation
of factorials). 100 lines of output might not fit comfortably on your screen.
Output the 100 output values in a format that will fit all 100 values on the
screen. For example, you might output 10 lines with 10 values on each line.

	8.	 An approximate value of pi can be calculated using the series given below:

pi = 4 [1 – 1/3 + 1/5 – 1/7 + 1/9 ... + ((–1)n)/(2n + 1)]

		 Write a C++ program to calculate the approximate value of pi using this
series. The program takes an input n that determines the number of terms
in the approximation of the value of pi and outputs the approximation.
Include a loop that allows the user to repeat this calculation for new values
n until the user says she or he wants to end the program.

	9.	 The following problem is sometimes called “The Monty Hall Game Show
Problem.” You are a contestant on a game show and have won a shot at the
grand prize. Before you are three closed doors. Behind one door is a brand
new car. Behind the other two doors are consolation prizes. The location of
the prizes is randomly selected. The game show host asks you to select a door,
and you pick one. However, before revealing the contents behind your door,
the game show host reveals one of the other doors with a consolation prize.
At this point, the game show host asks if you would like to stick with your
original choice or switch your choice to the other closed door. What choice
should you make to optimize your chances of winning the car? Does it matter
whether you stick with your original choice or switch doors?

		 Write a simulation program to solve the game show problem. Your pro-
gram should make 10,000 simulated runs through the problem, randomly
selecting locations for the prize, and then counting the number of times
the car was won when sticking with the original choice, and counting
the number of times the car was won when switching doors. Output the
estimated probability of winning for both strategies. Be sure that your pro-
gram exactly simulates the process of selecting the door, revealing one,
and then switching. Do not make assumptions about the actual solution
(for example, simply assuming that there is a 1/3 or 1/2 chance of getting
the prize).

		 Appendix 4 gives library functions for generating random numbers. A more
detailed description is provided in Chapter 4.

Solution to Programming
Project 3.9

VideoNote

178	 Chapter 3 /  More Flow of Control

	10.	R epeat Programming Project 13 from Chapter 2 but in addition ask the
user if he or she is:

		 a.  Sedentary

		 b.  Somewhat active (exercise occasionally)

		 c.  Active (exercise 3–4 days per week)

		 d.  Highly active (exercise every day)

		I f the user answers “Sedentary,” then increase the calculated BMR by 20
percent. If the user answers “Somewhat active,” then increase the calcu-
lated BMR by 30 percent. If the user answers “Active,” then increase the
calculated BMR by 40 percent. Finally, if the user answers “Highly active,”
then increase the calculated BMR by 50 percent. Output the number of
chocolate bars based on the new BMR value.

	11.	 The keypad on your oven is used to enter the desired baking temperature
and is arranged like the digits on a phone:

1 2 3

4 5 6

7 8 9

0

		U nfortunately the circuitry is damaged and the digits in the leftmost col-
umn no longer function. In other words, the digits 1, 4, and 7 do not work.
If a recipe calls for a temperature that can’t be entered, then you would
like to substitute a temperature that can be entered. Write a program that
inputs a desired temperature. The temperature must be between 0 and 999
degrees. If the desired temperature does not contain 1, 4, or 7, then output
the desired temperature. Otherwise, compute the next largest and the next
smallest temperature that does not contain 1, 4, or 7 and output both.

For example, if the desired temperature is 450, then the program
should output 399 and 500. Similarly, if the desired temperature is
375, then the program should output 380 and 369.

	12.	 The game of “23” is a two-player game that begins with a pile of 23 tooth-
picks. Players take turns, withdrawing either 1, 2, or 3 toothpicks at a time.
The player to withdraw the last toothpick loses the game. Write a human vs.
computer program that plays “23”. The human should always move first.
When it is the computer’s turn, it should play according to the following rules:

•	 If there are more than 4 toothpicks left, then the computer should
withdraw 4 – X toothpicks, where X is the number of toothpicks the
human withdrew on the previous turn.

Solution to Programming
Project 3.11

VideoNote

	 Programming Projects	 179

•	 If there are 2 to 4 toothpicks left, then the computer should withdraw
enough toothpicks to leave 1.

•	 If there is 1 toothpick left, then the computer has to take it and loses.

When the human player enters the number of toothpicks to withdraw,
the program should perform input validation. Make sure that the entered
number is between 1 and 3 and that the player is not trying to withdraw
more toothpicks than exist in the pile.

	13.	Holy digits Batman! The Riddler is planning his next caper somewhere on
Pennsylvania Avenue. In his usual sporting fashion, he has left the address
in the form of a puzzle. The address on Pennsylvania is a four-digit
number where:

•	All four digits are different
•	 The digit in the thousands place is three times the digit in the tens place
•	 The number is odd
•	 The sum of the digits is 27

Write a program that uses a loop (or loops) to find the address where the
Riddler plans to strike.

This page intentionally left blank

Procedural Abstraction
and Functions That

Return a Value

4.1  Top-Down Design   182

4.2 P redefined Functions   183
Using Predefined Functions   183
Random Number Generation   188
Type Casting   190
Older Form of Type Casting   192
Pitfall: Integer Division Drops the

Fractional Part   192

4.3 P rogrammer-Defined Functions   193
Function Definitions   193
Functions That Return a Boolean Value   199
Alternate Form for Function Declarations   199
Pitfall: Arguments in the Wrong Order   200
Function Definition–Syntax Summary   201
More About Placement of Function Definitions   202
Programming Tip: Use Function Calls in Branching

Statements   203

4.4 P rocedural Abstraction   204
The Black-Box Analogy   204
Programming Tip: Choosing Formal Parameter

Names   207

Programming Tip: Nested Loops   208
Case Study: Buying Pizza   211
Programming Tip: Use Pseudocode   217

4.5 S cope and Local Variables   218
The Small Program Analogy   218
Programming Example: Experimental

Pea Patch   221
Global Constants and Global Variables   221
Call-by-Value Formal Parameters Are Local

Variables   224
Block Scope   226
Namespaces Revisited   227
Programming Example: The Factorial Function   230

4.6 Ov erloading Function Names   232
Introduction to Overloading   232
Programming Example: Revised Pizza-Buying

Program   235
Automatic Type Conversion   238

4

Chapter Summary  240
Answers to Self-Test Exercises  240

Practice Programs  245
Programming Projects  247

Introduction

A program can be thought of as consisting of subparts, such as obtaining the
input data, calculating the output data, and displaying the output data. C++,
like most programming languages, has facilities to name and code each of
these subparts separately. In C++ these subparts are called functions. In this
chapter we present the basic syntax for one of the two main kinds of C++
functions—namely those designed to compute a single value. We also discuss
how these functions can aid in program design. We begin with a discussion of
a fundamental design principle.

Prerequisites

You should read Chapter 2 and at least look through Chapter 1 before reading
this chapter.

4.1  Top-Down Design

Remember that the way to write a program is to first design the method
that the program will use and to write out this method in English, as if the
instructions were to be followed by a human clerk. As we noted in Chapter 1,
this set of instructions is called an algorithm. A good plan of attack for
designing the algorithm is to break down the task to be accomplished into
a few subtasks, decompose each of these subtasks into smaller subtasks, and
so forth. Eventually, the subtasks become so small that they are trivial to
implement in C++. This method is called top-down design. (The method is
also sometimes called stepwise refinement, or more graphically, divide and
conquer.)

Using the top-down method, you design a program by breaking the
program’s task into subtasks and solving these subtasks by subalgorithms.
Preserving this top-down structure in your C++ program makes the program
easier to understand, easier to change if need be, and, as will become apparent,
easier to write, test, and debug. C++, like most programming languages,
has facilities to include separate subparts inside of a program. In other
programming languages these subparts are called subprograms, procedures, or
methods. In C++ these subparts are called functions.

182

There was a most ingenious Architect who had contrived a new method for
building Houses, by beginning at the Roof, and working downward to the
Foundation.

Jonathan Swift, Gulliver’s Travels

One of the advantages of using functions to divide a programming task
into subtasks is that the program becomes easier to understand, test, debug,
and maintain. Additionally, dividing the task allows different people to work
on the different subtasks. When producing a very large program, such as a
compiler or office-management system, this sort of teamwork is needed if
the program is to be produced in a reasonable amount of time. We will begin
our discussion of functions by showing you how to use functions that were
written by somebody else.

4.2  Predefined Functions

C++ comes with libraries of predefined functions that you can use in your
programs. Before we show you how to define functions, we will first show you
how to use some functions that are already defined for you.

Using Predefined Functions

We will use the sqrt function to illustrate how you use predefined functions.
The sqrt function calculates the square root of a number. (The square root of a
number is the number that, when multiplied by itself, will produce the number
you started out with. For example, the square root of 9 is 3 because 32 is equal to 9.)
The function sqrt starts with a number, such as 9.0, and computes its square
root, in this case 3.0. The value the function starts out with is called its argument.
The value it computes is called the value returned. Some functions may have
more than one argument, but no function has more than one value returned. If
you think of the function as being similar to a small program, then the arguments
are analogous to the input and the value returned is analogous to the output.

The syntax for using functions in your program is simple. To set a variable
named the_root equal to the square root of 9.0, you can use the following
assignment statement:

the_root = sqrt(9.0);

The expression sqrt(9.0) is called a function call (or if you want to be
fancy you can also call it a function invocation). An argument in a function
call can be a constant, such as 9.0, or a variable, or a more complicated
expression. A function call is an expression that can be used like any other
expression. You can use a function call wherever it is legal to use an expression
of the type specified for the value returned by the function. For example,
the value returned by sqrt is of type double. Thus, the following is legal
(although perhaps stingy):

bonus = sqrt(sales)/10;

sales and bonus are variables that would normally be of type double. The
function call sqrt(sales) is a single item, just as if it were enclosed in
parentheses. Thus, this assignment statement is equivalent to

	 4.2  Predefined Functions	 183

bonus = (sqrt(sales))/10;

You can also use a function call directly in a cout statement, as in the
following:

cout << "The side of a square with area " << area
 << " is " << sqrt(area);

Display 4.1 contains a complete program that uses the predefined
function sqrt. The program computes the size of the largest square dog house
that can be built for the amount of money the user is willing to spend. The
program asks the user for an amount of money and then determines how
many square feet of floor space can be purchased for that amount of money.
That calculation yields an area in square feet for the floor area of the dog
house. The function sqrt yields the length of one side of the dog house floor.

Notice that there is another new element in the program in Display 4.1:

#include <cmath>

184	 Chapter 4 /  Procedural Abstraction and Functions That Return a Value

Function Call

A function call is an expression consisting of the function name followed
by arguments enclosed in parentheses. If there is more than one
argument, the arguments are separated by commas. A function call is
an expression that can be used like any other expression of the type
specified for the value returned by the function.

Syntax

Function_Name(Argument_List)

where the Argument_List is a comma-separated list of arguments:

Argument_1, Argument_2, . . . , Argument_Last

Examples

side = sqrt(area);
cout << "2.5 to the power 3.0 is "
 << pow(2.5, 3.0);

That line looks very much like the line

#include <iostream>

and, in fact, these two lines are the same sort of thing. As we noted in Chapter 2,
such lines are called include directives. The name inside the angular brackets
<> is the name of a file known as a header file. A header file for a library provides

the compiler with certain basic information about the library, and an include
directive delivers this information to the compiler. This enables the linker to find
object code for the functions in the library so that it can correctly link the library
to your program. For example, the library iostream contains the definitions of
cin and cout, and the header file for the iostream library is called iostream.
The math library contains the definition of the function sqrt and a number of
other mathematical functions, and the header file for this library is cmath. If your
program uses a predefined function from some library, then it must contain a
directive that names the header file for that library, such as the following:

	 4.2  Predefined Functions	 185

Display 4.1   A Function Call

 1 //Computes the size of a dog house that can be purchased
 2 //given the user's budget.
 3 #include <iostream>
 4 #include <cmath>
 5 using namespace std;
 6
 7 int main()
 8 {
 9 const double COST_PER_SQ_FT = 10.50;
10 double budget, area, length_side;
11
12 cout << "Enter the amount budgeted for your dog house $";
13 cin >> budget;
14
15 area = budget / COST_PER_SQ_FT;
16 length_side = sqrt(area);
17
18 cout.setf(ios::fixed);
19 cout.setf(ios::showpoint);
20 cout.precision(2);
21 cout << "For a price of $" << budget << endl
22 << "I can build you a luxurious square dog house\n"
23 << "that is " << length_side
24 << " feet on each side.\n";
25
26 return 0;
27 }

Sample Dialogue

Enter the amount budgeted for your dog house: $25.00

For a price of $25.00

I can build you a luxurious square dog house

that is 1.54 feet on each side.

#include <cmath>

Be sure to follow the syntax illustrated in our examples. Do not forget the
symbols < and >; they are the same symbols as the less-than and greater-than
symbols. There should be no space between the < and the filename, nor between
the filename and the >. Also, some compilers require that directives have no spaces
around the #, so it is always safest to place the # at the very start of the line and not
to put any space between the # and the word include. These #  include directives
are normally placed at the beginning of the file containing your program.

As we noted before, the directive

#include <iostream>

requires that you also use the following using directive:

using namespace std;

This is because the definitions of names like cin and cout, which are given in
iostream, define those names to be part of the std namespace. This is true of
most standard libraries. If you have an include directive for a standard library
such as

#include <cmath>

then you probably need the using directive:

using namespace std;

There is no need to use multiple copies of this using directive when you have
multiple include directives.

Usually, all you need to do to use a library is to place an include directive
and a using directive for that library in the file with your program. If things
work with just the include directive and the using directive, you need not
worry about doing anything else. However, for some libraries on some
systems, you may need to give additional instructions to the compiler or
to explicitly run a linker program to link in the library. Early C and C++
compilers did not automatically search all libraries for linking. The details
vary from one system to another, so you will have to check your manual or a
local expert to see exactly what is necessary.

Some people will tell you that include directives are not processed by
the compiler, but are processed by a preprocessor. They’re right, but the
difference is more of a word game than anything that need concern you.
On almost all compilers the preprocessor is called automatically when you
compile your program.

A few predefined functions are described in Display 4.2; more predefined
functions are described in Appendix 4. Notice that the absolute value functions
abs and labs are in the library with header file cstdlib, so any program that
uses either of these functions must contain the following directive:

#include <cstdlib>

186	 Chapter 4 /  Procedural Abstraction and Functions That Return a Value

#include may
not be enough

All the other functions listed are in the library with header file cmath, just like
sqrt.

Also notice that there are three absolute value functions. If you want to
produce the absolute value of a number of type int, you use abs; if you want
to produce the absolute value of a number of type long, you use labs; and if
you want to produce the absolute value of a number of type double, you use
fabs. To complicate things even more, abs and labs are in the library with
header file cstdlib, while fabs is in the library with header file cmath. fabs
is an abbreviation for floating-point absolute value. Recall that numbers with a
fraction after the decimal point, such as numbers of type double, are often
called floating-point numbers.

Another example of a predefined function is pow, which is in the library
with header file cmath. The function pow can be used to do exponentiation in
C++. For example, if you want to set a variable result equal to xy, you can use
the following:

result = pow(x, y);

	 4.2  Predefined Functions	 187

Display 4.2   Some Predefined Functions

Name Description Type of
Arguments

Type of
Value
Returned

Example Value Library
Header

sqrt square root double double sqrt(4.0) 2.0 cmath

pow powers double double pow(2.0,3.0) 8.0 cmath

abs absolute value
for int

int int abs(-7)
abs(7)

7
7

cstdlib

labs absolute value long long labs(-70000) 70000 cstdlib
for long labs(70000) 70000

fabs absolute value double double fabs(-7.5) 7.5 cmath
for double fabs(7.5) 7.5

ceil ceiling double double ceil(3.2) 4.0 cmath
(round up) ceil(3.9) 4.0

floor floor double double floor(3.2) 3.0 cmath
(round down) floor(3.9) 3.0

srand Seed random
number
generator

none none srand() none cstdlib

rand Random number none int rand() 0-RAND
_MAX

cstdlib

188	 Chapter 4 /  Procedural Abstraction and Functions That Return a Value

Hence, the following three lines of program code will output the number 9.0
to the screen, because (3.0)2.0 is 9.0:

double result, x = 3.0, y = 2.0;
result = pow(x, y);
cout << result;

Notice that the above call to pow returns 9.0, not 9. The function pow
always returns a value of type double, not of type int. Also notice that the
function pow requires two arguments. A function can have any number of
arguments. Moreover, every argument position has a specified type and the
argument used in a function call should be of that type. In many cases, if you
use an argument of the wrong type, then some automatic type conversion will
be done for you by C++. However, the results may not be what you intended.
When you call a function, you should use arguments of the type specified for
that function. One exception to this caution is the automatic conversion of
arguments from type int to type double. In many situations, including calls
to the function pow, you can safely use an argument of type int when an
argument of type double is specified.

Many implementations of pow have a restriction on what arguments can
be used. In these implementations, if the first argument to pow is negative,
then the second argument must be a whole number. Since you probably have
enough other things to worry about when learning to program, it might be
easiest and safest to use pow only when the first argument is nonnegative.

Random Number Generation

Games and simulation programs often require the generation of random
numbers. C++ has a predefined function to generate pseudorandom numbers.
A pseudorandom number is one that appears to be random but is really
determined by a predictable formula. For example, here is the formula for a
very simple pseudorandom number generator that specifies the ith random
number Ri based on the previously generated random number R

i-1:

R
i
 = (R

i-1 × 7) % 11

Let’s set the initial “seed,” R0 = 1. The first time we fetch a “random” number
we compute R1 with the formula:

R1 = (R0 × 7) % 11 = (1 × 7) % 11 = 7 % 11	 = 7

The second time we fetch a “random” number we compute R2 with:

R2 = (R1 × 7) % 11 = (7 × 7) % 11 = 49 % 11	 = 5

The third time we fetch a “random” number we compute R3 with:

R3 = (R2 × 7) % 11 = (5 × 7) % 11 = 35 % 11	 = 2

and so on.

Arguments have
a type

Restrictions
on pow

Random and
pseudorandom
numbers

Random Number
Generation

VideoNote

	 4.2  Predefined Functions	 189

As you can see, each successive value seems random unless we know the
formula. This is why they are called pseudorandom. This particular function
would not be a very good pseudorandom number generator because it would
repeat numbers rather quickly. The random number generator in C++ varies
depending upon the library implementation but uses the same basic idea as
our simple generator with some enhancements to achieve a random uniform
distribution.

We can get a different sequence of random numbers if we start with a
different seed value. In the example, the seed always started at 1. However,
if the seed is initialized with a number that changes, such as the time on
the computer’s clock, then we will likely get a different sequence of random
numbers every time we run the program.

To seed C++’s random number generator use the predefined method
srand. It returns no value and takes as input an unsigned integer that is the
initial seed value. To always seed the random number generator with the
value 35, we would use:

srand(35);

To vary the random number sequence every time the program is executed, we
can seed the random number generator with the time of day. Invoking the
predefined function time(0) returns the number of seconds that have elapsed
since January 1, 19701 on most systems. The time function requires you to
include the ctime library.

#include <cstdlib>
#include <ctime>
...
srand(time(0));

We can get a random number by calling the function rand, which will
return an integer in the range 0 to RAND_MAX. RAND_MAX is a constant defined in
cstdlib and is guaranteed to be 32767 or higher. Usually, a number between
0 and RAND_MAX is not what is desired, in which case the random number can
be scaled by modulus and addition. For example, to simulate rolling a six-
sided die we could use the following:

int die = (rand() % 6) + 1;

The random number modulo 6 gives us a number between 0 and 5. Adding 1
results in a random integer that is in the range from 1 to 6.

It is important to seed the random number generator only once. A
common error is to invoke srand every time a random number is generated. If
both srand and rand are placed in a loop, then the likely result is a sequence
of identical numbers, because the computer runs quickly enough that the time
value will probably not change for repeated calls to srand.

1The number of seconds elapsed since January 1, 1970 is known as Unix time.

190	 Chapter 4 /  Procedural Abstraction and Functions That Return a Value

Type Casting

Recall that 9/2 is integer division and evaluates to 4, not 4.5. If you want
division to produce an answer of type double (that is, including the fractional
part after the decimal point), then at least one of the two numbers in the
division must be of type double. For example, 9/2.0 evaluates to 4.5. If one
of the two numbers is given as a constant, you can simply add a decimal point
and a zero to one (or both) numbers, and the division will then produce a
value that includes the digits after the decimal point.

But what if both of the operands in a division are variables, as in the
following?

int total_candy, number_of_people;
double candy_per_person;
<The program somehow sets the value of total_candy to 9
 and the value of number_of_people to 2.
 It does not matter how the program does this.>
candy_per_person = total_candy/number_of_people;

Unless you convert the value in one of the variables total_candy or
number_of_people to a value of type double, then the result of the division
will be 4, not 4.5 as it should be. The fact that the variable candy_per_person
is of type double does not help. The value of 4 obtained by division will
be converted to a value of type double before it is stored in the variable
candy_per_person, but that will be too late. The 4 will be converted to 4.0
and the final value of candy_per_person will be 4.0, not 4.5. If one of the
quantities in the division were a constant, you could add a decimal point and
a zero to convert the constant to type double, but in this case both quantities
are variables. Fortunately, there is a way to convert from type int to type
double that you can use with either a constant or a variable.

In C++ you can tell the computer to convert a value of type int to a value
of type double. The way that you write “Convert the value 9 to a value of type
double” is

static_cast<double>(9)

The notation static_cast<double> is a kind of predefined function that
converts a value of some other type, such as 9, to a value of type double, in
this case 9.0. An expression such as static_cast<double>(9) is called a type
cast. You can use a variable or other expression in place of the 9. You can use
other type names besides double to obtain a type cast to some type other than
double, but we will postpone that topic until later.

For example, in the following we use a type cast to change the type of 9
from int to double and so the value of answer is set to 4.5:

double answer;
 answer = static_cast<double>(9)/2;

Type casting applied to a constant, such as 9, can make your code easier to
read, since it makes your intended meaning clearer. But type casting applied

Division may
require the
type double

	 4.2  Predefined Functions	 191

to constants of type int does not give you any additional power. You can use
9.0 instead of static_cast<double>(9) when you want to convert 9 to a
value of type double. However, if the division involves only variables, then
type casting may be your only sensible alternative. Using type casting, we can
rewrite our earlier example so that the variable candy_per_person receives the
correct value of 4.5, instead of 4.0; in order to do this, the only change we
need is the replacement of total_candy with static_cast<double>(total_
candy), as shown in what follows:

int total_candy, number_of_people;
double candy_per_person;
<The program somehow sets the value of total_candy to 9
 and the value of number_of_people to 2.
 It does not matter how the program does this.>
candy_per_person =
 static_cast<double>(total_candy)/number_of_people;

Notice the placement of parentheses in the type casting used in the code.
You want to do the type casting before the division so that the division
operator is working on a value of type double. If you wait until after the
division is completed, then the digits after the decimal point are already lost.
If you mistakenly use the following for the last line of the previous code, then
the value of candy_per_person will be 4.0, not 4.5.

candy_per_person =
static_cast<double>(total_candy/number_of_people); //WRONG!

Warning!

A Function to Convert from int to double

The notation static_cast<double> can be used as a predefined
function and will convert a value of some other type to a value of type
double. For example, static_cast<double>(2) returns 2.0. This is
called type casting. (Type casting can be done with types other than
double, but until later in this book, we will do type casting only with the
type double.)

Syntax

static_cast<double>(Expression_of_Type_int)

Example

int total_pot, number_of_winners;
double your_winnings;
 . . .
your_winnings =
 static_cast<double>(total_pot)/number_of_winners;

192	 Chapter 4 /  Procedural Abstraction and Functions That Return a Value

Older Form of Type Casting

The use of static_cast<double>, as we discussed in the previous section,
is the preferred way to perform a type cast. However, older versions of C++
used a different notation for type casting. This older notation simply uses
the type name as if it were a function name, so double(9) returns 9.0. Thus,
if candy_per_person is a variable of type double, and if both total_candy
and number_of_people are variables of type int, then the following two
assignment statements are equivalent:

candy_per_person =
 static_cast<double>(total_candy)/number_of_people;

and

candy_per_person =
 double(total_candy)/number_of_people;

Although static_cast<double>(total_candy) and double(total_candy)
are more or less equivalent, you should use the static_cast<double> form, since
the form double(total_candy) may be discontinued in later versions of C++.

Pitfall   Integer Division Drops the Fractional Part

In integer division, such as computing 11/2, it is easy to forget that 11/2 gives 5,
not 5.5. The result is the next-lower integer. For example,

double d;
d = 11/2;

Here, the division is done using integer divide; the result of the division is 5,
which is converted to double, then assigned to d. The fractional part is not
generated. Observe that the fact that d is of type double does not change the
division result. The variable d receives the value 5.0, not 5.5.	 ■

Self-Test Exercises

	1.	 Determine the value of each of the following arithmetic expressions:

sqrt(16.0) sqrt(16) pow(2.0, 3.0)

pow(2, 3) pow(2.0, 3) pow(1.1, 2)

abs(3) abs(-3) abs(0)

fabs(-3.0) fabs(-3.5) fabs(3.5)

ceil(5.1) ceil(5.8) floor(5.1)

floor(5.8) pow(3.0, 2)/2.0 pow(3.0, 2)/2

7/abs(-2) (7 + sqrt(4.0))/3.0 sqrt(pow(3, 2))

double used
as a function

	 4.3  Programmer-Defined Functions	 193

	2.	 Convert each of the following mathematical expressions to a C++
arithmetic expression:

x + y xy + 7 area + fudge

time + tide
nobody

– b + b2 – 4ac
2a

x – y

	3.	 Write a complete C++ program to compute and output the square root of
PI; PI is approximately 3.14159. The const double PI is predefined in
cmath. You are encouraged to use this predefined constant.

	4.	 Write and compile short programs to test the following issues:

		 a. � Determine whether your compiler will allow the #include <iostream>
anywhere on the line, or if the # needs to be flush with the left margin.

		 b. � Determine whether your compiler will allow space between the # and
the include.

4.3  Programmer-Defined Functions

A custom-tailored suit always fits better than one off the rack.

My Uncle, The Tailor

In the previous section we told you how to use predefined functions. In this
section we tell you how to define your own functions.

Function Definitions

You can define your own functions, either in the same file as the main part of
your program or in a separate file so that the functions can be used by several
different programs. The definition is the same in either case, but for now, we
will assume that the function definition will be in the same file as the main
part of your program.

Display 4.3 contains a sample function definition in a complete program
that demonstrates a call to the function. The function is called total_cost.
The function takes two arguments—the price for one item and number of
items for a purchase. The function returns the total cost, including sales tax,
for that many items at the specified price. The function is called in the same
way a predefined function is called. The description of the function, which the
programmer must write, is a bit more complicated.

The description of the function is given in two parts that are called
the function declaration and the function definition. The function
declaration (also known as the function prototype) describes how the
function is called. C++ requires that either the complete function definition

√

√ √

√

194	 Chapter 4 /  Procedural Abstraction and Functions That Return a Value

Display 4.3   A Function Definition

 1 #include <iostream>
 2 using namespace std;
 3
 4 double total_cost(int number_par, double price_par);
 5 //Computes the total cost, including 5% sales tax,
 6 //on number_par items at a cost of price_par each.
 7
 8 int main()
 9 {
10 double price, bill;
11 int number;
12
13 cout << "Enter the number of items purchased: ";
14 cin >> number;
15 cout << "Enter the price per item $";
16 cin >> price;
17
18 bill = total_cost(number, price);
19
20 cout.setf(ios::fixed);
21 cout.setf(ios::showpoint);
22 cout.precision(2);
23 cout << number << " items at "
24 << "$" << price << " each.\n"
25 << "Final bill, including tax, is $" << bill
26 << endl;
27
28 return 0;
29 }
30
31 double total_cost(int number_par, double price_par)
32 {
33 const double TAX_RATE = 0.05; //5% sales tax
34 double subtotal;
35
36 subtotal = price_par * number_par;
37 return (subtotal + subtotal * TAX_RATE);
38 }

Sample Dialogue

Enter the number of items purchased: 2

Enter the price per item: $10.10

2 items at $10.10 each.

Final bill, including tax, is $21.21

function declaration

function call

function heading

function
body

function
definition

	 4.3  Programmer-Defined Functions	 195

or the function declaration appears in the code before the function is called.
The function declaration for the function total_cost is in color at the top of
Display 4.3 and is reproduced here:

double total_cost(int number_par, double price_par);

The function declaration tells you everything you need to know in order
to write a call to the function. It tells you the name of the function, in this
case total_cost. It tells you how many arguments the function needs and
what type the arguments should be; in this case, the function total_cost takes
two arguments, the first one of type int and the second one of type double.
The identifiers number_par and price_par are called formal parameters. A
formal parameter is used as a kind of blank, or place holder, to stand in
for the argument. When you write a function declaration, you do not know
what the arguments will be, so you use the formal parameters in place of the
arguments. The names of the formal parameters can be any valid identifiers,
but for a while we will end our formal parameter names with _par so that it
will be easier for us to distinguish them from other items in a program. Notice
that a function declaration ends with a semicolon.

The first word in a function declaration specifies the type of the value
returned by the function. Thus, for the function total_cost, the type of the
value returned is double.

As you can see, the function call in Display 4.3 satisfies all the requirements
given by its function declaration. Let’s take a look. The function call is in the
following line:

bill = total_cost(number, price);

The function call is the expression on the right-hand side of the equal sign. The
function name is total_cost, and there are two arguments: The first argument
is of type int, the second argument is of type double, and since the variable
bill is of type double, it looks like the function returns a value of type double
(which it does). All that detail is determined by the function declaration.

The compiler does not care whether there’s a comment along with the
function declaration, but you should always include a comment that explains
what value is returned by the function.

Function Declaration

A function declaration tells you all you need to know to write a call to
the function. A function declaration is required to appear in your code
prior to a call to a function whose definition has not yet appeared.
Function declarations are normally placed before the main part of your
program.

(continued)

196	 Chapter 4 /  Procedural Abstraction and Functions That Return a Value

In Display 4.3 the function definition is in color at the bottom of
the display. A function definition describes how the function computes
the value it returns. If you think of a function as a small program within
your program, then the function definition is like the code for this small
program. In fact, the syntax for the definition of a function is very much like
the syntax for the main part of a program. A function definition consists of
a function header followed by a function body. The function header is written
the same way as the function declaration, except that the header does not
have a semicolon at the end. This makes the header a bit repetitious, but
that’s OK.

Although the function declaration tells you all you need to know to write
a function call, it does not tell you what value will be returned. The value
returned is determined by the statements in the function body. The function
body follows the function header and completes the function definition. The
function body consists of declarations and executable statements enclosed
within a pair of braces. Thus, the function body is just like the body of the
main part of a program. When the function is called, the argument values are
plugged in for the formal parameters and then the statements in the body
are executed. The value returned by the function is determined when the
function executes a return statement. (The details of this “plugging in” will be
discussed in a later section.)

A return statement consists of the keyword return followed by an
expression. The function definition in Display 4.3 contains the following
return statement:

return (subtotal + subtotal * TAX_RATE);

When this return statement is executed, the value of the following expression
is returned as the value of the function call:

(subtotal + subtotal * TAX_RATE)

Syntax

Type_Returned Function_Name(Parameter_List);
Function_Declaration_Comment

where the Parameter_List is a comma-separated list of parameters:

Type_1 Formal_Parameter_1, Type_2 Formal_Parameter_2,...
 ..., Type_LastFormal_Parameter_Last

Example

double total_weight(int number, double weight_of_one);
//Returns the total weight of number items that
//each weigh weight_of_one.

Do not forget
this semicolon.

	 4.3  Programmer-Defined Functions	 197

The parentheses are not needed. The program will run exactly the same if the
return statement is written as follows:

return subtotal + subtotal * TAX_RATE;

However, on larger expressions, the parentheses make the return statement easier
to read. For consistency, some programmers advocate using these parentheses
even on simple expressions. In the function definition in Display 4.3, there are
no statements after the return statement, but if there were, they would not be
executed. When a return statement is executed, the function call ends.

A Function Is Like a Small Program

To understand functions, keep the following three points in mind:

■	 A function definition is like a small program and calling the function is the
same thing as running this “small program.”

■	 A function uses formal parameters, rather than cin, for input. The argu-
ments to the function are the input and they are plugged in for the formal
parameters.

■	 A function (of the kind discussed in this chapter) does not normally send any
output to the screen, but it does send a kind of “output” back to the pro-
gram. The function returns a value, which is like the “output” for the func-
tion. The function uses a return statement instead of a cout statement for
this “output.”

Let’s see exactly what happens when the following function call is executed
in the program shown in Display 4.3:

bill = total_cost(number, price);

First, the values of the arguments number and price are plugged in for the formal
parameters; that is, the values of the arguments number and price are substituted
in for number_par and price_par. In the Sample Dialogue, number receives the
value 2 and price receives the value 10.10. So 2 and 10.10 are substituted for
number_par and price_par, respectively. This substitution process is known as
the call-by-value mechanism, and the formal parameters are often referred to as
call-by-value formal parameters, or simply as call-by-value parameters. There
are three things that you should note about this substitution process:

	1.	 It is the values of the arguments that are plugged in for the formal
parameters. If the arguments are variables, the values of the variables, not
the variables themselves, are plugged in.

	2.	 The first argument is plugged in for the first formal parameter in the
parameter list, the second argument is plugged in for the second formal
parameter in the list, and so forth.

Anatomy of a
function call

198	 Chapter 4 /  Procedural Abstraction and Functions That Return a Value

	3.	 When an argument is plugged in for a formal parameter (for instance,
when 2 is plugged in for number_par), the argument is plugged in for
all instances of the formal parameter that occur in the function body
(for instance, 2 is plugged in for number_par each time it appears in the
function body).

The entire process involved in the function call shown in Display 4.3 is
described in detail in Display 4.4.

Display 4.4   Details of a Function Call

int main()
{
 double price, bill;
 int number;

 cout << "Enter the number of items purchased: ";
 cin >> number;
 cout << "Enter the price per item $";
 cin >> price;

 bill = total_cost (number, price);

 cout.setf (ios::fixed);
 cout.setf (ios::showpoint);
 cout.precision(2);
 cout << number << " items at "
 << "$" << price << " each.\n"
21.21 << "Final bill, including tax, is $" << bill
 << endl;
 return 0;
}

double total_cost (int number_par, double price_par)
{
 const double TAX_RATE = 0.05; //5% sales tax
 double subtotal;

 subtotal = price_par * number_par;
 return (subtotal + subtotal * TAX_RATE);
}

5. The value 21.21 is returned to where the function was invoked. The result is that
total_cost (number, price) is replaced by the return value of 21.21. The
value of bill (on the left-hand side of the equal sign) is set equal to 21.21 when
the statement bill = total_cost (number, price); finally ends.

1. Before the function is called, values of
the variables number and price are
set to 2 and 10.10, by cin statements
(as you can see the Sample Dialogue in
Display 4.3)

3. The body of the function executes
with number_par set to 2 and
price_par set to10.10, producing
the value 20.20 in subtotal.

2. The function call executes and the value
of number (which is 2) plugged in for
number_par and value of price (which
is 10.10) plugged in for price_par.

2 10.10

2 10.10

4. When the return statement is executed,
the value of the expression after return is
evaluated and returned by the function. In
this case, (subtotal + subtotal *
TAX_RATE) is (20.20 + 20.20*0.05)
or 21.21.

21.21

	 4.3  Programmer-Defined Functions	 199

Functions That Return a Boolean Value

A function may return a bool value. Such a function can be used in a Boolean
expression to control an if-else statement or to control a loop statement,
or it can be used anywhere else that a Boolean expression is allowed. The
returned type for such a function should be the type bool.

A call to a function that returns a Boolean value of true or false can be
used anywhere that a Boolean expression is allowed. This can often make a
program easier to read. By means of a function declaration, you can associate
a complex Boolean expression with a meaningful name and use the name as a
Boolean expression in an if-else statement or anywhere else that a Boolean
expression is allowed. For example, the statement

if (((rate >= 10) && (rate < 20)) || (rate == 0))
{
 ...
}

can be made to read

if (appropriate(rate))
{
 ...
}

provided that the following function has been defined:

bool appropriate(int rate)
{
 return (((rate >= 10) && (rate < 20)) || (rate == 0));
}

Alternate Form for Function Declarations

You are not required to list formal parameter names in a function declaration.
The following two function declarations are equivalent:

double total_cost(int number_par, double price_par);

and

double total_cost(int, double);

We will always use the first form so that we can refer to the formal parameters
in the comment that accompanies the function declaration. However, you will
often see the second form in manuals that describe functions.2

2All C++ needs to link to your program to the library for your function is the function
name and sequence of types of the formal parameters. The formal parameter names are
important only to the function definition. However, programs should communicate to
programmers as well as to compilers. It is frequently very helpful in understanding a
function to use the name that the programmer attaches to the function’s data.

200	 Chapter 4 /  Procedural Abstraction and Functions That Return a Value

This alternate form applies only to function declarations. Function headers
must always list the formal parameter names.

Pitfall   Arguments in the Wrong Order

When a function is called, the computer substitutes the first argument for the
first formal parameter, the second argument for the second formal parameter,
and so forth. It does not check for reasonableness. If you confuse the order of
the arguments in a function call, the program will not do what you want it to
do. In order to see what can go wrong, consider the program in Display 4.5.
The programmer who wrote that program carelessly reversed the order of the
arguments in the call to the function grade. The function call should have
been

letter_grade = grade(score, need_to_pass);

This is the only mistake in the program. Yet, some poor student has been
mistakenly failed in a course because of this careless mistake. The function
grade is so simple that you might expect this mistake to be discovered by
the programmer when the program is tested. However, if grade were a more
complicated function, the mistake might easily go unnoticed.

If the type of an argument does not match the formal parameter, then the
compiler may give you a warning message. Unfortunately, not all compilers
will give such warning messages. Moreover, in a situation like the one in

Display 4.5   Incorrectly Ordered Arguments (part 1 of 2)

 1 //Determines user's grade. Grades are Pass or Fail.
 2 #include <iostream>
 3 using namespace std;
 4
 5 char grade(int received_par, int min_score_par);
 6 //Returns 'P' for passing, if received_par is
 7 //min_score_par or higher. Otherwise returns 'F' for failing.
 8
 9 int main()
10 {
11 int score, need_to_pass;
12 char letter_grade;
13
14 cout << "Enter your score"
15 << " and the minimum needed to pass:\n";
16 cin >> score >> need_to_pass;
17
18 letter_grade = grade(need_to_pass, score);
19

(continued)

	 4.3  Programmer-Defined Functions	 201

Display 4.5, no compiler will complain about the ordering of the arguments,
because the function argument types will match the formal parameter types
no matter what order the arguments are in.	 ■

Function Definition–Syntax Summary

Function declarations are normally placed before the main part of your program
and function definitions are normally placed after the main part of your
program (or, as we will see later in this book, in a separate file). Display 4.6
gives a summary of the syntax for a function declaration and definition. There
is actually a bit more freedom than that display indicates. The declarations
and executable statements in the function definition can be intermixed, as

Display 4.5   Incorrectly Ordered Arguments (part 2 of 2)

20 cout << "You received a score of " << score << endl
21 << "Minimum to pass is " << need_to_pass << endl;
22
23 if (letter_grade == 'P')
24 cout << "You Passed. Congratulations!\n";
25 else
26 cout << "Sorry. You failed.\n";
27
28 cout << letter_grade
29 << " will be entered in your record.\n";
30
31 return 0;
32 }
33
34 char grade(int received_par, int min_score_par)
35 {
36 if (received_par >= min_score_par)
37 return 'P';
38 else
39 return 'F';
40 }

Sample Dialogue

Enter your score and the minimum needed to pass:

98 60

You received a score of 98

Minimum to pass is 60

Sorry. You failed.

F will be entered in your record.

Programmer-Defined
Function Example

VideoNote

202	 Chapter 4 /  Procedural Abstraction and Functions That Return a Value

long as each variable is declared before it is used. The rules about intermixing
declarations and executable statements in a function definition are the same as
they are for the main part of a program. However, unless you have reason to do
otherwise, it is best to place the declarations first, as indicated in Display 4.6.

Since a function does not return a value until it executes a return
statement, a function must contain one or more return statements in the
body of the function. A function definition may contain more than one
return statement. For example, the body of the code might contain an
if-else statement, and each branch of the if-else statement might contain
a different return statement, as illustrated in Display 4.5.

Any reasonable pattern of spaces and line breaks in a function definition
will be accepted by the compiler. However, you should use the same rules for
indenting and laying out a function definition as you use for the main part of
a program. In particular, notice the placement of braces {} in our function
definitions and in Display 4.6. The opening and closing braces that mark the
ends of the function body are each placed on a line by themselves. This sets
off the function body.

More About Placement of Function Definitions

We have discussed where function definitions and function declarations are
normally placed. Under normal circumstances these are the best locations for
the function declarations and function definitions. However, the compiler
will accept programs with the function definitions and function declarations
in certain other locations. A more precise statement of the rules is as follows:

Spacing and line
breaks

Display 4.6   Syntax for a Function That Returns a Value

 Function Declaration

 Type_Returned Function_Name(Parameter_List);
 Function_Declaration_Comment

 Function Definition

 Type_Returned Function_Name(Parameter_List)
 {
 Declaration_1
 Declaration_2
 . . .
 Declaration_Last
 Executable_Statement_1
 Executable_Statement_2
 . . .
 Executable_Statement_Last
 }

body

function
header

Must include
one or more
return statements.

	 4.3  Programmer-Defined Functions	 203

Each function call must be preceded by either a function declaration for that
function or the definition of the function. For example, if you place all of
your function definitions before the main part of the program, then you need
not include any function declarations. Knowing this more general rule will
help you to understand C++ programs you see in some other books, but you
should follow the example of the programs in this book. The style we are
using sets the stage for learning how to build your own libraries of functions,
which is the style that most C++ programmers use.

■ P rogramming Tip   �Use Function Calls in Branching
Statements

The switch statement and the multiway if-else statement allow you to place
several different statements in each branch. However, doing so can make the
switch statement or if-else statement difficult to read. Look at the switch
statement in Display 3.7. Each of the branches for choices 1, 2, and 3 could
be a single function call. This makes the layout of the switch statement and
the overall structure of the program clear. If we had instead placed all the
code for each branch in the switch statement, instead of in the function
definitions, then the switch statement would be an incomprehensible sea
of C++ statements. In fact, the switch statement would not even fit on one
screen.	 ■

Self-Test Exercises

	  5.	 What is the output produced by the following program?

#include <iostream>
using namespace std;
char mystery(int first_par, int second_par);
int main()
{
 cout << mystery(10, 9) << "ow\n";
 return 0;
}

char mystery(int first_par, int second_par)
{
 if (first_par >= second_par)
 return 'W';
 else
 return 'H';

}

204	 Chapter 4 /  Procedural Abstraction and Functions That Return a Value

	  6.	 Write a function declaration and a function definition for a function that
takes three arguments, all of type int, and that returns the sum of its three
arguments.

	  7.	 Write a function declaration and a function definition for a function that
takes one argument of type int and one argument of type double, and that
returns a value of type double that is the average of the two arguments.

	  8.	 Write a function declaration and a function definition for a function that
takes one argument of type double. The function returns the character
value 'P' if its argument is positive and returns 'N' if its argument is zero
or negative.

	  9.	 Carefully describe the call-by-value parameter mechanism.

	10.	 List the similarities and differences between use of a predefined (that is,
library) function and a user-defined function.

	11.	 Write a function definition for a function called in_order that takes three
arguments of type int. The function returns true if the three arguments
are in ascending order; otherwise, it returns false. For example,
in_order(1, 2, 3) and in_order(1, 2, 2) both return true, while
in_order(1, 3, 2) returns false.

	12.	 Write a function definition for a function called even that takes one
argument of type int and returns a bool value. The function returns true
if its one argument is an even number; otherwise, it returns false.

	13.	 Write a function definition for a function is_digit that takes one
argument of type char and returns a bool value. The function returns
true if the argument is a decimal digit; otherwise, it returns false.

	14.	 Write a function definition for a function is_root_of that takes two
arguments of type int and returns a bool value. The function returns true
if the first argument is the square root of the second; otherwise, it returns
false.

4.4  Procedural Abstraction

The cause is hidden, but the result is well known.

OVID, Metamorphoses iv

The Black-Box Analogy

A person who uses a program should not need to know the details of how
the program is coded. Imagine how miserable your life would be if you had

	 4.4  Procedural Abstraction	 205

to know and remember the code for the compiler you use. A program has a
job to do, such as compile your program or check the spelling of words in
your paper. You need to know what the program’s job is so that you can use
the program, but you do not (or at least should not) need to know how the
program does its job. A function is like a small program and should be used
in a similar way. A programmer who uses a function in a program needs to
know what the function does (such as calculate a square root or convert a
temperature from degrees Fahrenheit to degrees Celsius) but should not need
to know how the function accomplishes its task. This is often referred to as
treating the function like a black box.

Calling something a black box is a figure of speech intended to convey
the image of a physical device that you know how to use but whose method
of operation is a mystery, because it is enclosed in a black box and you cannot
see inside the box (and cannot pry it open!). If a function is well designed, the
programmer can use the function as if it were a black box. All the programmer
needs to know is that if he or she puts appropriate arguments into the black
box, then an appropriate returned value will come out of the black box.
Designing a function so that it can be used as a black box is sometimes called
information hiding to emphasize that the programmer acts as if the body of
the function were hidden from view.

Display 4.7 contains the function declaration and two different definitions
for a function named new_balance. As the function declaration comment
explains, the function new_balance calculates the new balance in a bank
account when simple interest is added. For instance, if an account starts with
$100, and 4.5 percent interest is posted to the account, then the new balance
is $104.50. Hence, the following code will change the value of vacation_fund
from 100.00 to 104.50:

vacation_fund = 100.00;
vacation_fund = new_balance(vacation_fund, 4.5);

It does not matter which of the implementations of new_balance shown in
Display 4.7 that a programmer uses. The two definitions produce functions
that return exactly the same values. We may as well place a black box over
the body of the function definition so that the programmer does not know
which implementation is being used. In order to use the function new_
balance, all the programmer needs to read is the function declaration and the
accompanying comment.

Writing and using functions as if they were black boxes is also called
procedural abstraction. When programming in C++ it might make more
sense to call it functional abstraction. However, procedure is a more general term
than function. Computer scientists use the term procedure for all “function-like”
sets of instructions, and so they use the term procedural abstraction. The term
abstraction is intended to convey the idea that when you use a function as a
black box, you are abstracting away the details of the code contained in the
function body. You can call this technique the black-box principle or the principle

206	 Chapter 4 /  Procedural Abstraction and Functions That Return a Value

Display 4.7   Definitions That Are Black-Box Equivalent

Function Declaration

1 double new_balance(double balance_par, double rate_par);
2 //Returns the balance in a bank account after
3 //posting simple interest. The formal parameter balance_par is
4 //the old balance. The formal parameter rate_par is the interest rate.
5 //For example, if rate_par is 5.0, then the interest rate is 5 percent
6 //and so new_balance(100, 5.0) returns 105.00.

Definition 1

double new_balance(double balance_par, double rate_par)

{

 double interest_fraction, interest;

 interest_fraction = rate_par/100;

 interest = interest_fraction * balance_par;

 return (balance_par + interest);

}

Definition 2

double new_balance(double balance_par, double rate_par)

{

 double interest_fraction, updated_balance;

 interest_fraction = rate_par/100;

 updated_balance = balance_par * (1 + interest_fraction);

 return updated_balance;

}

Procedural Abstraction

When applied to a function definition, the principle of procedural
abstraction means that your function should be written so that it can
be used like a black box. This means that the programmer who uses the
function should not need to look at the body of the function definition

(continued)

of procedural abstraction or information hiding. The three terms mean the same
thing. Whatever you call this principle, the important point is that you should
use it when designing and writing your function definitions.

	 4.4  Procedural Abstraction	 207

■ P rogramming Tip   Choosing Formal Parameter Names

The principle of procedural abstraction says that functions should be self-
contained modules that are designed separately from the rest of the program.
On large programming projects, a different programmer may be assigned to
write each function. The programmer should choose the most meaningful
names he or she can find for formal parameters. The arguments that will be
substituted for the formal parameters may well be variables in the main part
of the program. These variables should also be given meaningful names, often
chosen by someone other than the programmer who writes the function
definition. This makes it likely that some or all arguments will have the same
names as some of the formal parameters. This is perfectly acceptable. No
matter what names are chosen for the variables that will be used as arguments,
these names will not produce any confusion with the names used for formal
parameters. After all, the functions will use only the values of the arguments.
When you use a variable as a function argument, the function takes only the
value of the variable and disregards the variable name.

Now that you know you have complete freedom in choosing formal
parameter names, we will stop placing a "_par" at the end of each formal
parameter name. For example, in Display 4.8 we have rewritten the definition
for the function total_cost from Display 4.3 so that the formal parameters
are named number and price rather than number_par and price_par. If you
replace the function declaration and definition of the function total_cost
that appear in Display 4.3 with the versions in Display 4.8, then the program
will perform in exactly the same way, even though there will be formal
parameters named number and price and there will be variables in the main
part of the program that are also named number and price.

to see how the function works. The function declaration and the
accompanying comment should be all the programmer needs to know in
order to use the function. To ensure that your function definitions have
this important property, you should strictly adhere to the following rules:

How to Write a Black-Box Function Definition (That Returns
a value)

■	 The function declaration comment should tell the programmer any and all
conditions that are required of the arguments to the function and should
describe the value that is returned by the function when called with these
arguments.

■	 All variables used in the function body should be declared in the function
body. (The formal parameters do not need to be declared, because they are
listed in the function declaration.)

208	 Chapter 4 /  Procedural Abstraction and Functions That Return a Value

■ P rogramming Tip   Nested Loops

When you see nested loops in your code, then you should consider whether
or not to apply the principle of procedural abstraction. Consider the
explicitly nested loops in Display 3.15 that computed the total number of
green-necked vulture eggs counted by all conservationists. We can make
this code more readable by moving the loops into procedure calls, as
shown in Display 4.9.

The two versions of our program for totaling green-necked vulture eggs
are equivalent. Both programs produce the same dialogue with the user.
However, most people find the version in Display 4.9 easier to understand
because the loop body is a function call. When considering the outer loop,
you should think of computing the subtotal for one conservationist’s report as
a single operation and not think of it as a loop.	 ■

Display 4.8   Simpler Formal Parameter Names

Function Declaration

1 double total_cost(int number, double price);
2 //Computes the total cost, including 5 percent sales tax,
3 //on number items at a cost of price each.

Function Definition

1 double total_cost(int number, double price)
2 {
3 const double TAX_RATE = 0.05; //5 percent sales tax
4 double subtotal;
5 subtotal = price * number;
6 return (subtotal + subtotal * TAX_RATE);
7 }

	 ■

Make a Loop Body a Function Call

Whenever you have a loop nested within a loop, or any other complex
computation included in a loop body, make the loop body a function call.
This way you can separate the design of the loop body from the design
of the rest of the program. This divides your programming task into two
smaller subtasks.

	 4.4  Procedural Abstraction	 209

Display 4.9   Nicely Nested Loops (part 1 of 3)

 1 //Determines the total number of green-necked vulture eggs
 2 //counted by all conservationists in the conservation district.
 3 #include <iostream>
 4 using namespace std;
 5
 6
 7 int get_one_total();
 8 //Precondition: User will enter a list of egg counts
 9 //followed by a negative number.
10 //Postcondition: returns a number equal to the sum of all the egg counts.
11
12 int main()
13 {
14 cout << "This program tallies conservationist reports\n"
15 << "on the green-necked vulture.\n"
16 << "Each conservationist's report consists of\n"
17 << "a list of numbers. Each number is the count of\n"
18 << "the eggs observed in one"
19 << " green-necked vulture nest.\n"
20 << "This program then tallies"
21 << " the total number of eggs.\n";
22
23 int number_of_reports;
24 cout << "How many conservationist reports are there? ";
25 cin >> number_of_reports;
26
27 int grand_total = 0, subtotal, count;
28 for (count = 1; count <= number_of_reports; count++)
29 {
30 cout << endl << "Enter the report of "
31 << "conservationist number " << count << endl;
32 subtotal = get_one_total();
33 cout << "Total egg count for conservationist "
34 << " number " << count << " is "
35 << subtotal << endl;
36 grand_total = grand_total + subtotal;
37 }
38
39 cout << endl << "Total egg count for all reports = "
40 << grand_total << endl;
41
42 return 0;
43 }
44
45

(continued)

210	 Chapter 4 /  Procedural Abstraction and Functions That Return a Value

Display 4.9   Nicely Nested Loops (part 2 of 3)

46 //Uses iostream:
47 int get_one_total()
48 {
49 int total;
50 cout << "Enter the number of eggs in each nest.\n"
51 << "Place a negative integer"
52 << " at the end of your list.\n";
53
54 total = 0;
55 int next;
56 cin >> next;
57 while (next >= 0)
58 {
59 total = total + next;
60 cin >> next;
61 }
62 return total;
63 }

Sample Dialogue

This program tallies conservationist reports

on the green-necked vulture.

Each conservationist's report consists of

a list of numbers. Each number is the count of

the eggs observed in one green-necked vulture nest.

This program then tallies the total number of eggs.

How many conservationist reports are there? 3

Enter the report of conservationist number 1

Enter the number of eggs in each nest.

Place a negative integer at the end of your list.

1 0 0 2 -1

Total egg count for conservationist number 1 is 3

Enter the report of conservationist number 2

Enter the number of eggs in each nest.

Place a negative integer at the end of your list.

0 3 1 -1

Total egg count for conservationist number 2 is 4

Enter the report of conservationist number 3

Enter the number of eggs in each nest.

(continued)

	 4.4  Procedural Abstraction	 211

Case Study   Buying Pizza

The large “economy” size of an item is not always a better buy than the smaller
size. This is particularly true when buying pizzas. Pizza sizes are given as the
diameter of the pizza in inches. However, the quantity of pizza is determined
by the area of the pizza, and the area is not proportional to the diameter. Most
people cannot easily estimate the difference in area between a 10-inch pizza and a
12-inch pizza and so cannot easily determine which size is the best buy—that is,
which size has the lowest price per square inch. In this case study we will design
a program that compares two sizes of pizza to determine which is the better buy.

Problem Definition

The precise specification of the program input and output are as follows:

Input

The input will consist of the diameter in inches and the price for each of two
sizes of pizza.

Output

The output will give the cost per square inch for each of the two sizes of pizza
and will tell which is the better buy, that is, which has the lowest cost per
square inch. (If they are the same cost per square inch, we will consider the
smaller one to be the better buy.)

Analysis of the Problem

We will use top-down design to divide the task to be solved by our program
into the following subtasks:

Subtask 1: Get the input data for both the small and large pizzas.

Subtask 2: Compute the price per square inch for the small pizza.

Subtask 3: Compute the price per square inch for the large pizza.

Subtask 4: Determine which is the better buy.

Subtask 5: Output the results.

Notice subtasks 2 and 3. They have two important properties:

Display 4.9   Nicely Nested Loops (part 3 of 3)

Place a negative integer at the end of your list.

-1

Total egg count for conservationist number 3 is 0

Total egg count for all reports = 7

Subtasks 2
and 3

212	 Chapter 4 /  Procedural Abstraction and Functions That Return a Value

	1.	 They are exactly the same task. The only difference is that they use different
data to do the computation. The only things that change between subtask 2
and subtask 3 are the size of the pizza and its price.

	2.	 The result of subtask 2 and the result of subtask 3 are each a single value:
the price per square inch of the pizza.

Whenever a subtask takes some values, such as some numbers, and
returns a single value, it is natural to implement the subtask as a function.
Whenever two or more such subtasks perform the same computation, they
can be implemented as the same function called with different arguments
each time it is used. We therefore decide to use a function called unitprice
to compute the price per square inch of a pizza. The function declaration and
explanatory comment for this function will be as follows:

double unitprice(int diameter, double price);
//Returns the price per square inch of a pizza. The formal
//parameter named diameter is the diameter of the pizza in
//inches. The formal parameter named price is the price of
//the pizza.

Algorithm Design

Subtask 1 is straightforward. The program will simply ask for the input
values and store them in four variables, which we will call diameter_small,
diameter_large, price_small, and price_large.

Subtask 4 is routine. To determine which pizza is the best buy, we
just compare the cost per square inch of the two pizzas using the less-than
operator. Subtask 5 is a routine output of the results.

Subtasks 2 and 3 are implemented as calls to the function unitprice.
Next, we design the algorithm for this function. The hard part of the algorithm
is determining the area of the pizza. Once we know the area, we can easily
determine the price per square inch using division, as follows:

price/area

where area is a variable that holds the area of the pizza. This expression
will be the value returned by the function unitprice. But we still need to
formulate a method for computing the area of the pizza.

A pizza is basically a circle (made up of bread, cheese, sauce, and so
forth). The area of a circle (and hence of a pizza) is πr 2, where r is the radius
of the circle and π is the number called “pi,” which is approximately equal to
3.14159. The radius is one half of the diameter.

The algorithm for the function unitprice can be outlined as follows:

Algorithm Outline for the Function unitprice

	1.	 Compute the radius of the pizza.

	2.	 Compute the area of the pizza using the formula πr2.

	3.	 Return the value of the expression (price/area).

When to define
a function

Subtask 1

Subtasks 4 and 5

Subtasks 2 and 3

	 4.4  Procedural Abstraction	 213

We will give this outline a bit more detail before translating it into
C++ code. We will express this more detailed version of our algorithm in
pseudocode. Pseudocode is a mixture of C++ and ordinary English. Pseudocode
allows us to make our algorithm precise without worrying about the details
of C++ syntax. We can then easily translate our pseudocode into C++ code.
In our pseudocode, radius and area will be variables for holding the values
indicated by their names.

Pseudocode for the Function unitprice

radius = one half of diameter;
area = π * radius * radius;
return (price/area);

That completes our algorithm for unitprice. We are now ready to convert
our solutions to subtasks 1 through 5 into a complete C++ program.

Coding

Coding subtask 1 is routine, so we next consider subtasks 2 and 3. Our
program can implement subtasks 2 and 3 by the following two calls to the
function unitprice:

unitprice_small = unitprice(diameter_small, price_small);
unitprice_large = unitprice(diameter_large, price_large);

where unitprice_small and unitprice_large are two variables of type
double. One of the benefits of a function definition is that you can have
multiple calls to the function in your program. This saves you the trouble of
repeating the same (or almost the same) code. But we still must write the code
for the function unitprice.

When we translate our pseudocode into C++ code, we obtain the
following for the body of the function unitprice:

{//First draft of the function body for unitprice
 const double PI = 3.14159;
 double radius, area;

 radius = diameter/2;
 area = PI * radius * radius;
 return (price/area);
}

Notice that we made PI a named constant using the modifier const. Also,
notice the following line from the code:

radius = diameter/2;

This is just a simple division by 2, and you might think that nothing could
be more routine. Yet, as written, this line contains a serious mistake. We
want the division to produce the radius of the pizza including any fraction.

214	 Chapter 4 /  Procedural Abstraction and Functions That Return a Value

For example, if we are considering buying the “bad luck special,” which is a
13-inch pizza, then the radius is 6.5 inches. But the variable diameter is of
type int. The constant 2 is also of type int. Thus, as we saw in Chapter 2, this
line would perform integer division and would compute the radius 13/2 to
be 6 instead of the correct value of 6.5, and we would have disregarded a half
inch of pizza radius. In all likelihood, this would go unnoticed, but the result
could be that millions of subscribers to the Pizza Consumers Union could
be wasting their money by buying the wrong size pizza. This is not likely
to produce a major worldwide recession, but the program would be failing
to accomplish its goal of helping consumers find the best buy. In a more
important program, the result of such a simple mistake could be disastrous.

How do we fix this mistake? We want the division by 2 to be regular
division that includes any fractional part in the answer. That form of division
requires that at least one of the arguments to the division operator / must
be of type double. We can use type casting to convert the constant 2 to a
value of type double. Recall that static_cast<double>(2), which is called a
type casting, converts the int value 2 to a value of type double. Thus, if we
replace 2 by static_cast<double>(2), that will change the second argument
in the division from type int to type double, and the division will then
produce the result we want. The rewritten assignment statement is

radius = diameter/static_cast<double>(2);

The complete corrected code for the function definition of unitprice, along
with the rest of the program, is shown in Display 4.10.

The type cast static_cast<double>(2) returns the value 2.0, so we
could have used the constant 2.0 in place of static_cast<double>(2). Either
way, the function unitprice will return the same value. However, by using
static_cast<double>(2), we make it conspicuously obvious that we want to
do the version of division that includes the fractional part in its answer. If we
instead used 2.0, then when revising or copying the code, we can easily make
the mistake of changing 2.0 to 2, and that would produce a subtle problem.

We need to make one more remark about the coding of our program.
As you can see in Display 4.10, when we coded tasks 4 and 5, we combined
these two tasks into a single section of code consisting of a sequence of cout
statements followed by an if-else statement. When two tasks are very simple
and are closely related, it sometimes makes sense to combine them into a
single task.

Program Testing

Just because a program compiles and produces answers that look right does
not mean the program is correct. In order to increase your confidence in
your program, you should test it on some input values for which you know
the correct answer by some other means, such as working out the answer
with paper and pencil or by using a handheld calculator. For example,
it does not make sense to buy a 2-inch pizza, but it can still be used as

	 4.4  Procedural Abstraction	 215

Display 4.10   Buying Pizza (part 1 of 2)

 1 //Determines which of two pizza sizes is the best buy.
 2 #include <iostream>
 3 using namespace std;
 4
 5 double unitprice (int diameter,double price);
 6 //Returns the price per square inch of a pizza. The formal
 7 //parameter named diameter is the diameter of the pizza in inches.
 8 //The formal parameter named price is the price of the pizza.
 9
10 int main()
11 {
12 int diameter_small, diameter_large;
13 double price_small, unitprice_small,
14 price_large, unitprice_large;
15
16 cout << "Welcome to the Pizza Consumers Union.\n";
17 cout << "Enter diameter of a small pizza (in inches): ";
18 cin >> diameter_small;
19 cout << "Enter the price of a small pizza: $";
20 cin >> price_small;
21 cout << "Enter diameter of a large pizza (in inches): ";
22 cin >> diameter_large;
23 cout << "Enter the price of a large pizza: $";
24 cin >> price_large;
25
26 unitprice_small = unitprice(diameter_small, price_small);
27 unitprice_large = unitprice(diameter_large, price_large);
28
29 cout.setf(ios::fixed);
30 cout.setf(ios::showpoint);
31 cout.precision(2);
32 cout << "Small pizza:\n"
33 << "Diameter = " << diameter_small << " inches\n"
34 << "Price = $" << price_small
35 << " Per square inch = $" << unitprice_small << endl
36 << "Large pizza:\n"
37 << "Diameter = " << diameter_large << " inches\n"
38 << "Price = $" << price_large
39 << " Per square inch = $" << unitprice_large << endl;
40 if (unitprice_large < unitprice_small)
41 cout << "The large one is the better buy.\n";
42 else
43 cout << "The small one is the better buy.\n";
44
45 cout << "Buon Appetito!\n";
46 return 0;

(continued)

216	 Chapter 4 /  Procedural Abstraction and Functions That Return a Value

an easy test case for this program. It is an easy test case because it is easy
to compute the answer by hand. Let’s calculate the cost per square inch
of a 2-inch pizza that sells for $3.14. Since the diameter is 2 inches, the
radius is 1 inch. The area of a pizza with radius 1 is 3.14159 * 12, which
is 3.14159. If we divide this into the price of $3.14, we find that the price
per square inch is 3.14/3.14159, which is approximately $1.00. Of course,
this is an absurd size for a pizza and an absurd price for such a small pizza,
but it is easy to determine the value that the function unitprice should
return for these arguments.

Having checked your program on this one case, you can have more
confidence in it, but you still cannot be certain your program is correct.
An incorrect program can sometimes give the correct answer, even
though it will give incorrect answers on some other inputs. You may have

Display 4.10   Buying Pizza (part 2 of 2)

47 }
48
49 double unitprice(int diameter, double price)
50 {
51 const double PI = 3.14159;
52 double radius, area;
53
54 radius = diameter/static_cast<double>(2);
55 area = PI * radius * radius;
56 return (price/area);
57 }
58

Sample Dialogue

Welcome to the Pizza Consumers Union.

Enter diameter of a small pizza (in inches): 10

Enter the price of a small pizza: $7.50
Enter diameter of a large pizza (in inches): 13

Enter the price of a large pizza: $14.75
Small pizza:

Diameter = 10 inches

Price = $7.50 Per square inch = $0.10

Large pizza:

Diameter = 13 inches

Price = $14.75 Per square inch = $0.11

The small one is the better buy.

Buon Appetito!

	 4.4  Procedural Abstraction	 217

tested an incorrect program on one of the cases for which the program
happens to give the correct output. For example, suppose we had not
caught the mistake we discovered when coding the function unitprice.
Suppose we mistakenly used 2 instead of static_cast<double>(2) in the
following line:

radius = diameter/static_cast<double>(2);

So that line reads as follows:

radius = diameter/2;

As long as the pizza diameter is an even number, like 2, 8, 10, or 12, the
program gives the same answer whether we divide by 2 or by static_
cast<double>(2). It is unlikely that it would occur to you to be sure to check
both even- and odd-size pizzas. However, if you test your program on several
different pizza sizes, then there is a better chance that your test cases will
contain samples of the relevant kinds of data.

■ P rogramming Tip   Use Pseudocode

Algorithms are typically expressed in pseudocode. Pseudocode is a mixture of
C++ (or whatever programming language you are using) and ordinary English
(or whatever human language you are using). Pseudocode allows you to state
your algorithm precisely without having to worrying about all the details of
C++ syntax. When the C++ code for a step in your algorithm is obvious, there
is little point in stating it in English. When a step is difficult to express in C++,
the algorithm will be clearer if the step is expressed in English. You can see an
example of pseudocode in the previous case study, where we expressed our
algorithm for the function unitprice in pseudocode.	 ■

Self-Test Exercises

15.	 What is the purpose of the comment that accompanies a function
declaration?

16.	 What is the principle of procedural abstraction as applied to function
definitions?

17.	 What does it mean when we say the programmer who uses a function
should be able to treat the function like a black box? (Hint: This question
is very closely related to the previous question.)

18.	 Carefully describe the process of program testing.

218	 Chapter 4 /  Procedural Abstraction and Functions That Return a Value

19.	 Consider two possible definitions for the function unitprice. One is the
definition given in Display 4.10. The other definition is the same except
that the type cast static_cast<double>(2) is replaced with the constant
2.0; in other words, the line

radius = diameter/static_cast<double>(2);

is replaced with the line

radius = diameter/2.0;

Are these two possible function definitions black-box equivalent?

4.5  Scope and Local Variables

He was a local boy, not known outside his home town.

Common Saying

In the last section we advocated using functions as if they were black boxes.
In order to define a function so that it can be used as a black box, you
often need to give the function variables of its own that do not interfere
with the rest of your program. The variables that “belong to” a function
are called local variables. As we will see, these variables simply conform to
the scope rule for nested blocks described in Chapter 3. In this section we
take another look at scoping with an emphasis on local variables and how to
use them.

The Small Program Analogy

Look back at the program in Display 4.1. It includes a call to the predefined
function sqrt. We did not need to know anything about the details of the
function definition for sqrt in order to use this function. In particular, we
did not need to know what variables were declared in the definition of sqrt.
A function that you define is no different. Variable declarations in function
definitions that you write are as separate as those in the function definitions
for the predefined functions. Variable declarations within a function definition
are the same as if they were variable declarations in another program. If you
declare a variable in a function definition and then declare another variable
of the same name in the main part of your program (or in the body of some
other function definition), then these two variables are two different variables,
even though they have the same name. Let’s look at a program that does have
a variable in a function definition with the same name as another variable in
the program.

The program in Display 4.11 has two variables named average_pea; one
is declared and used in the function definition for the function est_total, and
the other is declared and used in the main part of the program. The variable

	 4.5  Scope and Local Variables	 219

11 int main()
12 {
13 int max_count, min_count, pod_count;
14 double average_pea, yield;
15
16 cout << "Enter minimum and maximum number of peas in a pod: ";
17 cin >> min_count >> max_count;
18 cout << "Enter the number of pods: ";
19 cin >> pod_count;
20 cout << "Enter the weight of an average pea (in ounces): ";
21 cin >> average_pea;
22
23 yield =
24 est_total(min_count, max_count, pod_count) * average_pea;
25
26 cout.setf(ios::fixed);
27 cout.setf(ios::showpoint);
28 cout.precision(3);
29 cout << "Min number of peas per pod = " << min_count << endl
30 << "Max number of peas per pod = " << max_count << endl
31 << "Pod count = " << pod_count << endl
32 << "Average pea weight = "
33 << average_pea << " ounces" << endl
34 << "Estimated average yield = " << yield << " ounces"
35 << endl;
36
37 return 0;
38 }
39
40 double est_total(int min_peas, int max_peas, int pod_count)
41 {
42 double average_pea;

Display 4.11   Local Variables (part 1 of 2)

 1 //Computes the average yield on an experimental pea growing patch.
 2 #include <iostream>
 3 using namespace std;
 4
 5 double est_total(int min_peas, int max_peas, int pod_count);
 6 //Returns an estimate of the total number of peas harvested.
 7 //The formal parameter pod_count is the number of pods.
 8 //The formal parameters min_peas and max_peas are the minimum
 9 //and maximum number of peas in a pod.
10 This variable named average_pea is

local to the main part of the program.

43
44 average_pea = (max_peas + min_peas)/2.0;
45 return (pod_count * average_pea);
46 }

(continued)

This variable named average_pea
is local to the function est_total.

220	 Chapter 4 /  Procedural Abstraction and Functions That Return a Value

average_pea in the function definition for est_total and the variable
average_pea in the main part of the program are two different variables. It
is the same as if the function est_total were a predefined function. The two
variables named average_pea will not interfere with each other any more
than two variables in two completely different programs would. When the
variable average_pea is given a value in the function call to est_total, this
does not change the value of the variable in the main part of the program that
is also named average_pea. (The details of the program in Display 4.11, other
than this coincidence of names, are explained in the Programming Example
section that follows this section.)

Variables that are declared within the body of a function definition are said
to be local to that function or to have that function as their scope. Variables
that are defined within the main body of the program are said to be local to
the main part of the program or to have the main part of the program as their
scope. There are other kinds of variables that are not local to any function or to
the main part of the program, but we will have no use for such variables. Every
variable we will use is either local to a function definition or local to the main
part of the program. When we say that a variable is a local variable without
any mention of a function and without any mention of the main part of the
program, we mean that the variable is local to some function definition.

Display 4.11   Local Variables (part 2 of 2)

Sample Dialogue

Enter minimum and maximum number of peas in a pod: 4 6

Enter the number of pods: 10

Enter the weight of an average pea (in ounces): 0.5

Min number of peas per pod = 4

Max number of peas per pod = 6

Pod count = 10

Average pea weight = 0.500 ounces

Estimated average yield = 25.000 ounces

Local Variables

Variables that are declared within the body of a function definition are said
to be local to that function or to have that function as their scope. Variables
that are declared within the main part of the program are said to be local
to the main part of the program or to have the main part of the program
as their scope. When we say that a variable is a local variable without any
mention of a function and without any mention of the main part of the

(continued)

	 4.5  Scope and Local Variables	 221

program, we mean that the variable is local to some function definition.
If a variable is local to a function, then you can have another variable
with the same name that is declared in the main part of the program or
in another function definition, and these will be two different variables,
even though they have the same name.

 P rogramming Example  Experimental Pea Patch

The program in Display 4.11 gives an estimate for the total yield on a small
garden plot used to raise an experimental variety of peas. The function
est_total returns an estimate of the total number of peas harvested. The
function est_total takes three arguments. One argument is the number of
pea pods that were harvested. The other two arguments are used to estimate
the average number of peas in a pod. Different pea pods contain differing
numbers of peas, so the other two arguments to the function are the smallest
and the largest number of peas that were found in any one pod. The function
est_total averages these two numbers and uses this average as an estimate
for the average number of peas in a pod.

Global Constants and Global Variables

As we noted in Chapter 2, you can and should name constant values using
the const modifier. For example, in Display 4.10 we used the following
declaration to give the name PI to the constant 3.14159:

const double PI = 3.14159;

In Display 4.3, we used the const modifier to give a name to the rate of sales
tax with the following declaration:

const double TAX_RATE = 0.05; //5 percent sales tax

As with our variable declarations, we placed these declarations for naming
constants inside the body of the functions that used them. This worked out
fine because each named constant was used by only one function. However, it
can easily happen that more than one function uses a named constant. In that
case you can place the declaration for naming a constant at the beginning of
your program, outside of the body of all the functions and outside the body
of the main part of your program. The named constant is then said to be a
global named constant and the named constant can be used in any function
definition that follows the constant declaration.

Display 4.12 shows a program with an example of a global named
constant. The program asks for a radius and then computes both the area of

222	 Chapter 4 /  Procedural Abstraction and Functions That Return a Value

Display 4.12   A Global Named Constant (part 1 of 2)

 1 //Computes the area of a circle and the volume of a sphere.
 2 //Uses the same radius for both calculations.
 3 #include <iostream>
 4 #include <cmath>
 5 using namespace std;
 6
 7 const double PI = 3.14159;
 8
 9 double area (double radius);
10 //Returns the area of a circle with the specified radius.
11
12 double volume(double radius);
13 //Returns the volume of a sphere with the specified radius.
14
15 int main()
16 {
17 double radius_of_both, area_of_circle, volume_of_sphere;
18
19 cout << "Enter a radius to use for both a circle\n"
20 << "and a sphere (in inches): ";
21 cin >> radius_of_both;
22
23 area_of_circle = area(radius_of_both);
24 volume_of_sphere = volume(radius_of_both);
25
26 cout << "Radius = " << radius_of_both << " inches\n"
27 << "Area of circle = " << area_of_circle
28 << " square inches\n"
29 << "Volume of sphere = " << volume_of_sphere
30 << " cubic inches\n";
31
32 return 0;
33 }
34
35 double area(double radius)
36 {
37 return (PI * pow(radius, 2));
38 }
39
40 double volume(double radius)
41 {
42 return ((4.0/3.0) * PI * pow(radius, 3));
43 }

(continued)

	 4.5  Scope and Local Variables	 223

a circle and the volume of a sphere with that radius. The programmer who
wrote that program looked up the formulas for computing those quantities
and found the following:

area = π × (radius)2

volume = (4/3) × π × (radius)3

Both formulas include the constant π, which is approximately equal to
3.14159. The symbol π is the Greek letter called “pi.” In previous programs we
have used the following declaration to produce a named constant called PI to
use when we convert such formulas to C++ code:

const double PI = 3.14159;

In the program in Display 4.12 we use the same declaration but place it near
the beginning of the file so that it defines a global named constant that can be
used in all the function bodies.

The compiler allows you wide latitude with regard to where you place
the declarations for your global named constants, but to aid readability you
should place all your include directives together, all your global named
constant declarations together in another group, and all your function
declarations together. We will follow standard practice and place all our
global named constant declarations after our include directives and before
our function declarations.

Placing all named constant declarations at the start of your program can
aid readability even if the named constant is used by only one function. If
the named constant might need to be changed in a future version of your
program, it will be easier to find if it is at the beginning of the program.
For example, placing the constant declaration for the sales tax rate at the
beginning of an accounting program will make it easy to revise the program
should the tax rate increase.

It is possible to declare ordinary variables, without the const modifier,
as global variables, which are accessible to all function definitions in the
file. This is done the same way that it is done for global named constants,

Display 4.12   A Global Named Constant (part 2 of 2)

Sample Dialogue

Enter a radius to use for both a circle

and a sphere (in inches): 2

Radius = 2 inches

Area of circle = 12.5664 square inches

Volume of sphere = 33.5103 cubic inches

Walkthrough of Functions
and Local Variables

VideoNote

224	 Chapter 4 /  Procedural Abstraction and Functions That Return a Value

except that the modifier const is not used in the variable declaration.
However, there is seldom any need to use such global variables.
Moreover, global variables can make a program harder to understand
and maintain, so we will not use any global variables. Once you have had
more experience designing programs, you may choose to occasionally use
global variables.

Call-by-Value Formal Parameters Are Local Variables

Formal parameters are more than just blanks that are filled in with the argument
values for the function. Formal parameters are actually variables that are local
to the function definition, so they can be used just like a local variable that
is declared in the function definition. Earlier in this chapter we described the
call-by-value mechanism that handles the arguments in a function call. We
can now define this mechanism for “plugging in arguments” in more detail.
When a function is called, the formal parameters for the function (which are
local variables) are initialized to the values of the arguments. This is the precise
meaning of the phrase “plugged in for the formal parameters” that we have been
using. Typically, a formal parameter is used only as a kind of blank, or place
holder, that is filled in by the value of its corresponding argument; occasionally,
however, a formal parameter is used as a variable whose value is changed. In this
section we will give one example of a formal parameter used as a local variable.

The program in Display 4.13 is the billing program for the law offices of
Dewey, Cheatham, and Howe. Notice that, unlike other law firms, the firm of
Dewey, Cheatham, and Howe does not charge for any time less than a quarter
of an hour. That is why it’s called “the law office with a heart.” If they work
for 1 hour and 14 minutes, they only charge for 4 quarter hours, not 5 quarter
hours as other firms do; so you would pay only $600 for the consultation.

Display 4.13   Formal Parameter Used as a Local Variable (part 1 of 2)

 1 //Law office billing program.
 2 #include <iostream>
 3 using namespace std;
 4
 5 const double RATE = 150.00; //Dollars per quarter hour.
 6
 7 double fee(int hours_worked, int minutes_worked);
 8 //Returns the charges for hours_worked hours and
 9 //minutes_worked minutes of legal services.
10
11 int main()
12 {
13 int hours, minutes;
14 double bill;
15

(continued)

Display 4.13   Formal Parameter Used as a Local Variable (part 2 of 2)

16 cout << "Welcome to the offices of\n"
17 << "Dewey, Cheatham, and Howe.\n"
18 << "The law office with a heart.\n"
19 << "Enter the hours and minutes"
20 << " of your consultation:\n";
21 cin >> hours >> minutes;
22
23 bill = fee(hours, minutes);
24
25 cout.setf(ios::fixed);
26 cout.setf(ios::showpoint);
27 cout.precision(2);
28 cout << "For " << hours << " hours and " << minutes
29 << " minutes, your bill is $" << bill << endl;
30
31 return 0;
32 }
33
34 double fee(int hours_worked, int minutes_worked)
35 {
36 int quarter_hours;
37
38 minutes_worked = hours_worked * 60 + minutes_worked;
39 quarter_hours = minutes_worked/15;
40 return (quarter_hours * RATE);
41 }

Sample Dialogue

Welcome to the offices of

Dewey, Cheatham, and Howe.

The law office with a heart.

Enter the hours and minutes of your consultation:

2 45

For 2 hours and 45 minutes, your bill is $1650.00

	 4.5  Scope and Local Variables	 225

Notice the formal parameter minutes_worked in the definition of the
function fee. It is used as a variable and has its value changed by the following
line, which occurs within the function definition:

minutes_worked = hours_worked * 60 + minutes_worked;

Formal parameters are local variables just like the variables you declare
within the body of a function. However, you should not add a variable

The value of minutes
is not changed by the
call to fee.

minutes_worked is
a local variable
initialized to the
value of minutes.

Do not add a
declaration for a
formal parameter

226	 Chapter 4 /  Procedural Abstraction and Functions That Return a Value

declaration for the formal parameters. Listing the formal parameter minutes_
worked in the function declaration also serves as the variable declaration. The
following is the wrong way to start the function definition for fee as it declares
minutes_worked twice:

double fee(int hours_worked, int minutes_worked)
{
 int quarter_hours;
 int minutes_worked;
 . . .

Do NOT do this!

Block Scope

The scope of a local variable refers to the part of a program that can directly
access that variable and is sometimes referred to as local scope. Similarly, global
identifiers declared at the beginning of your program, outside of the body
of all the functions, are sometimes referred to as having global scope. Despite
their differences, local and global identifiers are really examples of block scope
described in Chapter 3. A block is some C++ code enclosed in braces, with
the exception of the “global block,” which is an implied outermost block that
encompasses all code. The scope rule states that identifiers declared within
their block are local to that block and accessible only from the point they are
defined to the end of their block. Blocks are commonly nested. For example,
the braces of the main function defines a block and a for loop inside main
defines a nested block.

The program outlined in Display 4.14 doesn’t compute anything
interesting but illustrates the scope of identifiers declared in different blocks.
In this example, the constant GLOBAL_CONST has global scope, along with the
functions function1 and main, because they are declared outside the body
of all functions. This allows us to access GLOBAL_CONST from both main and
function1.

The main function declares the variables x and d that are local to main. Their
scope extends to the end of main’s block. Similarly, the function function1
has a parameter param and a local variable y that have scope extending to the
end of function1. Neither of these variables is directly accessible from outside
their scope. The scope of local variables and parameters really uses the same
rule of block scope, but in this case the block refers to the function in which
the variables or parameters are declared.

The for loop in Display 4.14 illustrates the scope of a nested block. The
variable i is declared inside the for loop and thus only has scope to the end of
the loop block. Attempts to reference i anywhere outside its scope, even if we
are still inside main (for example, on line 17) would result in a compiler error.

You can think of variables as being created when their scope begins and
destroyed when their scope ends. For example, the local variable y in Display
4.14 is created and initialized to GLOBAL_CONST every time function1 is called.
If code on line 23 changed the value stored in y, then these changes would be

	 4.5  Scope and Local Variables	 227

lost when the function exits and y goes out of scope because the variable y is
destroyed. A repeat call to function1 will not recall the previous value of y,
but rather a new y will be created.

In addition to block scope there is also namespace scope and class scope.
Class scope is discussed in Chapter 10 and namespace scope in Chapter 12.
C++ also defines function prototype scope, which refers to the line of scope
for parameters defined in a function prototype. Finally, C++ supports function
scope, which is used for labels. Labels are a remnant from the C language and
are used with goto statements. Their use is generally shunned because they
can result in logic that is difficult to follow, whereas the same task can be
performed by loops in an understandable fashion.

Namespaces Revisited

Thus far, we have started all of our programs with the following two lines:

#include <iostream>
using namespace std;

Display 4.14   Local, Global, and Block Scope

Block Scope Revisited

 1 #include <iostream>
 2 using namespace std;
 3
 4 const double GLOBAL_CONST = 1.0;
 5
 6 int function1(int param);
 7
 8 int main()
 9 {
10 int x;
11 double d = GLOBAL_CONST;
12
13 for (int i = 0; i < 10; i++)
14 {
15 x = function1(i);
16 }
17 return 0;
18 }
19
20 int function1(int param)
21 {
22 double y = GLOBAL_CONST;
23 ...
24 return 0;
25 }

Local and Global scope are examples of Block scope.
A variable can be directly accessed only within its scope.

Block scope:
Variable i has
scope from
lines 13-16

Local scope to
main: Variable
x has scope
from lines
10-18 and
variable d has
scope from
lines 11-18

Global scope:
The constant
GLOBAL_CONST
has scope from
lines 4-25 and
the function
function1
has scope from
lines 6-25

Local scope to function1:
Variable param
has scope from lines 20-25
and variable y has scope
from lines 22-25

228	 Chapter 4 /  Procedural Abstraction and Functions That Return a Value

However, the start of the file is not always the best location for the line

using namespace std;

We will eventually be using more namespaces than just std. In fact, we may
be using different namespaces in different function definitions. If you place
the directive

using namespace std;

inside the brace { that starts the body of a function definition, then the using
directive applies to only that function definition. This will allow you to use
two different namespaces in two different function definitions, even if the two
function definitions are in the same file and even if the two namespaces have
some name(s) with different meanings in the two different namespaces.

Placing a using directive inside a function definition is analogous to
placing a variable declaration inside a function definition. If you place
a variable definition inside a function definition, the variable is local to
the function; that is, the meaning of the variable declaration is confined
to the function definition. If you place a using directive inside a function
definition, the using directive is local to the function definition; in other
words, the meaning of the using directive is confined to the function
definition.

It will be some time before we use any namespace other than std in
a using directive, but it will be good practice to start placing these using
directives where they should go. In Display 4.15 we have rewritten the
program in Display 4.12 with the using directives where they should be
placed. The program in Display 4.15 will behave exactly the same as the one
in Display 4.12. In this particular case, the difference is only one of style, but
when you start to use more namespaces, the difference will affect how your
programs perform.

Display 4.15   Using Namespaces (part 1 of 2)

 1 //Computes the area of a circle and the volume of a sphere.
 2 //Uses the same radius for both calculations.
 3 #include <iostream>
 4 #include <cmath>
 5
 6 const double PI = 3.14159;
 7
 8 double area(double radius);
 9 //Returns the area of a circle with the specified radius.
10
11 double volume(double radius);
12 //Returns the volume of a sphere with the specified radius.

(continued)

	 4.5  Scope and Local Variables	 229

Self-Test Exercises

20.	 If you use a variable in a function definition, where should you declare
the variable? In the function definition? In the main part of the program?
Any place that is convenient?

Display 4.15   Using Namespaces (part 2 of 2)

13
14 int main()
15 {
16 using namespace std;
17
18 double radius_of_both, area_of_circle, volume_of_sphere;
19
20 cout << "Enter a radius to use for both a circle\n"
21 << "and a sphere (in inches): ";
22 cin >> radius_of_both;
23
24 area_of_circle = area(radius_of_both);
25 volume_of_sphere = volume(radius_of_both);
26
27 cout << "Radius = " << radius_of_both << " inches\n"
28 << "Area of circle = " << area_of_circle
29 << " square inches\n"
30 << "Volume of sphere = " << volume_of_sphere
31 << " cubic inches\n";
32
33 return 0;
34 }
35
36
37 double area(double radius)
38 {
39 using namespace std;
40
41 return (PI * pow(radius, 2));
42 }
43
44 double volume(double radius)
45 {
46 using namespace std;
47
48 return ((4.0/3.0) * PI * pow(radius, 3));
49 }

The sample dialogue for this program
would be the same as the one for the
program in Display 4.12.

230	 Chapter 4 /  Procedural Abstraction and Functions That Return a Value

21.	 Suppose a function named Function1 has a variable named sam declared
within the definition of Function1, and a function named Function2 also
has a variable named sam declared within the definition of Function2.
Will the program compile (assuming everything else is correct)? If the
program will compile, will it run (assuming that everything else is
correct)? If it runs, will it generate an error message when run (assuming
everything else is correct)? If it runs and does not produce an error
message when run, will it give the correct output (assuming everything
else is correct)?

22.	 The following function is supposed to take as arguments a length
expressed in feet and inches and return the total number of inches in that
many feet and inches. For example, total_inches(1,2) is supposed to
return 14, because 1 foot and 2 inches is the same as 14 inches. Will the
following function perform correctly? If not, why not?

double total_inches(int feet, int inches)
{
 inches = 12 * feet + inches;
 return inches;
}

23.	 Write a function declaration and function definition for a function called
read_filter that has no parameters and that returns a value of type
double. The function read_filter prompts the user for a value of type
double and reads the value into a local variable. The function returns
the value read provided this value is greater than or equal to zero and
returns zero if the value read is negative.

 P rogramming Example  The Factorial Function

Display 4.16 contains the function declaration and definition for a commonly
used mathematical function known as the factorial function. In mathematics
texts, the factorial function is usually written n! and is defined to be the
product of all the integers from 1 to n. In traditional mathematical notation,
you can define n! as follows:

n! = 1 × 2 × 3 × ... × n

In the function definition we perform the multiplication with a while
loop. Note that the multiplication is performed in the reverse order to what
you might expect. The program multiplies by n, then n – 1, then n – 2, and so
forth.

	 4.5  Scope and Local Variables	 231

Display 4.16   Factorial Function

Function Declaration

 1 int factorial(int n);
 2 //Returns factorial of n.
 3 //The argument n should be nonnegative.

Function Definition

 1 int factorial(int n)
 2 {
 3 int product = 1;
 4 while (n > 0)
 5 {
 6 product = n * product;
 7 n--;
 8 }
 9
10 return product;
11 }

formal parameter n
used as a local variable

Formal parameter
used as a local
variable

The function definition for factorial uses two local variables:
product, which is declared at the start of the function body, and the
formal parameter n. Since a formal parameter is a local variable, we can
change its value. In this case we change the value of the formal parameter
n with the decrement operator n––. (The decrement operator was discussed
in Chapter 2.)

Each time the body of the loop is executed, the value of the variable
product is multiplied by the value of n, and then the value of n is decreased
by one using n––. If the function factorial is called with 3 as its argument,
then the first time the loop body is executed the value of product is 3, the next
time the loop body is executed the value of product is 3 * 2, the next time
the value of product is 3 * 2 * 1, and then the while loop ends. Thus, the
following will set the variable x equal to 6 which is 3 * 2 * 1:

x = factorial(3);

Notice that the local variable product is initialized to the value 1 when
the variable is declared. (This way of initializing a variable when it is declared
was introduced in Chapter 2.) It is easy to see that 1 is the correct initial
value for the variable product. To see that this is the correct initial value for
product, note that after executing the body of the while loop the first time,
we want the value of product to be equal to the (original) value of the formal
parameter n; if product is initialized to 1, then this will be what happens.

232	 Chapter 4 /  Procedural Abstraction and Functions That Return a Value

4.6  Overloading Function Names

“...— and that shows that there are three hundred and sixty-four days when
you might get un-birthday presents —”

“Certainly,” said Alice.

“And only one for birthday presents, you know. There’s glory for you!”

“I don’t know what you mean by ‘glory,’ ” Alice said.

Humpty Dumpty smiled contemptuously, “Of course you don’t — till I tell you.
I mean ‘there’s a nice knock-down argument for you!’ ”

“But ‘glory’ doesn’t mean ‘a nice knock-down argument,’ ” Alice objected.

“When I use a word,” Humpty Dumpty said, in rather a scornful tone,
“it means just what I choose it to mean — neither more nor less.”

“The question is,” said Alice, “whether you can make words mean so many
different things.”

“The question is,” said Humpty Dumpty, “which is to be master — that’s all.”

Lewis Carroll, Through the Looking-Glass

C++ allows you to give two or more different definitions to the same function
name, which means you can reuse names that have strong intuitive appeal
across a variety of situations. For example, you could have three functions
called max: one that computes the largest of two numbers, another that
computes the largest of three numbers, and yet another that computes the
largest of four numbers. When you give two (or more) function definitions
for the same function name, that is called overloading the function name.
Overloading does require some extra care in defining your functions and
should not be used unless it will add greatly to your program’s readability. But
when it is appropriate, overloading can be very effective.

Introduction to Overloading

Suppose you are writing a program that requires you to compute the average
of two numbers. You might use the following function definition:

double ave(double n1, double n2)
{
 return ((n1 + n2)/2.0);
}

Now suppose your program also requires a function to compute the average
of three numbers. You might define a new function called ave3 as follows:

double ave3(double n1, double n2, double n3)
{
 return ((n1 + n2 + n3)/3.0);
}

	 4.6  Overloading Function Names	 233

This will work, and in many programming languages you have no choice but to
do something like this. Fortunately, C++ allows for a more elegant solution. In
C++ you can simply use the same function name ave for both functions; you can
use the following function definition in place of the function definition ave3:

double ave(double n1, double n2, double n3)
{
 return ((n1 + n2 + n3)/3.0);
}

Display 4.17   Overloading a Function Name

 1 //Illustrates overloading the function name ave.
 2 #include <iostream>
 3
 4 double ave(double n1, double n2);
 5 //Returns the average of the two numbers n1 and n2.
 6
 7 double ave(double n1, double n2, double n3);
 8 //Returns the average of the three numbers n1, n2, and n3.
 9
10 int main()
11 {
12 using namespace std;
13 cout << "The average of 2.0, 2.5, and 3.0 is "
14 << ave(2.0, 2.5, 3.0) << endl;
15
16 cout << "The average of 4.5 and 5.5 is "
17 << ave(4.5, 5.5) << endl;
18
19 return 0;
20 }
21
22 double ave(double n1, double n2)
23 {
24 return ((n1 + n2)/2.0);
25 }
26
27 double ave(double n1, double n2, double n3)
28 {
29 return ((n1 + n2 + n3)/3.0);
30 }
31
32

Output

The average of 2.0, 2.5, and 3.0 is 2.50000

The average of 4.5 and 5.5 is 5.00000

three arguments

two arguments

234	 Chapter 4 /  Procedural Abstraction and Functions That Return a Value

The function name ave now has two definitions. This is an example of
overloading. In this case we have overloaded the function name ave. In
Display 4.17 we have embedded these two function definitions for ave into a
complete sample program. Be sure to notice that each function definition has
its own function declaration.

Overloading is a great idea. It makes a program easier to read, and it
saves you from going crazy trying to think up a new name for a function
just because you already used the most natural name in some other func-
tion definition. But how does the compiler know which function definition
to use when it encounters a call to a function name that has two or more
definitions? The compiler cannot read a programmer’s mind. In order to tell
which function definition to use, the compiler checks the number of argu-
ments and the types of the arguments in the function call. In the program
in Display 4.17, one of the functions called ave has two arguments and the
other has three arguments. To tell which definition to use, the compiler
simply counts the number of arguments in the function call. If there are two
arguments, it uses the first definition. If there are three arguments, it uses the
second definition.

Whenever you give two or more definitions to the same function name,
the various function definitions must have different specifications for their
arguments; that is, any two function definitions that have the same function
name must use different numbers of formal parameters or use formal
parameters of different types (or both). Notice that when you overload a
function name, the function declarations for the two different definitions
must differ in their formal parameters. You cannot overload a function name by
giving two definitions that differ only in the type of the value returned.

Overloading is not really new to you. You saw a kind of overloading in
Chapter 2 with the division operator /. If both operands are of type int, as
in 13/2, then the value returned is the result of integer division, in this case 6.
On the other hand, if one or both operands are of type double, then the value
returned is the result of regular division; for example, 13/2.0 returned the
value 6.5. There are two definitions for the division operator /, and the two

Overloading a Function Name

If you have two or more function definitions for the same function name,
that is called overloading. When you overload a function name, the
function definitions must have different numbers of formal parameters or
some formal parameters of different types. When there is a function call, the
compiler uses the function definition whose number of formal parameters
and types of formal parameters match the arguments in the function call.

Determining
which definition
applies

	 4.6  Overloading Function Names	 235

definitions are distinguished not by having different numbers of operands,
but rather by requiring operands of different types. The difference between
overloading of / and overloading function names is that the compiler has
already done the overloading of / but you program the overloading of the
function name. We will see in a later chapter how to overload operators such
as +, –, and so on.

 P rogramming Example  Revised Pizza-Buying Program

The Pizza Consumers Union has been very successful with the program that
we wrote for it in Display 4.10. In fact, now everybody always buys the pizza
that is the best buy. One disreputable pizza parlor used to make money by
fooling consumers into buying the more expensive pizza, but our program has
put an end to their evil practices. However, the owners wish to continue their
despicable behavior and have come up with a new way to fool consumers.
They now offer both round pizzas and rectangular pizzas. They know that the
program we wrote cannot deal with rectangularly shaped pizzas, so they hope
they can again confuse consumers. We need to update our program so that we
can foil their nefarious scheme. We want to change the program so that it can
compare a round pizza and a rectangular pizza.

The changes we need to make to our pizza evaluation program are clear:
We need to change the input and output a bit so that it deals with two
different shapes of pizzas. We also need to add a new function that can
compute the cost per square inch of a rectangular pizza. We could use the
following function definition in our program so that we can compute the unit
price for a rectangular pizza:

double unitprice_rectangular
 (int length, int width, double price)
{
 double area = length * width;
 return (price/area);
}

However, this is a rather long name for a function; in fact, it’s so long that we
needed to put the function heading on two lines. That is legal, but it would be
nicer to use the same name, unitprice, for both the function that computes
the unit price for a round pizza and for the function that computes the unit
price for a rectangular pizza. Since C++ allows overloading of function names,
we can do this. Having two definitions for the function unitprice will pose
no problems to the compiler because the two functions will have different
numbers of arguments. Display 4.18 shows the program we obtained when
we modified our pizza evaluation program to allow us to compare round
pizzas with rectangular pizzas.

236	 Chapter 4 /  Procedural Abstraction and Functions That Return a Value

Display 4.18   Overloading a Function Name (part 1 of 2)

 1 //Determines whether a round pizza or a rectangular pizza is the best buy.
 2 #include <iostream>
 3
 4 double unitprice(int diameter, double price);
 5 //Returns the price per square inch of a round pizza.
 6 //The formal parameter named diameter is the diameter of the pizza
 7 //in inches. The formal parameter named price is the price of the pizza.
 8
 9 double unitprice(int length, int width, double price);
10 //Returns the price per square inch of a rectangular pizza
11 //with dimensions length by width inches.
12 //The formal parameter price is the price of the pizza.
13
14 int main()
15 {
16 using namespace std;
17 int diameter, length, width;
18 double price_round, unit_price_round,
19 price_rectangular, unitprice_rectangular;
20
21 cout << "Welcome to the Pizza Consumers Union.\n";
22 cout << "Enter the diameter in inches"
23 << " of a round pizza: ";
24 cin >> diameter;
25 cout << "Enter the price of a round pizza: $";
26 cin >> price_round;
27 cout << "Enter length and width in inches\n"
28 << "of a rectangular pizza: ";
29 cin >> length >> width;
30 cout << "Enter the price of a rectangular pizza: $";
31 cin >> price_rectangular;
32
33 unitprice_rectangular =
34 unitprice(length, width, price_rectangular);
35 unit_price_round = unitprice(diameter, price_round);
36
37 cout.setf(ios::fixed);
38 cout.setf(ios::showpoint);
39 cout.precision(2);
40 cout << endl
41 << "Round pizza: Diameter = "
42 << diameter << " inches\n"
43 << "Price = $" << price_round
44 << " Per square inch = $" << unit_price_round
45 << endl
46 << "Rectangular pizza: Length = "
47 << length << " inches\n"

(continued)

Display 4.18   Overloading a Function Name (part 2 of 2)

48 << "Rectangular pizza: Width = "
49 << width << " inches\n"
50 << "Price = $" << price_rectangular
51 << " Per square inch = $" << unitprice_rectangular
52 << endl;
53
54 if (unit_price_round < unitprice_rectangular)
55 cout << "The round one is the better buy.\n";
56 else
57 cout << "The rectangular one is the better buy.\n";
58
59 cout << "Buon Appetito!\n";
60 return 0;
61 }
62
63 double unitprice(int diameter, double price)
64 {
65 const double PI = 3.14159;
66 double radius, area;
67
68 radius = diameter/static_cast<double>(2);
69 area = PI * radius * radius;
70 return (price/area);
71 }
72
73 double unitprice(int length, int width, double price)
74 {
75 double area = length * width;
76 return (price/area);
77 }

Sample Dialogue

Welcome to the Pizza Consumers Union.

Enter the diameter in inches of a round pizza: 10

Enter the price of a round pizza: $8.50
Enter length and width in inches of a rectangular pizza: 6 4

Enter the price of a rectangular pizza: $7.55

Round pizza: Diameter = 10 inches

Price = $8.50 Per square inch = $0.11

Rectangular pizza: Length = 6 inches

Rectangular pizza: Width = 4 inches

Price = $7.55 Per square inch = $0.31

The round one is the better buy.

Buon Appetito!

	 4.6  Overloading Function Names	 237

238	 Chapter 4 /  Procedural Abstraction and Functions That Return a Value

Automatic Type Conversion

Suppose that the following function definition occurs in your program and
that you have not overloaded the function name mpg (so this is the only
definition of a function called mpg).

double mpg(double miles, double gallons)
//Returns miles per gallon.
{
 return (miles/gallons);
}

If you call the function mpg with arguments of type int, then C++ will
automatically convert any argument of type int to a value of type double.
Hence, the following will output 22.5 miles per gallon to the screen:

cout << mpg(45, 2) << " miles per gallon";

C++ converts the 45 to 45.0 and the 2 to 2.0, then performs the division
45.0/2.0 to obtain the value returned, which is 22.5.

If a function requires an argument of type double and you give it an
argument of type int, C++ will automatically convert the int argument to
a value of type double. This is so useful and natural that we hardly give
it a thought. However, overloading can interfere with this automatic type
conversion. Let’s look at an example.

Now, suppose you had (foolishly) overloaded the function name mpg so
that your program also contained the following definition of mpg (as well as
the previous one):

int mpg(int goals, int misses)
//Returns the Measure of Perfect Goals
//which is computed as (goals - misses).
{
 return (goals − misses);
}

In a program that contains both of these definitions for the function
name mpg, the following will (unfortunately) output 43 miles per gallon
(since 43 is 45 – 2):

cout << mpg(45, 2) << " miles per gallon";

When C++ sees the function call mpg(45, 2), which has two arguments of
type int, C++ first looks for a function definition of mpg that has two formal
parameters of type int. If it finds such a function definition, C++ uses that
function definition. C++ does not convert an int argument to a value of type
double unless that is the only way it can find a matching function definition.

The mpg example illustrates one more point about overloading. You
should not use the same function name for two unrelated functions. Such
careless use of function names is certain to eventually produce confusion.

Interaction of
overloading and
type conversion

	 4.6  Overloading Function Names	 239

Self-Test Exercises

24.	 Suppose you have two function definitions with the following function
declarations:

double score(double time, double distance);
int score(double points);

		 Which function definition would be used in the following function call
and why would it be the one used? (x is of type double.)

final_score = score(x);

25.	 Suppose you have two function definitions with the following function
declarations:

double the_answer(double data1, double data2);
double the_answer(double time, int count);

		 Which function definition would be used in the following function call
and why would it be the one used? (x and y are of type double.)

x = the_answer(y, 6.0);

26.	 Suppose you have two function definitions with the function declarations
given in Self-Test Exercise 25. Which function definition would be used in
the following function call and why would it be the one used?

x = the_answer(5, 6);

27.	 Suppose you have two function definitions with the function declarations
given in Self-Test Exercise 25. Which function definition would be used in
the following function call and why would it be the one used?

x = the_answer(5, 6.0);

28.	 This question has to do with the Programming Example “Revised Pizza-
Buying Program.” Suppose the evil pizza parlor that is always trying to
fool customers introduces a square pizza. Can you overload the function
unitprice so that it can compute the price per square inch of a square
pizza as well as the price per square inch of a round pizza? Why or why
not?

29.	 Look at the program in Display 4.18. The main function contains the
using directive:

using namespace std;

		 Why doesn’t the method unitprice contain this using directive?

240	 Chapter 4 /  Procedural Abstraction and Functions That Return a Value

Chapter Summary

■ 	 A good plan of attack for designing the algorithm for a program is to break
down the task to be accomplished into a few subtasks, then decompose each
subtask into smaller subtasks, and so forth until the subtasks are simple
enough that they can easily be implemented as C++ code. This approach is
called top-down design.

■	 A function that returns a value is like a small program. The arguments to the
function serve as the input to this “small program” and the value returned
is like the output of the “small program.”

■	 When a subtask for a program takes some values as input and produces a
single value as its only result, then that subtask can be implemented as a
function.

■	 A function should be defined so that it can be used as a black box. The
programmer who uses the function should not need to know any details
about how the function is coded. All the programmer should need to know
is the function declaration and the accompanying comment that describes
the value returned. This rule is sometimes called the principle of procedural
abstraction.

■	 A variable that is declared in a function definition is said to be local to the
function.

■	 Global named constants are declared using the const modifier. Declarations
for global named constants are normally placed at the start of a program
after the include directives and before the function declarations.

■	 Call-by-value formal parameters (which are the only kind of formal param-
eter discussed in this chapter) are variables that are local to the function.
Occasionally, it is useful to use a formal parameter as a local variable.

■	 When you have two or more function definitions for the same function
name, that is called overloading the function name. When you overload
a function name, the function definitions must have different numbers of
formal parameters or some formal parameters of different types.

Answers to Self-Test Exercises

	  1.	 4.0	 4.0	 8.0
		 8.0	 8.0	 1.21
		 3	 3	 0
		 3.0	 3.5	 3.5
		 6.0	 6.0	 5.0
		 5.0	 4.5	 4.5
		 3	 3.0	 3.0

	 Answers to Self-Test Exercises	 241

	  2.	 sqrt(x + y)
		 pow(x, y + 7)
		 sqrt(area + fudge)
		 sqrt(time + tide)/nobody
		 (−b + sqrt(b * b − 4 * a * c))/(2 * a)
		 abs(x − y) or labs(x − y) or fabs(x − y)

	  3.	 //Computes the square root of 3.14159.
		 #include <iostream>
		 #include <cmath>//provides sqrt and PI.
		 using namespace std;
		 int main()
		 {
			 cout << "The square root of " >> PI
			 << sqrt(PI) << endl;
 			 return 0;
		 }

	  4.	 a.  //To determine whether the compiler will tolerate
 //spaces before the # in the #include:
 #include <iostream>
 using namespace std;
 int main()
 {
 cout << "hello world" << endl;
 return 0;
 }

		 b.  //To determine if the compiler will allow spaces
 //between the # and include in the #include:
 # include<iostream>
	 using namespace std;
 //The rest of the program can be identical to the above.

	  5.	   Wow

	 6.	The function declaration is:

		 int sum(int n1, int n2, int n3);
		 //Returns the sum of n1, n2, and n3.

		 The function definition is:

		 int sum(int n1, int n2, int n3)
		 {
			 return (n1 + n2 + n3);
		 }

242	 Chapter 4 /  Procedural Abstraction and Functions That Return a Value

	 7.	The function declaration is:

		 double ave(int n1, double n2);
		 //Returns the average of n1 and n2.

		 The function definition is:

		 double ave(int n1, double n2)
		 {
		 return ((n1 + n2)/2.0);
		 }

	  8.	 The function declaration is:

		 char positive_test(double number);
		 //Returns 'P' if number is positive.
		 //Returns 'N' if number is negative or zero.

		 The function definition is:

		 char positive_test(double number)
		 {
		 if (number > 0)
		 return 'P';
		 else
		 return 'N';
		 }

	  9.	 Suppose the function is defined with arguments, say param1 and param2.
The function is then called with corresponding arguments arg1 and arg2.
The values of the arguments are “plugged in” for the corresponding formal
parameters, arg1 into param1, arg2 into param2. The formal parameters are
then used in the function.

	10.	 Predefined (library) functions usually require that you #include a header
file. For a programmer-defined function, the programmer puts the code
for the function either into the file with the main part of the program or in
another file to be compiled and linked to the main program.

	11.	bool in_order(int n1, int n2, int n3)
		 {
		 return ((n1 <= n2) && (n2 <= n3));
		 }

	12.	bool even(int n)
		 {
		 return ((n % 2) == 0);
		 }

	 Answers to Self-Test Exercises	 243

	13.	bool is digit(char ch)
		 {
		 return ('0' <= ch) && (ch <= '9');
		 }

	14.	bool is_root_of(int root_candidate, int number)
		 {
		 return (number == root_candidate * root_candidate);
		 }

	15.	 The comment explains what value the function returns and gives any other
information that you need to know in order to use the function.

	16.	 The principle of procedural abstraction says that a function should be writ-
ten so that it can be used like a black box. This means that the programmer
who uses the function need not look at the body of the function definition
to see how the function works. The function declaration and accompany-
ing comment should be all the programmer needs to know in order to use
the function.

	17.	 When we say that the programmer who uses a function should be able to
treat the function like a black box, we mean the programmer should not
need to look at the body of the function definition to see how the function
works. The function declaration and accompanying comment should be all
the programmer needs to know in order to use the function.

	18.	 In order to increase your confidence in your program, you should test it
on input values for which you know the correct answers. Perhaps you can
calculate the answers by some other means, such as pencil and paper or
hand calculator.

	19.	 Yes, the function would return the same value in either case, so the two
definitions are black-box equivalent.

	20.	 If you use a variable in a function definition, you should declare the vari-
able in the body of the function definition.

	21.	 Everything will be fine. The program will compile (assuming everything
else is correct). The program will run (assuming that everything else is cor-
rect). The program will not generate an error message when run (assuming
everything else is correct). The program will give the correct output (assum-
ing everything else is correct).

	22.	 The function will work fine. That is the entire answer, but here is some
additional information: The formal parameter inches is a call-by-value
parameter and, as discussed in the text, it is therefore a local variable. Thus,
the value of the argument will not be changed.

244	 Chapter 4 /  Procedural Abstraction and Functions That Return a Value

	23.	 The function declaration is:

		 double read_filter();
		 //Reads a number from the keyboard. Returns the number
		 //read provided it is >= 0; otherwise returns zero.

		 The function definition is:

		 //uses iostream
		 double read_filter()
		 {
		 using namespace std;
		 double value_read;
		 cout << "Enter a number:\n";
		 cin >> value_read;

		 if (value_read >= 0)
		 return value_read;
		 else
		 return 0.0;
		 }

	24.	 The function call has only one argument, so it would use the function
definition that has only one formal parameter.

	25.	 The function call has two arguments of type double, so it would use the
function corresponding to the function declaration with two arguments of
type double (that is, the first function declaration).

	26.	 The second argument is of type int and the first argument would be auto-
matically converted to type double by C++ if needed, so it would use the
function corresponding to the function declaration with the first argument
of type double and the second argument of type int (that is, the second
function declaration).

	27.	 The second argument is of type double and the first argument would be au-
tomatically converted to type double by C++ if needed, so it would use the
function corresponding to the function declaration with two arguments of
type double (that is, the first function declaration).

	28.	 This cannot be done (at least not in any nice way). The natural ways to
represent a square and a round pizza are the same. Each is naturally rep-
resented as one number, which is the diameter for a round pizza and the
length of a side for a square pizza. In either case the function unitprice
would need to have one formal parameter of type double for the price
and one formal parameter of type int for the size (either radius or side).
Thus, the two function declarations would have the same number and
types of formal parameters. (Specifically, they would both have one formal

	 Practice Programs	 245

parameter of type double and one formal parameter of type int.) Thus, the
compiler would not be able to decide which definition to use. You can still
defeat this evil pizza parlor’s strategy by defining two functions, but they
will need to have different names.

	29.	 The definition of unitprice does not do any input or output and so does
not use the library iostream. In main we needed the using directive be-
cause cin and cout are defined in iostream and those definitions place
cin and cout in the std namespace.

Practice Programs

Practice Programs can generally be solved with a short program that directly applies
the programming principles presented in this chapter.

	  1.	 A liter is 0.264179 gallons. Write a program that will read in the number
of liters of gasoline consumed by the user’s car and the number of miles
traveled by the car and will then output the number of miles per gallon the
car delivered. Your program should allow the user to repeat this calculation
as often as the user wishes. Define a function to compute the number of
miles per gallon. Your program should use a globally defined constant for
the number of liters per gallon.

	  2.	 Modify your program from Practice Program 1 so that it will take input
data for two cars and output the number of miles per gallon delivered by
each car. Your program will also announce which car has the best fuel ef-
ficiency (highest number of miles per gallon).

	  3.	 The price of stocks is sometimes given to the nearest eighth of a dollar; for
example, 297/8 or 891/2. Write a program that computes the value of the
user’s holding of one stock. The program asks for the number of shares of
stock owned, the whole-dollar portion of the price, and the fraction portion.
The fraction portion is to be input as two int values, one for the numerator
and one for the denominator. The program then outputs the value of the
user’s holdings. Your program should allow the user to repeat this calculation
as often as the user wishes and will include a function definition that has
three int arguments consisting of the whole-dollar portion of the price and
the two integers that make up the fraction part. The function returns the price
of one share of stock as a single number of type double.

	  4.	 Write a program to gauge the rate of inflation for the past year. The pro-
gram asks for the price of an item (such as a hot dog or a 1-carat diamond)
both one year ago and today. It estimates the inflation rate as the difference
in price divided by the year-ago price. Your program should allow the user
to repeat this calculation as often as the user wishes. Define a function to
compute the rate of inflation. The inflation rate should be a value of type
double giving the rate as a percent, for example 5.3 for 5.3 percent.

246	 Chapter 4 /  Procedural Abstraction and Functions That Return a Value

	  5.	 Enhance your program from the previous Practice Program by having it
also print out the estimated price of the item in one and in two years
from the time of the calculation. The increase in cost over one year is
estimated as the inflation rate times the price at the start of the year. Define
a second function to determine the estimated cost of an item in one year,
given the current price of the item and the inflation rate as arguments.

	  6.	 Write a function declaration for a function that computes interest on a credit
card account balance. The function takes arguments for the initial balance,
the monthly interest rate, and the number of months for which interest must
be paid. The value returned is the interest due. Do not forget to compound
the interest—that is, to charge interest on the interest due. The interest due
is added into the balance due, and the interest for the next month is com-
puted using this larger balance. Use a while loop that is similar to (but need
not be identical to) the one shown in Display 2.14. Embed the function in
a program that reads the values for the interest rate, initial account balance,
and number of months, then outputs the interest due. Embed your function
definition in a program that lets the user compute interest due on a credit
account balance. The program should allow the user to repeat the calculation
until the user says he or she wants to end the program.

	  7.	 The gravitational attractive force between two bodies with masses m1 and
m2 separated by a distance d is given by:

F =
Gm1m2

d 2

		 where G is the universal gravitational constant:

G = 6.673 × 10−8 cm
3

g × sec2

		 Write a function definition that takes arguments for the masses of two bod-
ies and the distance between them and that returns the gravitational force.
Since you will use the preceding formula, the gravitational force will be in
dynes. One dyne equals

g × cm
sec2

		 You should use a globally defined constant for the universal gravitational
constant. Embed your function definition in a complete program that
computes the gravitational force between two objects given suitable inputs.
Your program should allow the user to repeat this calculation as often as
the user wishes.

	  8.	 That we are “blessed” with several absolute value functions is an accident
of history. C libraries were already available when C++ arrived; they could
be easily used, so they were not rewritten using function overloading. You
are to find all the absolute value functions you can and rewrite all of them

Solution to Practice
Program 4.7

VideoNote

� �

� �

	 Programming Projects	 247

overloading the abs function name. At a minimum, you should have the
int, long, float, and double types represented.

	  9.	 Write an overloaded function max that takes either two or three parameters
of type double and returns the largest of them.

Programming Projects

Programming Projects require more problem-solving than Practice Programs and
can usually be solved many different ways. Visit www.myprogramminglab.com to
complete many of these Programming Projects online and get instant feedback.

	  1.	 Write a program that computes the annual after-tax cost of a new house for
the first year of ownership. The cost is computed as the annual mortgage
cost minus the tax savings. The input should be the price of the house
and the down payment. The annual mortgage cost can be estimated as
3 percent of the initial loan balance credited toward paying off the loan
principal plus 6 percent of the initial loan balance in interest. The initial
loan balance is the price minus the down payment. Assume a 35 percent
marginal tax rate and assume that interest payments are tax deductible. So,
the tax savings is 35 percent of the interest payment. Your program should
use at least two function definitions and should allow the user to repeat
this calculation as often as the user wishes.

	  2.	 Write a program that asks for the user’s height, weight, and age, and then
computes clothing sizes according to the formulas:

		 ■  �H at size = weight in pounds divided by height in inches and all that
multiplied by 2.9.

		 ■  � Jacket size (chest in inches) = height times weight divided by 288 and then
adjusted by adding 1/8 of an inch for each 10 years over age 30. (Note
that the adjustment only takes place after a full 10 years. So, there is no
adjustment for ages 30 through 39, but 1/8 of an inch is added for age 40.)

		 ■  � Waist in inches = weight divided by 5.7 and then adjusted by adding
1/10 of an inch for each 2 years over age 28. (Note that the adjustment
only takes place after a full 2 years. So, there is no adjustment for age 29,
but 1/10 of an inch is added for age 30.)

		 Use functions for each calculation. Your program should allow the user to
repeat this calculation as often as the user wishes.

	  3.	 Modify your program from Programming Project 2 so that it also calculates
the user’s jacket and waist sizes after 10 years.

	  4.	 Write a program that outputs the lyrics for the song “Ninety-Nine Bottles
of Beer on the Wall.” Your program should print the number of bottles in
English, not as a number. For example:

www.myprogramminglab.com

248	 Chapter 4 /  Procedural Abstraction and Functions That Return a Value

			N inety-nine bottles of beer on the wall,

			N inety-nine bottles of beer,

			 Take one down, pass it around,

			N inety-eight bottles of beer on the wall.

			 …

			O ne bottle of beer on the wall,

			O ne bottle of beer,

			 Take one down, pass it around,

			 Zero bottles of beer on the wall.

		 Design your program with a function that takes as an argument an integer
between 0 and 99 and returns a string that contains the integer value in
English. Your function should not have 100 different if-else statements!
Instead, use % and / to extract the tens and ones digits to construct the English
string. You may need to test specifically for values such as 0, 10–19, etc.

	  5.	 To maintain one’s body weight, an adult human needs to consume enough
calories daily to (1) meet the basal metabolic rate (energy required to
breathe, maintain body temperature, etc.), (2) account for physical activity
such as exercise, and (3) account for the energy required to digest the food
that is being eaten. For an adult that weighs P pounds, we can estimate
these caloric requirements using the following formulas:

		 A.	 Basal metabolic rate: Calories required = 70 * (P / 2.2)0.756

		 B.	 Physical activity: Calories required = 0.0385 * Intensity * P * Minutes

		H ere, Minutes is the number of minutes spent during the physical activity,
and Intensity is a number that estimates the intensity of the activity. Here
are some sample numbers for the range of values:

Activity Intensity

Running 10 mph: 17

Running 6 mph: 10

Basketball: 8

Walking 1 mph: 1

		 C.	 Energy to digest food: calories required = TotalCaloriesConsumed * 0.1

		 In other words, 10 percent of the calories we consume goes towards digestion.

		 Write a function that computes the calories required for the basal metabolic
rate, taking as input a parameter for the person’s weight. Write another
function that computes the calories required for physical activity, taking as
input parameters for the intensity, weight, and minutes spent exercising.

	 Programming Projects	 249

		 Use these functions in a program that inputs a person’s weight, an estimate
for the intensity of physical activity, the number of minutes spent perform-
ing the physical activity, and the number of calories in one serving of your
favorite food. The program should then calculate and output how many
servings of that food should be eaten per day to maintain the person’s cur-
rent weight at the specified activity level. The computation should include
the energy that is required to digest food.

You can find estimates of the caloric content of many foods on the Web.
For example, a double cheeseburger has approximately 1000 calories.

	  6.	 You have invented a vending machine capable of deep frying twinkies.
Write a program to simulate the vending machine. It costs $3.50 to buy a
deep-fried twinkie, and the machine only takes coins in denominations of
a dollar, quarter, dime, or nickel. Write code to simulate a person putting
money into the vending machine by repeatedly prompting the user for the
next coin to be inserted. Output the total entered so far when each coin is
inserted. When $3.50 or more is added, the program should output “Enjoy
your deep-fried twinkie” along with any change that should be returned.
Use top-down design to determine appropriate functions for the program.

	  7.	 Your time machine is capable of going forward in time up to 24 hours.
The machine is configured to jump ahead in minutes. To enter the proper
number of minutes into your machine, you would like a program that can
take a start time (in hours, minutes, and a Boolean indicating AM or PM)
and a future time (in hours, minutes, and a Boolean indicating AM or PM)
and calculate the difference in minutes between the start and future time.

		 A time is specified in your program with three variables:

int hours, minutes;
bool isAM;

		F or example, to represent 11:50 PM, you would store:

hours = 11
minutes = 50
isAM = false;

		 This means that you need six variables to store a start and future time.

		 Write a program that allows the user to enter a start time and a future time.
Include a function named computeDifference that takes the six variables
as parameters that represent the start time and future time. Your function
should return, as an int, the time difference in minutes. For example, given
a start time of 11:59 AM and a future time of 12:01 PM, your program
should compute 2 minutes as the time difference. Given a start time of
11:59 AM and a future time of 11:58 AM, your program should compute
1439 minutes as the time difference (23 hours and 59 minutes).

250	 Chapter 4 /  Procedural Abstraction and Functions That Return a Value

		 You may need “AM” or “PM” from the user’s input by reading in two
character values. (Display 2.3 illustrates character input.) Characters can
be compared just like numbers. For example, if the variable a_char is of
type char, then (a_char == 'A') is a Boolean expression that evaluates to
true if a_char contains the letter A.

	  8.	 Do Programming Project 11 from Chapter 3 except write a function named
containsDigit that determines if a number contains a particular digit. The
header should look like:

bool containsDigit(int number, int digit);

		 If number contains digit, then the function should return true. Otherwise,
the function should return false. Your program should use this function
to find the closest numbers that can be entered on the keypad.

	  9.	 Your sports league uses the following lottery system to select draft picks for
the four worst teams in the league:

		 ■   The last place team gets 20 balls in an urn.

		 ■   The second-to-last place team gets 10 balls in the urn.

		 ■   The third-to-last place team gets 6 balls in the urn

		 ■   The fourth-to-last place team gets 4 balls in the urn.

		 To determine the first pick in the draft a ball is selected at random. The team
owning that ball gets the first pick. The ball is then put back in the urn.

		 To determine the second pick in the draft a ball is selected at random. If the
ball belongs to the team that got the first pick then it is put back in and the
process repeats until a ball is selected that does not belong to the first pick.

		 To determine subsequent picks in the draft the process repeats until a ball
is selected that belongs to a team that has not already been chosen.

		 Write a function that takes as input which of the four teams have already
been granted picks, simulates selecting a ball from the urn according to the
lottery rules, and returns the team that belongs to the selected ball. You get
to choose how to design your function to perform these actions. Write a
main function that outputs the draft order (e.g., a possible order is: second-
to-last picks 1, last place picks 2, third-to-last picks 3, and fourth-to-last
picks 4). If you change the random seed then the order should differ if you
run the program multiple times.

		F or a slightly harder version of the problem, allow the user to input the
names of the four teams. The program should then output the team names
in the draft order.

Solution to Programming
Project 4.8

VideoNote

Functions for
All Subtasks

5.1  void Functions   252
Definitions of void Functions   252
Programming Example: Converting

Temperatures   255
return Statements in void Functions   255

5.2 C all-By-Reference Parameters   259
A First View of Call-by-Reference   259
Call-by-Reference in Detail   262
Programming Example: The swap_values

Function   267
Mixed Parameter Lists   268
Programming Tip: What Kind of Parameter

to Use   269
Pitfall: Inadvertent Local Variables   270

5.3 U sing Procedural Abstraction   273
Functions Calling Functions   273
Preconditions and Postconditions   275
Case Study: Supermarket Pricing   276

5.4 �T esting and Debugging
Functions   281

Stubs and Drivers   282

5.5 �G eneral Debugging
TeCHniques   287

Keep an Open Mind   287
Check Common Errors   287
Localize the Error   288
The assert Macro   290

5

Chapter Summary   292
Answers to Self-Test Exercises   293

Practice Programs   296
Programming Projects   299

Introduction

The top-down design strategy discussed in Chapter 4 is an effective way
to design an algorithm for a program. You divide the program’s task into
subtasks and then implement the algorithms for these subtasks as functions.
Thus far, we have seen how to define functions that start with the values of
some arguments and return a single value as the result of the function call. A
subtask that computes a single value is a very important kind of subtask, but
it is not the only kind. In this chapter we will complete our description of C++
functions and present techniques for designing functions that perform other
kinds of subtasks.

Prerequisites

You should read Chapters 2 through 4 before reading this chapter.

5.1  void Functions

Subtasks are implemented as functions in C++. The functions discussed in
Chapter 4 always return a single value, but there are other forms of subtasks.
A subtask might produce several values or it might produce no values at
all. In C++, a function must either return a single value or return no values
at all. As we will see later in this chapter, a subtask that produces several
different values is usually (and perhaps paradoxically) implemented as a
function that returns no value. For the moment, however, let us avoid that
complication and focus on subtasks that intuitively produce no values at all,
and let us see how these subtasks are implemented. A function that returns no
value is called a void function. For example, one typical subtask for a program
is to output the results of some calculation. This subtask produces output on
the screen, but it produces no values for the rest of the program to use. This
kind of subtask would be implemented as a void function.

Definitions of void Functions

In C++ a void function is defined in almost the same way as a function that
returns a value. For example, the following is a void function that outputs
the result of a calculation that converts a temperature expressed in Fahrenheit

252

Everything is possible.

COMMON MAXIM

void functions
return no value

degrees to a temperature expressed in Celsius degrees. The actual calculation
would be done elsewhere in the program. This void function implements
only the subtask for outputting the results of the calculation. For now, we do
not need to worry about how the calculation will be performed.

void show_results(double f_degrees, double c_degrees)
{
 using namespace std;
 cout.setf(ios::fixed);
 cout.setf(ios::showpoint);
 cout.precision(1);
 cout << f_degrees
 << " degrees Fahrenheit is equivalent to\n"
 << c_degrees << " degrees Celsius.\n";
 return;
}

As this function definition illustrates, there are only two differences
between a function definition for a void function and the function definitions
we discussed in Chapter 4. One difference is that we use the keyword void
where we would normally specify the type of the value to be returned. This
tells the compiler that this function will not return any value. The name void
is used as a way of saying “no value is returned by this function.” The second
difference is that the return statement does not contain an expression for a
value to be returned, because, after all, there is no value returned. The syntax is
summarized in Display 5.1.

A void function call is an executable statement. For example, our function
show_results might be called as follows:

show_results(32.5, 0.3);

If this statement were executed in a program, it would cause the following to
appear on the screen:

32.5 degrees Fahrenheit is equivalent to
0.3 degrees Celsius.

Notice that the function call ends with a semicolon, which tells the compiler
that the function call is an executable statement.

When a void function is called, the arguments are substituted for the
formal parameters and the statements in the function body are executed.
For example, a call to the void function show_results, which we gave
earlier in this section, will cause some output to be written to the screen.
One way to think of a call to a void function is to imagine that the body of
the function definition is copied into the program in place of the function
call. When the function is called, the arguments are substituted for the
formal parameters, and then it is just as if the body of the function were
lines in the program.

	 5.1  void Functions	 253

Function
definition

Function call

254	 Chapter 5 /  Functions for All Subtasks

It is perfectly legal, and sometimes useful, to have a function with no
arguments. In that case, there simply are no formal parameters listed in the
function declaration and no arguments are used when the function is called.
For example, the void function initialize_screen, defined next, simply
sends a new line command to the screen:

void initialize_screen()
{
 using namespace std;
 cout << endl;
 return;
}

If your program includes the following call to this function as its first
executable statement, then the output from the previously run program will
be separated from the output for your program:

initialize_screen();

Be sure to notice that even when there are no parameters to a function, you
still must include the parentheses in the function declaration and in a call to
the function. The next programming example shows these two sample void
functions in a complete program.

Functions with no
arguments

May (or may not)
include one or more
return statements.

function
header

You may intermix the
declarations with the
executable statements

Display 5.1   Syntax for a void Function Definition

 void Function Declaration

 void Function_Name(Parameter_List);
 Function_Declaration_Comment

 void Function Definition

 void Function_Name(Parameter_List)
 {
 Declaration_1
 Declaration_2
 . . .
 body Declaration_Last
 Executable_Statement_1
 Executable_Statement_2
 . . .
 Executable_Statement_Last
 {

	 5.1  void Functions	 255

  Programming Example   Converting Temperatures

The program in Display 5.2 takes a Fahrenheit temperature as input and
outputs the equivalent Celsius temperature. A Fahrenheit temperature F can
be converted to an equivalent Celsius temperature C as follows:

C = (5/9)(F − 32)

The function celsius shown in Display 5.2 uses this formula to do the
temperature conversion.

return Statements in void Functions

Both void functions and functions that return a value can have return
statements. In the case of a function that returns a value, the return
statement specifies the value returned. In the case of a void function, the
return statement simply ends the function call. As we saw in the previous
chapter, every function that returns a value must end by executing a return
statement. However, a void function need not contain a return statement.
If it does not contain a return statement, it will end after executing the code
in the function body. It is as if there were an implicit return statement just
before the final closing brace } at the end of the function body. For example,
the functions initialize_screen and show_results in Display 5.2 would
perform exactly the same if we omitted the return statements from their
function definitions.

The fact that there is an implicit return statement before the final
closing brace in a function body does not mean that you never need a
return statement in a void function. For example, the function definition
in Display 5.3 might be used as part of a restaurant management program.
That function outputs instructions for dividing a given amount of ice cream
among the people at a table. If there are no people at the table (that is,
if number equals 0), then the return statement within the if statement
terminates the function call and avoids a division by zero. If number is not 0,
then the function call ends when the last cout statement is executed at the
end of the function body.

By now you may have guessed that the main part of a program is actually
the definition of a function called main. When the program is run, the function
main is automatically called and it, in turn, may call other functions. Although
it may seem that the return statement in the main part of a program should
be optional, officially it is not. Technically, the main part of a program is a
function that returns a value of type int, so it requires a return statement.
However, the function main is used as if it were a void function. Treating the
main part of your program as a function that returns an integer may sound

void functions
and return
statements

The main part of
a program is a
function

256	 Chapter 5 /  Functions for All Subtasks

Display 5.2   void Functions (part 1 of 2)

 1 //Program to convert a Fahrenheit temperature to a Celsius temperature.
 2 #include <iostream>
 3
 4 void initialize_screen();
 5 //Separates current output from
 6 //the output of the previously run program.
 7
 8 double celsius(double fahrenheit);
 9 //Converts a Fahrenheit temperature
10 //to a Celsius temperature.
11
12 void show_results(double f_degrees, double c_degrees);
13 //Displays output. Assumes that c_degrees
14 //Celsius is equivalent to f_degrees Fahrenheit.
15
16 int main()
17 {
18 using namespace std;
19 double f_temperature, c_temperature;
20
21 initialize_screen();
22 cout << "I will convert a Fahrenheit temperature"
23 << " to Celsius.\n"
24 << "Enter a temperature in Fahrenheit: ";
25 cin >> f_temperature;
26
27 c_temperature = celsius(f_temperature);
28
29 show_results(f_temperature, c_temperature);
30 return 0;
31 }
32
33 //Definition uses iostream:
34 void initialize_screen()
35 {
36 using namespace std;
37 cout << endl;
38 return;
39 }
40 double celsius(double fahrenheit)
41 {
42 return ((5.0/9.0)*(fahrenheit − 32));
43 }
44 //Definition uses iostream:
45 void show_results(double f_degrees, double c_degrees)
46 {

(continued)

This return is optional.

	 5.1  void Functions	 257

Display 5.2   void Functions (part 2 of 2)

47 using namespace std;
48 cout.setf(ios::fixed);
49 cout.setf(ios::showpoint);
50 cout.precision(1);
51 cout << f_degrees
52 << " degrees Fahrenheit is equivalent to\n"
53 << c_degrees << " degrees Celsius.\n";
54 return;
55 }

Sample Dialogue

I will convert a Fahrenheit temperature to Celsius.

Enter a temperature in Fahrenheit: 32.5

32.5 degrees Fahrenheit is equivalent to

0.3 degrees Celsius.

This return is optional.

Display 5.3   Use of return in a void Function

Function Declaration

 1 void ice_cream_division(int number, double total_weight);
 2 //Outputs instructions for dividing total_weight ounces of
 3 //ice cream among number customers.
 4 //If number is 0, nothing is done.

Function Definition

 1 //Definition uses iostream:
 2 void ice_cream_division(int number, double total_weight)
 3 {
 4 using namespace std;
 5 double portion;
 6
 7 if (number == 0)
 8 return;
 9 portion = total_weight/number;
10 cout.setf(ios::fixed);
11 cout.setf(ios::showpoint);
12 cout.precision(2);
13 cout << "Each one receives "
14 << portion << " ounces of ice cream." << endl;
15 }

If number is 0, then the
function execution ends here.

258	 Chapter 5 /  Functions for All Subtasks

crazy, but that’s the tradition. It might be best to continue to think of the main
part of the program as just “the main part of the program” and not worry
about this minor detail.1

Self-Test Exercises

	  1.	 What is the output of the following program?

#include <iostream>
void friendly();
void shy(int audience_count);
int main()
{
 using namespace std;
 friendly();
 shy(6);
 cout << "One more time:\n";
 shy(2);
 friendly();
 cout << "End of program.\n";
 return 0;
}

void friendly()
{
 using namespace std;
 cout << "Hello\n";
}

void shy(int audience_count)
{
 using namespace std;
 if (audience_count < 5)
 return;
 cout << "Goodbye\n";
}

	  2.	 Are you required to have a return statement in a void function definition?

	  3.	 Suppose you omitted the return statement in the function definition
for initialize_screen in Display 5.2. What effect would it have on the
program? Would the program compile? Would it run? Would the program
behave any differently? What about the return statement in the function

1 The C++ Standard says that you can omit the return 0 in the main part, but many
compilers still require it.

	 5.2  Call-By-Reference Parameters	 259

definition for show_results in that same program? What effect would it
have on the program if you omitted the return statement in the definition of
show_results? What about the return statement in the function definition
for celsius in that same program? What effect would it have on the program
if you omitted the return statement in the definition of celsius?

	  4.	 Write a definition for a void function that has three arguments of type
int and that outputs to the screen the product of these three arguments.
Put the definition in a complete program that reads in three numbers and
then calls this function.

	  5.	 Does your compiler allow void main() and int main()? What warnings
are issued if you have int main() and do not supply a return 0;
statement? To find out, write several small test programs and perhaps ask
your instructor or a local guru.

	  6.	 Is a call to a void function used as a statement or is it used as an
expression?

5.2  Call-By-Reference Parameters

When a function is called, its arguments are substituted for the formal parameters
in the function definition, or to state it less formally, the arguments are “plugged
in” for the formal parameters. There are different mechanisms used for this
substitution process. The mechanism we used in Chapter 4, and thus far in this
chapter, is known as the call-by-value mechanism. The second main mechanism
for substituting arguments is known as the call-by-reference mechanism.

A First View of Call-by-Reference

The call-by-value mechanism that we used until now is not sufficient for certain
subtasks. For example, one common subtask is to obtain one or more input values
from the user. Look back at the program in Display 5.2. Its tasks are divided into
four subtasks: initialize the screen, obtain the Fahrenheit temperature, compute
the corresponding Celsius temperature, and output the results. Three of these
four subtasks are implemented as the functions initialize_screen, celsius,
and show_results. However, the subtask of obtaining the input is implemented
as the following four lines of code (rather than as a function call):

cout << "I will convert a Fahrenheit temperature"
 << " to Celsius.\n"
 << "Enter a temperature in Fahrenheit: ";
cin >> f_temperature;

The subtask of obtaining the input should be accomplished by a function call.
To do this with a function call, we will use a call-by-reference parameter.

260	 Chapter 5 /  Functions for All Subtasks

A function for obtaining input should set the values of one or more variables
to values typed in at the keyboard, so the function call should have one or
more variables as arguments and should change the values of these argument
variables. With the call-by-value formal parameters that we have used until now,
an argument in a function call can be a variable, but the function takes only the
value of the variable and does not change the variable in any way. With a call-
by-value formal parameter only the value of the argument is substituted for the
formal parameter. For an input function, we want the variable (not the value of
the variable) to be substituted for the formal parameter. The call-by-reference
mechanism works in just this way. With a call-by-reference formal parameter
(also called simply a reference parameter), the corresponding argument in a
function call must be a variable and this argument variable is substituted for
the formal parameter. It is as if the argument variable were literally copied into
the body of the function definition in place of the formal parameter. After the
argument is substituted in, the code in the function body is executed and this
code can change the value of the argument variable.

A call-by-reference parameter must be marked in some way so that the
compiler will know it from a call-by-value parameter. The way that you
indicate a call-by-reference parameter is to attach the ampersand sign, &, to
the end of the type name in the formal parameter list in both the function
declaration and the header of the function definition. For example, the
following function definition has one formal parameter, f_variable, and
that formal parameter is a call-by-reference parameter:

void get_input (double & f_variable)
{
 using namespace std;
 cout << "I will convert a Fahrenheit temperature"
 << " to Celsius.\n"
 << "Enter a temperature in Fahrenheit: ";
 cin >> f_variable;
}

In a program that contains this function definition, the following function
call sets the variable f_temperature equal to a value read from the keyboard:

get_input(f_temperature);

Using this function definition, we could easily rewrite the program shown in
Display 5.2 so that the subtask of reading the input is accomplished by this
function call. However, rather than rewrite an old program, let’s look at a
completely new program.

Display 5.4 demonstrates call-by-reference parameters. The program
doesn’t do very much. It just reads in two numbers and writes the same
numbers out, but in the reverse order. The parameters in the functions
get_numbers and swap_values are call-by-reference parameters. The input
is performed by the function call

get_numbers(first_num, second_num);

	 5.2  Call-By-Reference Parameters	 261

Display 5.4   Call-by-Reference Parameters

 1 //Program to demonstrate call-by-reference parameters.
 2 #include <iostream>

 3 void get_numbers(int& input1, int& input2);
 4 //Reads two integers from the keyboard.

 5 void swap_values(int& variable1, int& variable2);
 6 //Interchanges the values of variable1 and variable2.

 7 void show_results(int output1, int output2);
 8 //Shows the values of variable1 and variable2, in that order.
 9 int main()
10 {
11 int first_num = 0, second_num = 0;
12
13 get_numbers(first_num, second_num);
14 swap_values(first_num, second_num);
15 show_results(first_num, second_num);
16 return 0;
17 }

18 //Uses iostream:
19 void get_numbers (int& input1, int& input2)
20 {
21 using namespace std;
22 cout << "Enter two integers: ";
23 cin >> input1
24 >> input2;
25 }
26 void swap_values(int& variable1, int& variable2)
27 {
28 int temp;
29 temp = variable1;
30 variable1 = variable2;
31 variable2 = temp;
32 }

33 //Uses iostream:
34 void show_results(int output1, int output2)
35 {
36 using namespace std;
37 cout << "In reverse order the numbers are: "
38 << output1 << " " << output2 << endl;
39 }

Sample Dialogue

Enter two integers: 5 10

In reverse order the numbers are: 10 5

262	 Chapter 5 /  Functions for All Subtasks

The values of the variables first_num and second_num are set by this function
call. After that, the following function call reverses the values in the two
variables first_num and second_num:

swap_values(first_num, second_num);

In the next few subsections we describe the call-by-reference mechanism in
more detail and also explain the particular functions used in Display 5.4.

Call-by-Reference in Detail

In most situations, the call-by-reference mechanism works as if the name
of the variable given as the function argument were literally substituted
for the call-by-reference formal parameter. However, the process is a bit
more subtle than that. In some situations, this subtlety is important, so
we need to examine more details of this call-by-reference substitution
process.

Recall that program variables are implemented as memory locations. The
compiler assigns one memory location to each variable. For example, when
the program in Display 5.4 is compiled, the variable first_num might be
assigned location 1010, and the variable second_num might be assigned 1012.
For purposes of this example, consider these variables to be stored at these
memory locations. In other words, after executing the line

int first_num = 0, second_num = 0;

the value 0 will be stored at memory locations 1010 and 1012. The arrows in
the diagram below point to the memory locations referenced by the variables.

Memory Location Value

…

1008

1010 0 first_num

1012 0 second_num

1014

…

Next, consider the following function declaration from Display 5.4:

void get_numbers(int& input1, int& input2);

The call-by-reference formal parameters input1 and input2 are place holders
for the actual arguments used in a function call.

	 5.2  Call-By-Reference Parameters	 263

Now consider a function call like the following from the same display:

get_numbers(first_num, second_num);

When the function call is executed, the function is not given values stored
in first_num and second_num. Instead, it is given the memory locations
associated with each name. In this example, the locations are

1010
1012

which are the locations assigned to the argument variables first_num and
second_num, in that order. It is these memory locations that are associated
with the formal parameters. The first memory location is associated with the
first formal parameter, the second memory location is associated with the
second formal parameter, and so forth. In our example input1 is the first
parameter, so it gets the same memory location as first_num. The second
parameter is input2 and it gets the same memory location as second_num.
Diagrammatically, the correspondence is

Memory Location Value

…

1008

input1 1010 0 first_num

input2 1012 0 second_num

1014

…

Call-by-Reference

To make a formal parameter a call-by-reference parameter, append the
ampersand sign & to its type name. The corresponding argument in a
call to the function should then be a variable, not a constant or other
expression. When the function is called, the corresponding variable
argument (not its value) will be substituted for the formal parameter. Any
change made to the formal parameter in the function body will be made
to the argument variable when the function is called. The exact details of
the substitution mechanisms are given in the text of this chapter.

Example (of call-by-reference parameters in a function
declaration):

void get_data(int& first_in, double& second_in);

264	 Chapter 5 /  Functions for All Subtasks

When the function statements are executed, whatever the function body says
to do to a formal parameter is actually done to the variable in the memory
location associated with that formal parameter. In this case, the instructions
in the body of the function get_numbers say that a value should be stored
in the formal parameter input1 using a cin statement, and so that value is
stored in the variable in memory location 1010 (which happens to be where
the variable first_num is stored). Similarly, the instructions in the body of
the function get_numbers say that a value should then be stored in the formal
parameter input2 using a cin statement, and so that value is stored in the
variable in memory location 1012 (which happens to be where the variable
second_num is stored). Thus, whatever the function instructs the computer
to do to input1 and input2 is actually done to the variables first_num and
second_num. For example, if the user enters 5 and 10 as in Display 5.4, then
the result is

Memory Location Value

…

1008

input1 1010 5 first_num

input2 1012 10 second_num

1014

…

When the function get_numbers exits, the variables input1 and input2
go out of scope and are lost. This means we can no longer retrieve the
data values at 1010 and 1012 through the variables input1 and input2.
However, the data still exists in memory location 1010 and 1012 and is
accessible through the variables first_num and second_num within the
scope of the main function. These details of how the call-by-reference
mechanism works in this function call to get_numbers are described in
Display 5.5.

It may seem that there is an extra level of detail, or at least an extra
level of verbiage. If first_num is the variable with memory location
1010, why do we insist on saying “the variable at memory location
1010” instead of simply saying “first_num”? This extra level of detail is
needed if the arguments and formal parameters contain some confusing
coincidence of names. For example, the function get_numbers has formal
parameters named input1 and input2. Suppose you want to change the
program in Display 5.4 so that it uses the function get_numbers with
arguments that are also named input1 and input2, and suppose that
you want to do something less than obvious. Suppose you want the first
number typed in to be stored in a variable named input2, and the second

	 5.2  Call-By-Reference Parameters	 265

Display 5.5   Behavior of Call-by-Reference Arguments (part 1 of 2)

Anatomy of a Function Call from Display 5.4
Using Call-by-Reference Arguments

 0 �Assume the variables first_num and second_num have been assigned the following memory
address by the compiler:

 first_num 1010
 second_num 1012

 �(We do not know what addresses are assigned and the results will not depend on the actual
addresses, but this will make the process very concrete and thus perhaps easier to follow.)

 1 In the program in Display 5.4, the following function call begins executing:

 get_numbers(first_num, second_num);

 2 �The function is told to use the memory location of the variable first_num in place of the
formal parameter input1 and the memory location of the second_num in place of the formal
parameter input2. The effect is the same as if the function definition were rewritten to the
following (which is not legal C++ code, but does have a clear meaning to us):

 void get_numbers(�int& <the variable at memory location 1010>,
int& <the variable at memory location 1012>)

 {
 using namespace std;
 cout << "Enter two integers: ";
 cin >> <the variable at memory location 1010>
 >> <the variable at memory location 1012>;
}

Anatomy of the Function Call in Display 5.4 (concluded)

 �Since the variables in locations 1010 and 1012 are first_num and second_num, the effect is
thus the same as if the function definition were rewritten to the following:

 void get_numbers(int& first_num, int& second_num)
 {
 using namespace std;
 cout << "Enter two integers: ";
 cin >> first_num
 >> second_num;
 }

 3 �The body of the function is executed. The effect is the same as if the following were
executed:

(continued)

266	 Chapter 5 /  Functions for All Subtasks

number typed in to be stored in the variable named input1—perhaps
because the second number will be processed first, or because it is the
more important number. Now, let’s suppose that the variables input1 and
input2, which are declared in the main part of your program, have been
assigned memory locations 1014 and 1016. The function call could be as
follows:

int input1, input 2;
get_numbers(input2, input1);

Display 5.5   Behavior of Call-by-Reference Arguments (part 2 of 2)

 {
 using namespace std;
 cout << "Enter two integers: ";
 cin >> first_num
 >> second_num;
 }

 4 �When the cin statement is executed, the values of the variables first_num and second_num
are set to the values typed in at the keyboard. (If the dialogue is as shown in Display 5.4, then
the value of first_num is set to 5 and the value of second_num is set to 10.)

 5 �When the function call ends, the variables first_num and second_num re-
tain the values that they were given by the cin statement in the function
body. (If the dialogue is as shown in Display 5.4, then the value of first_num
is 5 and the value of second_num is 10 at the end of the function call.)

In this case if you say “input1,” we do not know whether you mean the
variable named input1 that is declared in the main part of your program or
the formal parameter input1. However, if the variable input1 declared in the
main part of your program is assigned memory location 1014, the phrase “the
variable at memory location 1014” is unambiguous. Let’s go over the details
of the substitution mechanisms in this case.

In this call the argument corresponding to the formal parameter input1
is the variable input2, and the argument corresponding to the formal
parameter input2 is the variable input1. This can be confusing to us, but it
produces no problem at all for the computer, since the computer never does
actually “substitute input2 for input1” or “substitute input1 for input2.”
The computer simply deals with memory locations. The computer substitutes
“the variable at memory location 1016” for the formal parameter input1,
and “the variable at memory location 1014” for the formal parameter
input2.

Notice the order
of the arguments

	 5.2  Call-By-Reference Parameters	 267

  Programming Example    The swap_values Function

The function swap_values defined in Display 5.4 interchanges the values
stored in two variables. The description of the function is given by the
following function declaration and accompanying comment:

void swap_values(int& variable1, int& variable2);
//Interchanges the values of variable1 and variable2.

To see how the function is supposed to work, assume that the variable
first_num has the value 5 and the variable second_num has the value 10 and
consider the function call:

swap_values(first_num, second_num);

After this function call, the value of first_num will be 10 and the value of
second_num will be 5.

As shown in Display 5.4, the definition of the function swap_values
uses a local variable called temp. This local variable is needed. You might be
tempted to think the function definition could be simplified to the following:

void swap_values(int& variable1, int& variable2)
{
 variable1 = variable2;
 variable2 = variable1;
}

This does not work!

To see that this alternative definition cannot work, consider what would
happen with this definition and the function call

swap_values(first_num, second_num);

The variables first_num and second_num are substituted for the formal
parameters variable1 and variable2 so that, with this incorrect function
definition, the function call is equivalent to the following:

first_num = second_num;
second_num = first_num;

This code does not produce the desired result. The value of first_num is set
equal to the value of second_num, just as it should be. But then, the value of
second_num is set equal to the changed value of first_num, which is now the
original value of second_num. Thus the value of second_num is not changed
at all. (If this is unclear, go through the steps with specific values for the
variables first_num and second_num.) What the function needs to do is to
save the original value of first_num so that value is not lost. This is what the
local variable temp in the correct function definition is used for. That correct
definition is the one in Display 5.4. When that correct version is used and

268	 Chapter 5 /  Functions for All Subtasks

the function is called with the arguments first_num and second_num, the
function call is equivalent to the following code, which works correctly:

temp = first_num;
first_num = second_num;
second_num = temp;

Parameters and Arguments

All the different terms that have to do with parameters and arguments
can be confusing. However, if you keep a few simple points in mind, you
will be able to easily handle these terms.

	 1. � The formal parameters for a function are listed in the function declara-
tion and are used in the body of the function definition. A formal param-
eter (of any sort) is a kind of blank or place holder that is filled in with
something when the function is called.

	 2. � An argument is something that is used to fill in a formal parameter.
When you write down a function call, the arguments are listed in paren-
theses after the function name. When the function call is executed, the
arguments are “plugged in” for the formal parameters.

	 3. � The terms call-by-value and call-by-reference refer to the mechanism that
is used in the “plugging in” process. In the call-by-value method, only
the value of the argument is used. In this call-by-value mechanism, the
formal parameter is a local variable that is initialized to the value of the
corresponding argument. In the call-by-reference mechanism, the argu-
ment is a variable and the entire variable is used. In the call-by-reference
mechanism, the argument variable is substituted for the formal parameter
so that any change that is made to the formal parameter is actually made
to the argument variable.

Mixed Parameter Lists

Whether a formal parameter is a call-by-value parameter or a call-by-reference
parameter is determined by whether there is an ampersand attached to its type
specification. If the ampersand is present, then the formal parameter is a call-
by-reference parameter. If there is no ampersand associated with the formal
parameter, then it is a call-by-value parameter.

It is perfectly legitimate to mix call-by-value and call-by-reference formal
parameters in the same function. For example, the first and last of the
formal parameters in the following function declaration are call-by-reference
formal parameters and the middle one is a call-by-value parameter:

void good_stuff(int& par1, int par2, double& par3);

Mixing call-by-
reference and
call-by-value

	 5.2  Call-By-Reference Parameters	 269

Call-by-reference parameters are not restricted to void functions. You
can also use them in functions that return a value. Thus, a function with a
call-by-reference parameter could both change the value of a variable given as
an argument and return a value.

■  Programming Tip   What Kind of Parameter to Use

Display 5.6 illustrates the differences between how the compiler treats
call-by-value and call-by-reference formal parameters. The parameters par1_
value and par2_ref are both assigned a value inside the body of the function
definition. But since they are different kinds of parameters, the effect is
different in the two cases.

par1_value is a call-by-value parameter, so it is a local variable. When the
function is called as follows

do_stuff(n1, n2);

the local variable par1_value is initialized to the value of n1. That is, the local
variable par1_value is initialized to 1 and the variable n1 is then ignored by
the function. As you can see from the sample dialogue, the formal parameter
par1_value (which is a local variable) is set to 111 in the function body and
this value is output to the screen. However, the value of the argument n1 is not
changed. As shown in the sample dialogue, n1 has retained its value of 1.

Call by Reference and Call
by Value

VideoNote

Display 5.6   Comparing Argument Mechanisms (part 1 of 2)

 1 //Illustrates the difference between a call-by-value
 2 //parameter and a call-by-reference parameter.
 3 #include <iostream>

 4 void do_stuff(int par1_value, int& par2_ref);
 5 //par1_value is a call-by-value formal parameter and
 6 //par2_ref is a call-by-reference formal parameter.

 7 int main()
 8 {
 9 using namespace std;
10 int n1, n2;
11
12 n1 = 1;
13 n2 = 2;
14 do_stuff(n1, n2);
15 cout << "n1 after function call = " << n1 << endl;
16 cout << "n2 after function call = " << n2 << endl;
17 return 0;
18 }
19 void do_stuff(int par1_value, int& par2_ref)
20 {
21 using namespace std;

(continued)

270	 Chapter 5 /  Functions for All Subtasks

Display 5.6   Comparing Argument Mechanisms (part 2 of 2)

22 par1_value = 111;
23 cout << "par1_value in function call = "
24 << par1_value << endl;
25 par2_ref = 222;
26 cout << "par2_ref in function call = "
27 << par2_ref << endl;
28 }

Sample Dialogue

par1_value in function call = 111

par2_ref in function call = 222

n1 after function call = 1

n2 after function call = 222

On the other hand, par2_ref is a call-by-reference parameter. When the
function is called, the variable argument n2 (not just its value) is substituted for
the formal parameter par2_ref. So that when the following code is executed:

par2_ref = 222;

it is the same as if the following were executed:

n2 = 222;

Thus, the value of the variable n2 is changed when the function body is
executed, so as the dialogue shows, the value of n2 is changed from 2 to 222
by the function call.

If you keep in mind the lesson of Display 5.6, it is easy to decide which
parameter mechanism to use. If you want a function to change the value of a
variable, then the corresponding formal parameter must be a call-by-reference
formal parameter and must be marked with the ampersand sign, &. In all
other cases, you can use a call-by-value formal parameter.	 ■

Pitfall   Inadvertent Local Variables

If you want a function to change the value of a variable, the corresponding formal
parameter must be a call-by-reference parameter and must have the ampersand, &,
attached to its type. If you carelessly omit the ampersand, the function will have
a call-by-value parameter where you meant to have a call-by-reference parameter,
and when the program is run, you will discover that the function call does not
change the value of the corresponding argument. This is because a formal call-by-
value parameter is a local variable, so if it has its value changed in the function,
then as with any local variable, that change has no effect outside of the function
body. This is a logic error that can be very difficult to see because it looks right.

	 5.2  Call-By-Reference Parameters	 271

For example, the program in Display 5.7 is identical to the program in Display
5.4, except that the ampersands were mistakenly omitted from the function
swap_values. As a result, the formal parameters variable1 and variable2 are
local variables. The argument variables first_num and second_num are never
substituted in for variable1 and variable2; variable1 and variable2 are
instead initialized to the values of first_num and second_num. Then, the values
of variable1 and variable2 are interchanged, but the values of first_num and
second_num are left unchanged. The omission of two ampersands has made the
program completely wrong, yet it looks almost identical to the correct program
and will compile and run without any error messages.	 ■

Display 5.7   Inadvertent Local Variable

 1 //Program to demonstrate call-by-reference parameters.
 2 #include <iostream>

 3 void get_numbers(int& input1, int& input2);
 4 //Reads two integers from the keyboard.

 5 void swap_values(int variable1, int variable2);
 6 //Interchanges the values of variable1 and variable2.

 7 void show_results(int output1, int output2);
 8 //Shows the values of variable1 and variable2, in that order.

 9 int main()
10 {
11 int first_num, second_num;

12 get_numbers(first_num, second_num);
13 swap_values(first_num, second_num);
14 show_results(first_num, second_num);
15 return 0;
16 }

17 void swap_values(int variable1, int variable2)
18 {
19 int temp;

20 temp = variable1;
21 variable1 = variable2;
22 variable2 = temp;
23 }
24 <The definitions of get_numbers and
25 show_results are the same as in Display 5.4.>

Sample Dialogue

Enter two integers: 5 10

In reverse order the numbers are: 5 10

forgot the & here

inadvertent
local variables

forgot the & here

272	 Chapter 5 /  Functions for All Subtasks

Self-Test Exercises

	  7.	 What is the output of the following program?

#include <iostream>
void figure_me_out(int& x, int y, int& z);
int main()
{
 using namespace std;
 int a, b, c;
 a = 10;
 b = 20;
 c = 30;
 figure_me_out(a, b, c);
 cout << a << " " << b << " " << c;
 return 0;
}

void figure_me_out(int& x, int y, int& z)
{
 using namespace std;
 cout << x << " " << y << " " << z << endl;
 x = 1;
 y = 2;
 z = 3;
 cout << x << " " << y << " " << z << endl;
}

	  8.	 What would be the output of the program in Display 5.4 if you omit the
ampersands, &, from the first parameter in the function declaration and
function heading of swap_values? The ampersand is not removed from
the second parameter.

	  9.	 What would be the output of the program in Display 5.6 if you change
the function declaration for the function do_stuff to the following and
you change the function header to match, so that the formal parameter
par2_ref is changed to a call-by-value parameter:

void do_stuff(int par1_value, int par2_ref);

	10.	 Write a void function definition for a function called zero_both that has
two reference parameters, both of which are variables of type int, and sets
the values of both variables to 0.

	11.	 Write a void function definition for a function called add_tax. The function
add_tax has two formal parameters: tax_rate, which is the amount of sales
tax expressed as a percentage, and cost, which is the cost of an item before
tax. The function changes the value of cost so that it includes sales tax.

	 5.3  Using Procedural Abstraction	 273

	12.	 Can a function that returns a value have a call-by-reference parameter?
May a function have both call-by-value and call-by-reference parameters?

5.3  Using Procedural Abstraction

My memory is so bad, that many times I forget my own name!

MIGUEL DE CERVANTES SAAVEDRA, Don Quixote

Recall that the principle of procedural abstraction says that functions should
be designed so that they can be used as black boxes. For a programmer to use
a function effectively, all the programmer should need to know is the function
declaration and the accompanying comment that says what the function
accomplishes. The programmer should not need to know any of the details
contained in the function body. In this section we discuss a number of topics
that deal with this principle in more detail.

Functions Calling Functions

A function body may contain a call to another function. The situation for
these sorts of function calls is exactly the same as it would be if the function
call had occurred in the main function of the program; the only restriction is
that the function declaration should appear before the function is used. If you
set up your programs as we have been doing, this will happen automatically,
since all function declarations come before the main function and all func-
tion definitions come after the main function. Although you may include a
function call within the definition of another function, you cannot place the
definition of one function within the body of another function definition.

Display 5.8 shows an enhanced version of the program shown in Display
5.4. The program in Display 5.4 always reversed the values of the variables
first_num and second_num. The program in Display 5.8 reverses these
variables only some of the time. The program in Display 5.8 uses the function
order to reorder the values in these variables so as to ensure that

first_num <= second_num

If this condition is already true, then nothing is done to the variables
first_num and second_num. If, however, first_num is greater than second_
num, then the function swap_values is called to interchange the values
of these two variables. This testing for order and exchanging of variable
values all takes place within the body of the function order. Thus, the
function swap_values is called within the body of the function order. This
presents no special problems. Using the principle of procedural abstraction,
we think of the function swap_values as performing an action (namely,
interchanging the values of two variables); this action is the same no matter
where it occurs.

274	 Chapter 5 /  Functions for All Subtasks

Display 5.8   Function Calling Another Function (part 1 of 2)

 1 //Program to demonstrate a function calling another function.
 2 #include <iostream>
 3
 4 void get_input(int& input1, int& input2);
 5 //Reads two integers from the keyboard.
 6
 7 void swap_values(int& variable1, int& variable2);
 8 //Interchanges the values of variable1 and variable2.
 9
10 void order(int& n1, int& n2);
11 //Orders the numbers in the variables n1 and n2
12 //so that after the function call n1 <= n2.
13
14 void give_results(int output1, int output2);
15 //Outputs the values in output1 and output2.
16 //Assumes that output1 <= output2
17

18 int main()
19 {
20 int first_num, second_num;
21
22 get_input(first_num, second_num);
23 order(first_num, second_num);
24 give_results(first_num, second_num);
25 return 0;
26 }
27

28 //Uses iostream:
29 void get_input(int& input1, int& input2)
30 {
31 using namespace std;
32 cout << "Enter two integers: ";
33 cin >> input1 >> input2;
34 }
35
36 void swap_values(int& variable1, int& variable2)
37 {
38 int temp;
39
40 temp = variable1;
41 variable1 = variable2;
42 variable2 = temp;
43 }
44

(continued)

	 5.3  Using Procedural Abstraction	 275

Preconditions and Postconditions

One good way to write a function declaration comment is to break it down
into two kinds of information, called a precondition and a postcondition. The
precondition states what is assumed to be true when the function is called.
The function should not be used and cannot be expected to perform correctly
unless the precondition holds. The postcondition describes the effect of the
function call; that is, the postcondition tells what will be true after the function
is executed in a situation in which the precondition holds. For a function
that returns a value, the postcondition will describe the value returned by the
function. For a function that changes the value of some argument variables, the
postcondition will describe all the changes made to the values of the arguments.

For example, the function declaration comment for the function swap_
values shown in Display 5.8 can be put into this format as follows:

void swap_values(int& variable1, int& variable2);
//Precondition: variable1 and variable2 have been given
//values.
//Postcondition: The values of variable1 and variable2
//have been interchanged.

The comment for the function celsius from Display 5.2 can be put into
this format as follows:

double celsius(double fahrenheit);
//Precondition: fahrenheit is a temperature expressed

Display 5.8   Function Calling Another Function (part 2 of 2)

45 void order(int& n1, int& n2)
46 {
47 if (n1 > n2)
48 swap_values(n1, n2);
49 }
50
51 //Uses iostream:
52 void give_results(int output1, int output2)
53 {
54 using namespace std;
55 cout << "In increasing order the numbers are: "
56 << output1 << " " << output2 << endl;
57 }

Sample Dialogue

Enter two integers: 10 5

In increasing order the numbers are: 5 10

These function
definitions can
be in any order.

276	 Chapter 5 /  Functions for All Subtasks

//in degrees Fahrenheit.
//Postcondition: Returns the equivalent temperature
//expressed in degrees Celsius.

When the only postcondition is a description of the value returned, programmers
often omit the word postcondition. A common and acceptable alternative form
for the previous function declaration comments is the following:

//Precondition: fahrenheit is a temperature expressed
//in degrees Fahrenheit.
//Returns the equivalent temperature expressed in
//degrees Celsius.

Another example of preconditions and postconditions is given by the
following function declaration:

void post_interest(double& balance, double rate);
//Precondition: balance is a nonnegative savings
//account balance.rate is the interest rate
//expressed as a percent, such as 5 for 5%.
//Postcondition: The value of balance has been
//increased by rate percent.

You do not need to know the definition of the function post_interest in
order to use this function, so we have given only the function declaration and
accompanying comment.

Preconditions and postconditions are more than a way to summarize a
function’s actions. They should be the first step in designing and writing a
function. When you design a program, you should specify what each function
does before you start designing how the function will do it. In particular,
the function declaration comments and the function declaration should be
designed and written down before starting to design the function body. If you
later discover that your specification cannot be realized in a reasonable way,
you may need to back up and rethink what the function should do, but by
clearly specifying what you think the function should do, you will minimize
both design errors and wasted time writing code that does not fit the task at
hand.

Some programmers prefer not to use the words precondition and
postcondition in their function comments. However, whether you use the
words or not, your function comment should always contain the precondition
and postcondition information.

Case Study Supermarket Pricing

This case study solves a very simple programming task. It may seem that it
contains more detail than is needed for such a simple task. However, if you
see the design elements in the context of a simple task, you can concentrate on
learning them without the distraction of any side issues. Once you learn the

	 5.3  Using Procedural Abstraction	 277

techniques that are illustrated in this simple case study, you can apply these
same techniques to much more complicated programming tasks.

Problem Definition

We have been commissioned by the Quick-Shop supermarket chain to write a
program that will determine the retail price of an item given suitable input. Their
pricing policy is that any item that is expected to sell in one week or less is marked
up 5 percent, and any item that is expected to stay on the shelf for more than one
week is marked up 10 percent over the wholesale price. Be sure to notice that the
low markup of 5 percent is used for up to 7 days and that at 8 days the markup
changes to 10 percent. It is important to be precise about exactly when a program
should change from one form of calculation to a different one.

As always, we should be sure we have a clear statement of the input
required and the output produced by the program.

Input

The input will consist of the wholesale price of an item and the expected
number of days until the item is sold.

Output

The output will give the retail price of the item.

Analysis of the Problem

Like many simple programming tasks, this one breaks down into three main
subtasks:

	1.	 Input the data.

	2.	 Compute the retail price of the item.

	3.	 Output the results.

These three subtasks will be implemented by three functions. The three
functions are described by their function declarations and accompanying
comments, which are given below. Note that only those items that are
changed by the functions are call-by-reference parameters. The remaining
formal parameters are call-by-value parameters.

void get_input(double& cost, int& turnover);
//Precondition: User is ready to enter values correctly.
//Postcondition: The value of cost has been set to the
//wholesale cost of one item. The value of turnover has been
//set to the expected number of days until the item is sold.

double price(double cost, int turnover);
//Precondition: cost is the wholesale cost of one item.
//turnover is the expected number of days
//until sale of the item.
//Returns the retail price of the item.

278	 Chapter 5 /  Functions for All Subtasks

void give_output(double cost, int turnover, double price);
//Precondition: cost is the wholesale cost of one item;
//turnover is the expected time until sale of the item;
//price is the retail price of the item.
//Postcondition: The values of cost, turnover, and price have
//been written to the screen.

Now that we have the function headings, it is trivial to write the main part
of our program:

int main()
{
 double wholesale_cost, retail_price;
 int shelf_time;

 get_input(wholesale_cost, shelf_time);
 retail_price = price(wholesale_cost, shelf_time);
 give_output(wholesale_cost, shelf_time, retail_price);
 return 0;
}

Even though we have not yet written the function bodies and have no idea of
how the functions work, we can write the above code that uses the functions.
That is what is meant by the principle of procedural abstraction. The functions
are treated like black boxes.

Algorithm Design

The implementations of the functions get_input and give_output are
straightforward. They simply consist of a few cin and cout statements. The
algorithm for the function price is given by the following pseudocode:

if turnover ≤ 7 days then
 return (cost +5% of cost);
else
 return (cost +10% of cost);

Coding

There are three constants used in this program: a low markup figure of 5 percent,
a high markup figure of 10 percent, and an expected shelf stay of 7 days as the
threshold above which the high markup is used. Since these constants might need to
be changed to update the program should the company decide to change its pricing
policy, we declare global named constants at the start of our program for each of
these three numbers. The declarations with the const modifier are the following:

const double LOW_MARKUP = 0.05; //5%
const double HIGH_MARKUP = 0.10; //10%
const int THRESHOLD = 7; //Use HIGH_MARKUP if do not
 //expect to sell in 7 days or less

The body of the function price is a straightforward translation of our
algorithm from pseudocode to C++ code:

	 5.3  Using Procedural Abstraction	 279

Display 5.9   Supermarket Pricing (part 1 of 2)

 1 //Determines the retail price of an item according to
 2 //the pricing policies of the Quick-Shop supermarket chain.
 3 #include <iostream>

 4 const double LOW_MARKUP = 0.05; //5%
 5 const double HIGH_MARKUP = 0.10; //10%
 6 const int THRESHOLD = 7;//Use HIGH_MARKUP if not expected
 7 //to sell in 7 days or less.

 8 void introduction();
 9 //Postcondition: Description of program is written on the screen.

10 void get_input(double& cost, int& turnover);
11 //Precondition: User is ready to enter values correctly.
12 //Postcondition: The value of cost has been set to the
13 //wholesale cost of one item. The value of turnover has been
14 //set to the expected number of days until the item is sold.

15 double price(double cost, int turnover);
16 //Precondition: cost is the wholesale cost of one item.
17 //turnover is the expected number of days until sale of the item.
18 //Returns the retail price of the item.

19 void give_output(double cost, int turnover, double price);
20 //Precondition: cost is the wholesale cost of one item; turnover is the
21 //expected time until sale of the item; price is the retail price of the item.
22 //Postcondition: The values of cost, turnover, and price have been
23 //written to the screen.

24 int main()
25 {
26 double wholesale_cost, retail_price;
27 int shelf_time;
28 introduction();
29 get_input(wholesale_cost, shelf_time);
30 retail_price = price(wholesale_cost, shelf_time);
31 give_output(wholesale_cost, shelf_time, retail_price);
32 return 0;
33 }

34 //Uses iostream:
35 void introduction()

(continued)

{
 if (turnover <= THRESHOLD)
 return (cost + (LOW_MARKUP * cost));
 else
 return (cost + (HIGH_MARKUP * cost));
}

The complete program is shown in Display 5.9.

280	 Chapter 5 /  Functions for All Subtasks

Display 5.9   Supermarket Pricing (part 2 of 2)

36 {
37 using namespace std;
38 cout<< "This program determines the retail price for\n"
39 << "an item at a Quick-Shop supermarket store.\n";
40 }

41 //Uses iostream:
42 void get_input(double& cost, int& turnover)
43 {
44 using namespace std;
45 cout << "Enter the wholesale cost of item: $";
46 cin >> cost;
47 cout << "Enter the expected number of days until sold: ";
48 cin >> turnover;
49 }

50 //Uses iostream:
51 void give_output(double cost, int turnover, double price)
52 {
53 using namespace std;
54 cout.setf(ios::fixed);
55 cout.setf(ios::showpoint);
56 cout.precision(2);
57 cout << "Wholesale cost = $" << cost << endl
58 << "Expected time until sold = "
59 << turnover << " days" << endl
60 << "Retail price = $" << price << endl;
61 }

62 //Uses defined constants LOW_MARKUP, HIGH_MARKUP, and THRESHOLD:
63 double price(double cost, int turnover)
64 {
65 if (turnover <= THRESHOLD)
66 return (cost + (LOW_MARKUP * cost));
67 else
68 return (cost + (HIGH_MARKUP * cost));
69
70 }

Sample Dialogue

This program determines the retail price for an item at a Quick-Shop

supermarket store. Enter the wholesale cost of item: $1.21

Enter the expected number of days until sold: 5

Wholesale cost = $1.21

Expected time until sold = 5 days

Retail price = $1.27

	 5.4  Testing and Debugging Functions	 281

Program Testing

An important technique in testing a program is to test all kinds of input. There
is no precise definition of what we mean by a “kind” of input, but in practice,
it is often easy to decide what kinds of input data a program deals with. In the
case of our supermarket program, there are two main kinds of input: input
that uses the low markup of 5 percent and input that uses the high markup of
10 percent. Thus, we should test at least one case in which the item is expected
to remain on the shelf for less than 7 days and at least one case in which the
item is expected to remain on the shelf for more than 7 days.

Another testing strategy is to test boundary values. Unfortunately,
boundary value is another vague concept. An input (test) value is a boundary
value if it is a value at which the program changes behavior. For example, in
our supermarket program, the program’s behavior changes at an expected shelf
stay of 7 days. Thus, 7 is a boundary value; the program behaves differently
for a number of days that is less than or equal to 7 than it does for a number
of days that is greater than 7. Hence, we should test the program on at least
one case in which the item is expected to remain on the shelf for exactly
7 days. Normally, you should also test input that is one step away from the
boundary value as well, since you can easily be off by one in deciding where
the boundary is. Hence, we should test our program on input for an item
that is expected to remain on the shelf for 6 days, an item that is expected to
remain on the shelf for 7 days, and an item that is expected to remain on the
shelf for 8 days. (This is in addition to the test inputs described in the previous
paragraph, which should be well below and well above 7 days.)

Self-Test Exercises

	13.	 Can a function definition appear inside the body of another function
definition?

	14.	 Can a function definition contain a call to another function?

	15.	 Rewrite the function declaration comment for the function order shown
in Display 5.8 so that it is expressed in terms of preconditions and
postconditions.

	16.	 Give a precondition and a postcondition for the predefined function
sqrt, which returns the square root of its argument.

5.4  Testing and Debugging Functions

“I beheld the wretch—the miserable monster whom I had created.”

MARY WOLLSTONECRAFT SHELLEY, Frankenstein

Test all kinds of
input

Test boundary
values

282	 Chapter 5 /  Functions for All Subtasks

Stubs and Drivers

Each function should be designed, coded, and tested as a separate unit from
the rest of the program. This is the essence of the top-down design strategy.
When you treat each function as a separate unit, you transform one big
task into a series of smaller, more manageable tasks. But how do you test a
function outside of the program for which it is intended? You write a special
program to do the testing. For example, Display 5.10 shows a program to test
the function get_input, which was used in the program in Display 5.9.

Display 5.10   Driver Program (part 1 of 2)

 1 //Driver program for the function get_input.
 2 #include <iostream>
 3
 4 void get_input(double& cost, int& turnover);
 5 //Precondition: User is ready to enter values correctly.
 6 //Postcondition: The value of cost has been set to the
 7 //wholesale cost of one item. The value of turnover has been
 8 //set to the expected number of days until the item is sold.
 9
10 int main()
11 {
12 using namespace std;
13 double wholesale_cost;
14 int shelf_time;
15 char ans;
16
17 cout.setf(ios::fixed);
18 cout.setf(ios::showpoint);
19 cout.precision(2);
20 do
21 {
22 get_input(wholesale_cost, shelf_time);
23
24 cout << "Wholesale cost is now $"
25 << wholesale_cost << endl;
26 cout << "Days until sold is now "
27 << shelf_time << endl;
28
29 cout << "Test again?"
30 << " (Type y for yes or n for no): ";
31 cin >> ans;
32 cout << endl;
33 } while (ans == 'y' || ans == 'Y');
34
35 return 0;
36 }

(continued)

	 5.4  Testing and Debugging Functions	 283

Programs like this one are called driver programs. These driver programs
are temporary tools and can be quite minimal. They need not have fancy input
routines. They need not perform all the calculations the final program will perform.
All they need do is obtain reasonable values for the function arguments in as
simple a way as possible—typically from the user—then execute the function and
show the result. A loop, as in the program shown in Display 5.10, will allow you
to retest the function on different arguments without having to rerun the program.

If you test each function separately, you will find most of the mistakes
in your program. Moreover, you will find out which functions contain the
mistakes. If you were to test only the entire program, you would probably find
out if there were a mistake but may have no idea where the mistake is. Even
worse, you may think you know where the mistake is but be wrong.

Once you have fully tested a function, you can use it in the driver program
for some other function. Each function should be tested in a program in
which it is the only untested function. However, it’s fine to use a fully tested
function when testing some other function. If a bug is found, you know the
bug is in the untested function. For example, after fully testing the function
get_input with the driver program in Display 5.10, you can use get_input as
the input routine in driver programs to test the remaining functions.

Display 5.10   Driver Program (part 2 of 2)

37 //Uses iostream:
38 void get_input(double& cost, int& turnover)
39 {
40 using namespace std;
41 cout << "Enter the wholesale cost of item: $";
42 cin >> cost;
43 cout << "Enter the expected number of days until sold: ";
44 cin >> turnover;
45 }

Sample Dialogue

Enter the wholesale cost of item: $123.45

Enter the expected number of days until sold: 67

Wholesale cost is now $123.45

Days until sold is now 67

Test again? (Type y for yes or n for no): y

Enter the wholesale cost of item: $9.05

Enter the expected number of days until sold: 3

Wholesale cost is now $9.05

Days until sold is now 3

Test again? (Type y for yes or n for no): n

284	 Chapter 5 /  Functions for All Subtasks

It is sometimes impossible or inconvenient to test a function without
using some other function that has not yet been written or has not yet been
tested. In this case, you can use a simplified version of the missing or untested
function. These simplified functions are called stubs. These stubs will not
necessarily perform the correct calculation, but they will deliver values that
suffice for testing, and they are simple enough that you can have confidence
in their performance. For example, the program in Display 5.11 is designed
to test the function give_output from Display 5.9 as well as the basic layout
of the program. This program uses the function get_input, which we already

Display 5.11   Program with a Stub (part 1 of 2)

 1 //Determines the retail price of an item according to
 2 //the pricing policies of the Quick-Shop supermarket chain.
 3 #include <iostream>

 4 void introduction();
 5 //Postcondition: Description of program is written on the screen.

 6 void get_input(double& cost, int& turnover);
 7 //Precondition: User is ready to enter values correctly.
 8 //Postcondition: The value of cost has been set to the
 9 //wholesale cost of one item. The value of turnover has been
10 //set to the expected number of days until the item is sold.

11 double price(double cost, int turnover);
12 //Precondition: cost is the wholesale cost of one item.
13 //turnover is the expected number of days until sale of the item.
14 //Returns the retail price of the item.

15 void give_output(double cost, int turnover, double price);
16 //Precondition: cost is the wholesale cost of one item; turnover is the
17 //expected time until sale of the item; price is the retail price of the item.
18 //Postcondition: The values of cost, turnover, and price have been
19 //written to the screen.

20 int main()
21 {
22 double wholesale_cost, retail_price;
23 int shelf_time;

24 introduction();
25 get_input(wholesale_cost, shelf_time);
26 retail_price = price(wholesale_cost, shelf_time);
27 give_output(wholesale_cost, shelf_time, retail_price);
28 return 0;
29 }

(continued)

Display 5.11   Program with a Stub (part 2 of 2)

30 //Uses iostream:
31 void introduction()
32 {
33 using namespace std;
34 cout << "This program determines the retail price for\n"
35 << "an item at a Quick-Shop supermarket store.\n";
36 }
37 //Uses iostream:
38 void get_input(double& cost, int& turnover)
39 {
40 using namespace std;
41 cout << "Enter the wholesale cost of item: $";
42 cin >> cost;
43 cout << "Enter the expected number of days until sold: ";
44 cin >> turnover;
45 }

46 //Uses iostream:
47 void give_output(double cost, int turnover, double price)
48 {
49 using namespace std;
50 cout.setf(ios::fixed);
51 cout.setf(ios::showpoint);
52 cout.precision(2);
53 cout << "Wholesale cost = $" << cost << endl
54 << "Expected time until sold = "
55 << turnover << " days" << endl
56 << "Retail price= $" << price << endl;
57 }

58 //This is only a stub:
59 double price(double cost, int turnover)
60 {
61 return 9.99; //Not correct, but good enough for some testing.
62 }

Sample Dialogue

This program determines the retail price for

an item at a Quick-Shop supermarket store.

Enter the wholesale cost of item: $1.21

Enter the expected number of days until sold: 5

Wholesale cost = $1.21

Expected time until sold = 5 days

Retail price = $9.99

	 5.4  Testing and Debugging Functions	 285

fully tested
function

fully tested
function

function
being tested

stub

286	 Chapter 5 /  Functions for All Subtasks

fully tested using the driver program shown in Display 5.10. This program
also includes the function initialize_screen, which we assume has been
tested in a driver program of its own, even though we have not bothered to
show that simple driver program. Since we have not yet tested the function
price, we have used a stub to stand in for it. Notice that we could use this
program before we have even written the function price. This way we can
test the basic program layout before we fill in the details of all the function
definitions.

Using a program outline with stubs allows you to test and then “flesh
out” the basic program outline, rather than write a completely new program
to test each function. For this reason, a program outline with stubs is usually
the most efficient method of testing. A common approach is to use driver
programs to test some basic functions, like the input and output functions,
and then use a program with stubs to test the remaining functions. The stubs
are replaced by functions one at a time: One stub is replaced by a complete
function and tested; once that function is fully tested, another stub is replaced
by a full function definition, and so forth until the final program is produced.

The Fundamental Rule for Testing Functions

Every function should be tested in a program in which every other
function in that program has already been fully tested and debugged.

Self-Test Exercises

	17.	 What is the fundamental rule for testing functions? Why is this a good
way to test functions?

	18.	 What is a driver program?

	19.	 Write a driver program for the function introduction shown in Display 5.11.

	20.	 Write a driver program for the function add_tax from Self-Test Exercise 11.

	21.	 What is a stub?

	22.	 Write a stub for the function whose function declaration is given next.
Do not write a whole program, only the stub that would go in a program.
(Hint: It will be very short.)

double rain_prob(double pressure, double humidity,
 double temp);
//Precondition: pressure is the barometric

	 5.5  General Debugging Techniques	 287

//pressure in inches of mercury,
//humidity is the relative humidity as a percent, and
//temp is the temperature in degrees Fahrenheit.
//Returns the probability of rain, which is a number
//between 0 and 1.
//0 means no chance of rain. 1 means rain is 100%
//certain.

5.5  General Debugging Techniques

Careful testing through the use of stubs and drivers can detect a large number
of bugs that may exist in a program. However, examination of the code and
the output of test cases may be insufficient to track down many logic errors.
In this case, there are a number of general debugging techniques that you may
employ.

Keep an Open Mind

Examine the system as a whole and don’t assume that the bug occurs in one
particular place. If the program is giving incorrect output values, then you
should examine the source code, different test cases for the input and output
values, and the logic behind the algorithm itself. For example, consider the
code to determine price for the supermarket example in Display 5.9. If the
wrong price is displayed, the error might simply be that the input values
were different from those you were expecting in the test case, leading to an
apparently incorrect program.

Some novice programmers will “randomly” change portions of the code
hoping that it will fix the error. Avoid this technique at all costs! Sometimes this
approach will work for the first few simple programs that you write. However,
it will almost certainly fail for larger programs and will often introduce new
errors to the program. Make sure that you understand what logical impact a
change to the code will make before committing the modification.

Finally, if allowed by your instructor, you could show the program to
someone else. A fresh set of eyes can sometimes quickly pinpoint an error that
you have been missing. Taking a break and returning to the problem a few
hours later or the next day can also sometimes help in discovering an error.

Check Common Errors

One of the first mistakes you should look for are common errors that are easy
to make, as described throughout the textbook in the Pitfall and Programming
Tip sections. Examples of sources for common errors include (1) uninitialized
variables, (2) off-by-one errors, (3) exceeding a data boundary, (4) automatic
type conversion, and (5) using = instead of ==.

Debugging
VideoNote

288	 Chapter 5 /  Functions for All Subtasks

Localize the Error

Determining the precise cause and location of a bug is one of the first steps to
fixing the error. Examining the input and output behavior for different test cases
is one way to localize the error. A related technique is to add cout statements to
strategic locations in the program that print out the values for critical variables.
The cout statements also serve to show what code the program is executing.
This is the strategy of tracing variables that was described in Chapter 3 for loops,
but it can be used even when there are no loops present in the code.

For example, consider the code in Display 5.12 that is intended to convert
a temperature from Fahrenheit to Celsius using the formula

C 5
 5(F 2 32)

9

When this program is executed with an input of 100 degrees Fahrenheit, the
output is “Temperature in Celsius is 0”. This is obviously incorrect, as the
correct answer is 37.8 degrees Celsius.

To track down the error we can print out the value of critical variables.
In this case, something appears to be wrong with the conversion formula, so
we try a two-step approach. In the first step we compute (Fahrenheit – 32)
and in the second step we compute (5 / 9) and then output both values. This

Display 5.12   Temperature Conversion Program with a Bug

 1 #include <iostream>
 2 using namespace std;
 3
 4 int main()
 5 {
 6 double fahrenheit;
 7 double celsius;
 8
 9 cout << "Enter temperature in Fahrenheit." << endl;
10 cin >> fahrenheit;
11 celsius = (5 / 9) * (fahrenheit - 32);
12 cout << "Temperature in Celsius is " << celsius << endl;
13
14 return 0;
15 }

Sample Dialogue

Enter temperature in Fahrenheit.

100

Temperature in Celsius is 0

	 5.5  General Debugging Techniques	 289

is illustrated in Display 5.13. We have also commented out the original line
of code by placing // at the beginning of the line. This tells the compiler
to ignore the original line of code but still leave it in the program for our
reference. If we ever wish to restore the code, we simply remove the // instead
of having to type the line in again if it was deleted.

By examining the result of the cout statements we have now identified
the precise location of the bug. In this case, the conversion factor is not
computed correctly. Since we are setting the conversion factor to 5 / 9,

Display 5.13   Debugging with cout Statements

 1 #include <iostream>
 2 using namespace std;
 3
 4 int main()
 5 {
 6 double fahrenheit;
 7 double celsius;
 8
 9 cout << "Enter temperature in Fahrenheit." << endl;
10 cin >> fahrenheit;
11
12 // Comment out original line of code but leave it
13 // in the program for our reference
14 // celsius = (5 / 9) * (fahrenheit - 32);
15
16 // Add cout statements to verify (5 / 9) and (fahrenheit - 32)
17 // are computed correctly
18 double conversionFactor = 5 / 9;
19 double tempFahrenheit = (fahrenheit - 32);
20
21 cout << "fahrenheit - 32 = " << tempFahrenheit << endl;
22 cout << "conversionFactor = " << conversionFactor << endl;
23 celsius = conversionFactor * tempFahrenheit;
24 cout << "Temperature in Celsius is " << celsius << endl;
25
26 return 0;
27 }

Sample Dialogue

Enter temperature in Fahrenheit.

100

fahrenheit - 32 = 68

conversionFactor = 0

Temperature in Celsius is 0

code that is
commented out

debugging
with cout
statements

290	 Chapter 5 /  Functions for All Subtasks

this instructs the compiler to compute the division of two integers, which
results in zero. The simple fix is to perform floating-point division instead
of integer division by changing one of the operands to a floating-point type,
for example:

double conversionFactor = 5.0 / 9;

Once the bug has been identified we can now remove or comment out
the debug code and return to a corrected version of the original program by
modifying the line that computes the formula to the following:

celsius = (5.0 / 9) * (fahrenheit - 32);

Adding debugging code and introducing cout statements is a simple
technique that works in almost any programming environment. However,
it can sometimes be tedious to add a large number of cout statements to a
program. Moreover, the output of the cout statements may be long or difficult
to interpret, and the introduction of debugging code might even introduce
new errors. Many compilers and integrated developing environments include
a separate program, a debugger, that allows the programmer to stop execution
of the program at a specific line of code called a breakpoint and step through
the execution of the code one line at a time. As the debugger steps through
the code, the programmer can inspect the contents of variables and even
manually change the values stored in those variables. No cout statements are
necessary to view the values of critical variables. The interface, commands,
and capabilities of debuggers vary among C++ compilers, so check your user
manual or check with your instructor for help on how to use these features.

The assert Macro

In Section 5.3 we discussed the concept of preconditions and postconditions
for subroutines. The assert macro is a tool to ensure that the expected
conditions are true at the location of the assert statement. If the condition
is not met, then the program will display an error message and abort. To
use assert, first include the definition of assert in your program with the
following include statement:

#include <cassert>

To use assert, add the following line of code at the location where you
would like to enforce the assertion with a boolean expression that should
evaluate to true:

assert(boolean_expression);

The assert statement is a macro, which is a construct similar to a function. As
an example, consider a subroutine that uses Newton’s method to calculate the
square root of a number n:

	 5.5  General Debugging Techniques	 291

Here sqrt0 = 1 and sqrt
i
 approaches the square root of n as i approaches

infinity. A subroutine that implements this algorithm requires that n be a
positive number and that the number of iterations we will repeat the
calculation is also a positive number. We can guarantee this condition by
adding assert to the subroutine as shown below:

// Approximates the square root of n using Newton's
// Iteration.
// Precondition: n is positive, num_iterations is positive
// Postcondition: returns the square root of n
double newton_sqroot(double n, int num_iterations)
{
 double answer = 1;
 int i = 0;

 assert((n > 0) && (num_iterations> 0));
 while (i <num_iterations)
 {
 answer = 0.5 * (answer + n / answer);
 i++;
 }
 return answer;
}

If we try to execute this subroutine with any negative parameters,
then the program will abort and display the assertion that failed. The
assert statement can be used in a similar manner for any assertion that
you would like to enforce and is an excellent technique for defensive
programming.

If you are going to distribute your program, you might not want the
executable program to include the assert statements, since users could
then get error messages that they might not understand. If you have added
many assert statements to your code, it can be tedious to remove them all.
Fortunately, you can disable all assert macros by adding the following line to
the beginning of your program, before the include statement for <cassert>
as follows:

#define NDEBUG
#include <cassert>

If you later change your program and need to debug it again, you can turn
the assert statements back on by deleting the line #define NDEBUG (or com-
menting it out).

 sqrt
i + 1

 = 1 sqrti +
 n  2
sqrt

i

292	 Chapter 5 /  Functions for All Subtasks

Self-Test Exercises

	23.	 If computing the statement: x = (x * y / z); how can you use the
assert macro to avoid division by zero?

	24.	 What is a debugger?

	25.	 What general techniques can you use to determine the source of an error?

Chapter Summary

■	 All subtasks in a program can be implemented as functions, either as func-
tions that return a value or as void functions.

■	 A formal parameter is a kind of place holder that is filled in with a function
argument when the function is called. There are two methods of performing
this substitution, call-by-value and call-by-reference.

■	 In the call-by-value substitution mechanism, the value of an argument is
substituted for its corresponding formal parameter. In the call-by-reference
substitution mechanism, the argument should be a variable and the entire
variable is substituted for the corresponding argument.

■	 The way to indicate a call-by-reference parameter in a function definition is
to attach the ampersand sign, &, to the type of the formal parameter.

■	 An argument corresponding to a call-by-value parameter cannot be changed
by a function call. An argument corresponding to a call-by-reference param-
eter can be changed by a function call. If you want a function to change the
value of a variable, then you must use a call-by-reference parameter.

■	 A good way to write a function declaration comment is to use a precondi-
tion and a postcondition. The precondition states what is assumed to be
true when the function is called. The postcondition describes the effect of
the function call; that is, the postcondition tells what will be true after the
function is executed in a situation in which the precondition holds.

■	 Every function should be tested in a program in which every other function
in that program has already been fully tested and debugged.

■	 A driver program is a program that does nothing but test a function.

■	 A simplified version of a function is called a stub. A stub is used in place of
a function definition that has not yet been tested (or possibly not even writ-
ten) so that the rest of the program can be tested.

■	 A debugger, strategic placement of cout statements, and the assert macro
are tools that can help you debug a program.

	 Answers to Self-Test Exercises	 293

Answers to Self-Test Exercises

	  1.		 Hello
	 Goodbye
	 One more time:
	 Hello
	 End of program.

	  2.	 No, a void function definition need not contain a return statement. A
void function definition may contain a return statement, but one is not
required.

	  3.	 Omitting the return statement in the function definition for
initialize_screen in Display 5.2 would have absolutely no effect on
how the program behaves. The program will compile, run, and behave
exactly the same. Similarly, omitting the return statement in the function
definition for show_results also will have no effect on how the program
behaves. However, if you omit the return statement in the function
definition for celsius, that will be a serious error that will keep the program
from running. The difference is that the functions initialize_screen
and show_results are void functions, but celsius is not a void
function.

	  4.	 #include <iostream>

void product_out(int n1, int n2, int n3);
int main()
{
 using namespace std;
 int num1, num2, num3;
 cout << "Enter three integers: ";
 cin >> num1 >> num2 >> num3;
 product_out(num1, num2, num3);
 return 0;
}

void product_out(int n1, int n2, int n3)
{
 using namespace std;
 cout << "The product of the three numbers "
 << n1 << ", " << n2 << ", and "
 << n3 << " is " << (n1 * n2 * n3) << endl;
}

	  5.	 These answers are system dependent.

	  6.	 A call to a void function followed by a semicolon is a statement. A call to
a function that returns a value is an expression.

294	 Chapter 5 /  Functions for All Subtasks

	  7.		 10 20 30
	 1 2 3
	 1 20 3

	  8.		 Enter two integers: 5 10
	 In reverse order the numbers are: 5 5		 different

	  9.		� par1_value in function call = 111
par2_ref in function call = 222
n1 after function call = 1
n2 after function call = 2			 different

	10.	 void zero_both(int& n1, int& n2)

{
 n1 = 0;
 n2 = 0;
}

	11.	 void add_tax(double tax_rate, double& cost)

{
 cost = cost + (tax_rate/100.0) * cost;
}

		 The division by 100 is to convert a percent to a fraction. For example, 10%
is 10/100.0 or 1/10th of the cost.

	12.	 Yes, a function that returns a value can have a call-by-reference parameter.
Yes, a function can have a combination of call-by-value and call-by-reference
parameters.

	13.	 No, a function definition cannot appear inside the body of another func-
tion definition.

	14.	 Yes, a function definition can contain a call to another function.

	15.	 void order(int& n1, int& n2);
//Precondition: The variables n1 and n2 have values.
//Postcondition: The values in n1 and n2 have been
//ordered so that n1 <= n2.

	16.	 double sqrt(double n);
//Precondition: n >= 0.
//Returns the squareroot of n.

		 You can rewrite the second comment line to the following if you prefer, but
the previous version is the usual form used for a function that returns a value:

//Postcondition: Returns the squareroot of n.

	 Answers to Self-Test Exercises	 295

	17.	 The fundamental rule for testing functions is that every function should be
tested in a program in which every other function in that program has al-
ready been fully tested and debugged. This is a good way to test a function
because if you follow this rule, then when you find a bug, you will know
which function contains the bug.

	18.	 A driver program is a program written for the sole purpose of testing a
function.

	19.	 #include <iostream>

void introduction();
//Postcondition: Description of program is written on
//the screen.
int main()
{
 using namespace std;
 introduction();
 cout << "End of test.\n";
 return 0;
}
//Uses iostream:
void introduction()
{
 using namespace std;
 cout << "This program determines the retail price for\n"
 << "an item at a Quick-Shop supermarket store.\n";
}

	20.	 //Driver program for the function add_tax.
#include <iostream>

void add_tax(double tax_rate, double& cost);
//Precondition: tax_rate is the amount of sales tax as
//a percentage and cost is the cost of an item before
//tax.
//Postcondition: cost has been changed to the cost of
//the item after adding sales tax.

int main()
{
 using namespace std;
 double cost, tax_rate;
 char ans;
 cout.setf(ios::fixed);
 cout.setf(ios::showpoint);
 cout.precision(2);
 do
 {
 cout << "Enter cost and tax rate:\n";

296	 Chapter 5 /  Functions for All Subtasks

 cin >> cost >> tax_rate;
 add_tax(tax_rate, cost);

 cout << "After call to add_tax\n"
 << "tax_rate is " << tax_rate << endl
 << "cost is " << cost << endl;

 cout << "Test again?"
 << " (Type y for yes or n for no): ";
 cin >> ans;
 cout << endl;
 } while (ans == 'y' || ans == 'Y');

 return 0;
}

void add_tax(double tax_rate, double& cost)
{
 cost = cost + (tax_rate/100.0)* cost;
}

	21.	 A stub is a simplified version of a function that is used in place of the func-
tion so that other functions can be tested.

	22.	 //THIS IS JUST A STUB.
double rain_prob(double pressure, double humidity, double temp)
{
 return 0.25; //Not correct, but good enough for some testing.
}

	23.	 assert(z != 0).

	24.	 A debugger is a tool that allows the programmer to set breakpoints, step
through the code line by line, and inspect or modify the value of variables.

	25.	 Keeping an open mind, adding cout statements to narrow down the
cause of the error, using a debugger, searching for common errors, and
devising a variety of tests are a few techniques that you can use to debug
a program.

Practice Programs

Practice Programs can generally be solved with a short program that directly applies
the programming principles presented in this chapter.

	  1.	 Write a function that computes the average and standard deviation of four
scores. The standard deviation is defined to be the square root of the aver-
age of the four values: (si – a)2, where a is average of the four scores s1, s2,
s3, and s4. The function will have six parameters and will call two other

	 Practice Programs	 297

functions. Embed the function in a driver program that allows you to test
the function again and again until you tell the program you are finished.

	  2.	 Write a program that reads in a length in feet and inches and outputs the
equivalent length in meters and centimeters. Use at least three functions:
one for input, one or more for calculating, and one for output. Include a
loop that lets the user repeat this computation for new input values until
the user says he or she wants to end the program. There are 0.3048 meters
in a foot, 100 centimeters in a meter, and 12 inches in a foot.

	  3.	 Write a program like that of the previous exercise that converts from meters
and centimeters into feet and inches. Use functions for the subtasks.

	  4.	 (You should do the previous two Practice Programs before doing this
one.) Write a program that combines the functions in the previous two
Practice Programs. The program asks the user if he or she wants to con-
vert from feet and inches to meters and centimeters or from meters and
centimeters to feet and inches. The program then performs the desired
conversion. Have the user respond by typing the integer 1 for one type of
conversion and 2 for the other conversion. The program reads the user’s
answer and then executes an if-else statement. Each branch of the
if-else statement will be a function call. The two functions called in
the if-else statement will have function definitions that are very similar
to the programs for the previous two Practice Programs. Thus, they will be
function definitions that call other functions in their function bodies. In-
clude a loop that lets the user repeat this computation for new input values
until the user says he or she wants to end the program.

	  5.	 Write a program that reads in a weight in pounds and ounces and outputs
the equivalent weight in kilograms and grams. Use at least three func-
tions: one for input, one or more for calculating, and one for output.
Include a loop that lets the user repeat this computation for new input
values until the user says he or she wants to end the program. There are
2.2046 pounds in a kilogram, 1000 grams in a kilogram, and 16 ounces
in a pound.

	  6.	 Write a program like that of the previous exercise that converts from kilo-
grams and grams into pounds and ounces. Use functions for the subtasks.

	  7.	 (You should do the previous two Practice Programs before doing this
one.) Write a program that combines the functions of the previous two
Practice Programs. The program asks the user if he or she wants to con-
vert from pounds and ounces to kilograms and grams or from kilograms
and grams to pounds and ounces. The program then performs the desired
conversion. Have the user respond by typing the integer 1 for one type of
conversion and 2 for the other. The program reads the user’s answer and
then executes an if-else statement. Each branch of the if-else statement

Solution to Practice
Program 5.5

VideoNote

298	 Chapter 5 /  Functions for All Subtasks

will be a function call. The two functions called in the if-else statement
will have function definitions that are very similar to the programs for the
previous two Practice Programs. Thus, they will be function definitions that
call other functions in their function bodies. Include a loop that lets the
user repeat this computation for new input values until the user says he or
she wants to end the program.

	  8.	 (You need to do Practice Programs 4 and 7 before doing this one.)
Write a program that combines the functions of Practice Programs 4
and 7. The program asks the user if he or she wants to convert lengths or
weights. If the user chooses lengths, then the program asks the user if he
or she wants to convert from feet and inches to meters and centimeters
or from meters and centimeters to feet and inches. If the user chooses
weights, a similar question about pounds, ounces, kilograms, and grams
is asked. The program then performs the desired conversion. Have the
user respond by typing the integer 1 for one type of conversion and 2
for the other. The program reads the user’s answer and then executes an
if-else statement. Each branch of the if-else statement will be a function
call. The two functions called in the if-else statement will have function
definitions that are very similar to the programs for Practice Programs 4
and 7. Thus, these functions will be function definitions that call other
functions in their function bodies; however, they will be very easy to write
by adapting the programs you wrote for Practice Programs 4 and 7.

		 Notice that your program will have if-else statements embedded inside of
if-else statements, but only in an indirect way. The outer if-else statement
will include two function calls as its two branches. These two function calls
will each in turn include an if-else statement, but you need not think about
that. They are just function calls and the details are in a black box that you
create when you define these functions. If you try to create a four-way branch,
you are probably on the wrong track. You should only need to think about
two-way branches (even though the entire program does ultimately branch
into four cases). Include a loop that lets the user repeat this computation for
new input values until the user says he or she wants to end the program.

	  9.	 The area of an arbitrary triangle can be computed using the formula

	 area = s(s – a)(s – b)(s – c)

		 where a, b, and c are the lengths of the sides, and s is the semiperimeter.

	 s = (a + b + c)/2

		 Write a void function that computes the area and perimeter (not the
semiperimeter) of a triangle based on the length of the sides. The function
should use five parameters—three value parameters that provide the lengths
of the edges and two reference parameters that store the computed area

√

	 Programming Projects	 299

and perimeter. Make your function robust. Note that not all combinations
of a, b, and c produce a triangle. Your function should produce correct
results for legal data and reasonable results for illegal combinations.

Programming Projects

Programming Projects require more problem-solving than Practice Programs and
can usually be solved many different ways. Visit www.myprogramminglab.com to
complete many of these Programming Projects online and get instant feedback.

	  1.	 Write a program that converts from 24-hour notation to 12-hour notation.
For example, it should convert 14:25 to 2:25 PM. The input is given as two
integers. There should be at least three functions, one for input, one to do the
conversion, and one for output. Record the AM/PM information as a value of
type char, ‘A’ for AM and ‘P’ for PM. Thus, the function for doing the conver-
sions will have a call-by-reference formal parameter of type char to record
whether it is AM or PM. (The function will have other parameters as well.)
Include a loop that lets the user repeat this computation for new input values
again and again until the user says he or she wants to end the program.

	  2.	 Write a program that requests the current time and a waiting time as two
integers for the number of hours and the number of minutes to wait. The
program then outputs what the time will be after the waiting period. Use
24-hour notation for the times. Include a loop that lets the user repeat this
calculation for additional input values until the user says she or he wants
to end the program.

	  3.	 Modify your program for Programming Project 2 so that it uses 12-hour
notation, such as 3:45 PM.

	  4.	 Write a program that tells what coins to give out for any amount of change
from 1 cent to 99 cents. For example, if the amount is 86 cents, the output
would be something like the following:

		 86 cents can be given as
3 quarter(s) 1 dime(s) and 1 penny(pennies)

		 Use coin denominations of 25 cents (quarters), 10 cents (dimes), and 1 cent
(pennies). Do not use nickel and half-dollar coins. Your program will use
the following function (among others):

void compute_coins(int coin_value, int& num, int& amount_left);
//Precondition: 0 < coin_value < 100; 0 <= amount_left < 100.
//Postcondition: num has been set equal to the maximum number
//of coins of denomination coin_value cents that can be obtained
//from amount_left. Additionally, amount_left has been decreased
//by the value of the coins, that is, decreased by
//num * coin_value.

www.myprogramminglab.com

300	 Chapter 5 /  Functions for All Subtasks

		 For example, suppose the value of the variable amount_left is 86. Then,
after the following call, the value of number will be 3 and the value of
amount_left will be 11 (because if you take 3 quarters from 86 cents, that
leaves 11 cents):

compute_coins(25, number, amount_left);

		 Include a loop that lets the user repeat this computation for new input
values until the user says he or she wants to end the program. (Hint: Use
integer division and the % operator to implement this function.)

	  5.	 In cold weather, meteorologists report an index called the windchill fac-
tor, that takes into account the wind speed and the temperature. The index
provides a measure of the chilling effect of wind at a given air temperature.
Windchill may be approximated by the formula:

			 W = 13.12 + 0.6215 * t – 11.37 * v0.16 + 0.3965 * t * v0.016

		 where
			 v = wind speed in m/sec
			 t = temperature in degrees Celsius: t <= 10
			 W = windchill index (in degrees Celsius)

		 Write a function that returns the windchill index. Your code should en-
sure that the restriction on the temperature is not violated. Look up some
weather reports in back issues of a newspaper in your university library and
compare the windchill index you calculate with the result reported in the
newspaper.

	  6.	 In the land of Puzzlevania, Aaron, Bob, and Charlie had an argument
over which one of them was the greatest puzzler of all time. To end the
argument once and for all, they agreed on a duel to the death. Aaron is a
poor shooter and only hits his target with a probability of 1/3. Bob is a
bit better and hits his target with a probability of 1/2. Charlie is an expert
marksman and never misses. A hit means a kill and the person hit drops
out of the duel.

		 To compensate for the inequities in their marksmanship skills, it is decided
that the contestants would fire in turns starting with Aaron, followed by Bob,
and then by Charlie. The cycle would repeat until there was one man stand-
ing. And that man would be remembered as the greatest puzzler of all time.

		 a.	� Write a function to simulate a single shot. It should use the following
declaration:

	 void shoot(bool& targetAlive, double accuracy);

			� This would simulate someone shooting at targetAlive with the given
accuracy by generating a random number between 0 and 1. If the random

Solution to Programming
Project 5.6

VideoNote

	 Programming Projects	 301

number is less than accuracy, then the target is hit and targetAlive
should be set to false. Chapter 4 illustrates how to generate random
numbers.

			 For example, if Bob is shooting at Charlie, this could be invoked as:

	 shoot(charlieAlive, 0.5);

			� Here, charlieAlive is a Boolean variable that indicates if Charlie is alive.
Test your function using a driver program before moving on to step b.

		 b.	� An obvious strategy is for each man to shoot at the most accurate
shooter still alive on the grounds that this shooter is the deadliest and
has the best chance of hitting back. Write a second function named
startDuel that uses the shoot function to simulate an entire duel
using this strategy. It should loop until only one contestant is left,
invoking the shoot function with the proper target and probability of
hitting the target according to who is shooting. The function should
return a variable that indicates who won the duel.

		 c.	� In your main function, invoke the startDuel function 1000 times in a
loop, keeping track of how many times each contestant wins. Output
the probability that each contestant will win when everyone uses the
strategy of shooting at the most accurate shooter left alive.

		 d.	� A counterintuitive strategy is for Aaron to intentionally miss on his first
shot. Thereafter, everyone uses the strategy of shooting at the most ac-
curate shooter left alive. This strategy means that Aaron is guaranteed
to live past the first round, since Bob and Charlie will fire at each other.
Modify the program to accommodate this new strategy and output the
probability of winning for each contestant.

	  7.	 Write a program that inputs a date (for example, July 4, 2008) and outputs
the day of the week that corresponds to that date. The following algorithm
is from http://en.wikipedia.org/wiki/Calculating_the_day_of_the_week.
The implementation will require several functions.

bool isLeapYear(int year);

		 This function should return true if year is a leap year and false if it is not.
Here is pseudocode to determine a leap year:

leap_�year = (year divisible by 400) or (year divisible by 4 and
year not divisible by 100))

int getCenturyValue(int year);

		 This function should take the first two digits of the year (that is, the cen-
tury), divide by 4, and save the remainder. Subtract the remainder from 3

http://en.wikipedia.org/wiki/Calculating_the_day_of_the_week

302	 Chapter 5 /  Functions for All Subtasks

and return this value multiplied by 2. For example, the year 2008 becomes:
(20/4) = 5 with a remainder of 0. 3 − 0 = 3. Return 3 * 2 = 6.

int getYearValue(int year);

This function computes a value based on the years since the beginning of
the century. First, extract the last two digits of the year. For example, 08 is
extracted for 2008. Next, factor in leap years. Divide the value from the
previous step by 4 and discard the remainder. Add the two results together
and return this value. For example, from 2008 we extract 08. Then (8/4) = 2
with a remainder of 0. Return 2 + 8 = 10.

int getMonthVa0lue(int month, int year);

This function should return a value based on the table below and will
require invoking the isLeapYear function.

Month Return Value

January 0 (6 if year is a leap year)

February 3 (2 if year is a leap year)

March 3

April 6

May 1

June 4

July 6

August 2

September 5

October 0

November 3

December 5

Finally, to compute the day of the week, compute the sum of the date’s
day plus the values returned by getMonthValue, getYearValue, and
getCenturyValue. Divide the sum by 7 and compute the remainder. A
remainder of 0 corresponds to Sunday, 1 corresponds to Monday, etc.,

	 Programming Projects	 303

up to 6, which corresponds to Saturday. For example, the date July 4,
2008 should be computed as (day of month) + (getMonthValue) +
(getYearValue) + (getCenturyValue) = 4 + 6 + 10 + 6 = 26. 26/7 = 3
with a remainder of 5. The fifth day of the week corresponds to Friday.

		 Your program should allow the user to enter any date and output the cor-
responding day of the week in English.

		 This program should include a void function named getInput that
prompts the user for the date and returns the month, day, and year using
pass-by-reference parameters. You may choose to have the user enter the
date’s month as either a number (1–12) or a month name.

	  8.	 Complete the previous Programming Project and create a top-level func-
tion named dayOfWeek with the header:

int dayOfWeek(int month, int day, int year);

		 The function should encapsulate the necessary logic to return the day of
the week of the specified date as an int (Sunday = 0, Monday = 1, etc.) You
should add validation code to the function that tests if any of the inputs are
invalid. If so, the function should return –1 as the day of the week. In your
main function write a test driver that checks if dayOfWeek is returning the
correct values. Your set of test cases should include at least two cases with
invalid inputs.

This page intentionally left blank

I/O Streams as an
Introduction to Objects

and Classes

6.1  Streams and Basic File I/O  306
Why Use Files for I/O?  307
File I/O  308
Introduction to Classes and Objects  312
Programming Tip: Check Whether a File Was

Opened Successfully  314
Techniques for File I/O  316
Appending to a File (Optional)  320
File Names as Input (Optional)  321

6.2 Too ls for Stream I/O  323
Formatting Output with Stream Functions  323
Manipulators  329
Streams as Arguments to Functions  332
Programming Tip: Checking for the

End of a File  332

A Note on Namespaces  335
Programming Example: Cleaning Up a File

Format  336

6.3 C haracter I/O  338
The Member Functions get and put  338
The putback Member Function (Optional)  342
Programming Example: Checking Input  343
Pitfall: Unexpected '\n' in Input  345
Programming Example: Another new_line

Function  347
Default Arguments for Functions (Optional)  348
The eof Member Function  353
Programming Example: Editing a Text File  355
Predefined Character Functions  356
Pitfall: toupper and tolower Return Values  358

6

Chapter Summary  360
Answers to Self-Test Exercises  361

Practice Programs  368
Programming Projects  370

Introduction

I/O refers to program input and output. Input can be taken from the keyboard
or from a file. Similarly, output can be sent to the screen or to a file. This
chapter explains how you can write your programs to take input from a file
and send output to another file.

Input is delivered to your program via a C++ construct known as a
stream, and output from your program is delivered to the output device
via a stream. Streams are our first examples of objects. An object is a special
kind of variable that has its own special-purpose functions that are, in a
sense, attached to the variable. The ability to handle objects is one of the
language features that sets C++ apart from earlier programming languages.
In this chapter we tell you what streams are and explain how to use them
for program I/O. In the process of explaining streams, we will introduce
you to the basic ideas about what objects are and about how objects are
used in a program.

Prerequisites

This chapter uses the material from Chapters 2 through 5.

6.1  Streams and Basic File I/O

Good Heavens! For more than forty years I have been speaking prose
without knowing it.

Molière, Le Bourgeois Gentilhomme

You are already using files to store your programs. You can also use files to
store input for a program or to receive output from a program. The files used
for program I/O are the same kind of files you use to store your programs.
Streams, which we discuss next, allow you to write programs that handle file
input and keyboard input in a unified way and that handle file output and
screen output in a unified way.

A stream is a flow of characters (or other kind of data). If the flow
is into your program, the stream is called an input stream. If the flow is
out of your program, the stream is called an output stream. If the input

306

Fish say, they have their stream and pond; But is there anything beyond?

Rupert Brooke, “Heaven” (1913)

As a leaf is carried by a stream, whether the stream ends in a lake or in the sea, so
too is the output of your program carried by a stream not knowing if the stream goes
to the screen or to a file.

Washroom wall of a computer science department (1995)

stream flows from the keyboard, then your program will take input from
the keyboard. If the input stream flows from a file, then your program
will take its input from that file. Similarly, an output stream can go to the
screen or to a file.

Although you may not realize it, you have already been using streams
in your programs. The cin that you have already used is an input stream
connected to the keyboard, and cout is an output stream connected to the
screen. These two streams are automatically available to your program, as
long as it has an include directive that names the header file iostream. You
can define other streams that come from or go to files; once you have defined
them, you can use them in your program in the same way you use the streams
cin and cout.

For example, suppose your program defines a stream called in_stream
that comes from some file. (We’ll tell you how to define it shortly.) You can
then fill an int variable named the_number with a number from this file by
using the following in your program:

int the_number;
in_stream >> the_number;

Similarly, if your program defines an output stream named out_stream that
goes to another file, then you can output the value of this variable to this
other file. The following will output the string "the_number is" followed by
the contents of the variable the_number to the output file that is connected to
the stream out_stream:

out_stream << "the_number is" << the_number << endl;

Once the streams are connected to the desired files, your program can do file
I/O the same way it does I/O using the keyboard and screen.

Why Use Files for I/O?

The keyboard input and screen output we have used so far deal with temporary
data. When the program ends, the data typed in at the keyboard and the
data left on the screen go away. Files provide you with a way to store data
permanently. The contents of a file remain until a person or program changes
the file. If your program sends its output to a file, the output file will remain
after the program has finished running. An input file can be used over and
over again by many programs without the need to type in the data separately
for each program.

The input and output files used by your program are the same kind of files
that you read and write with an editor, such as the editor you use to write your
programs. This means you can create an input file for your program or read
an output file produced by your program whenever it’s convenient for you,
as opposed to having to do all your reading and writing while the program is
running.

	 6.1  Streams and Basic File I/O	 307

cin and cout are
streams

Permanent
storage

Files also provide you with a convenient way to deal with large
quantities of data. When your program takes its input from a large input
file, the program receives a lot of data without making the user do a lot of
typing.

File I/O

When your program takes input from a file, it is said to be reading from the
file; when your program sends output to a file, it is said to be writing to the
file. There are other ways of reading input from a file, but the method we
will use reads the file from the beginning to the end (or as far as the program
gets before ending). Using this method, your program is not allowed to back
up and read anything in the file a second time. This is exactly what happens
when the program takes input from the keyboard, so this should not seem
new or strange. (As we will see, the program can reread a file starting from the
beginning of the file, but this is “starting over,” not “backing up.”) Similarly,
for the method we present here, your program writes output into a file starting
at the beginning of the file and proceeding forward. It is not allowed to back
up and change any output that it has previously written to the file. This is
exactly what happens when your program sends output to the screen. You
can send more output to the screen, but you cannot back up and change the
screen output. The way that you get input from a file into your program or
send output from your program into a file is to connect the program to the file
by means of a stream.

In C++, a stream is a special kind of variable known as an object. We will
discuss objects in the next section, but we will first describe how your program
can use stream objects to do simple file I/O. If you want to use a stream to get
input from a file (or give output to a file), you must declare the stream and
you must connect the stream to the file.

You can think of the file that a stream is connected to as the value of the
stream. You can disconnect a stream from one file and connect it to another
file, so you can change the value of these stream variables. However, you
must use special functions that apply only to streams in order to perform
these changes. You cannot use a stream variable in an assignment statement
the way that you can use a variable of type int or char. Although streams are
variables, they are unusual sorts of variables.

The streams cin and cout are already declared for you, but if you want a
stream to connect to a file, you must declare it just as you would declare any
other variable. The type for input-file stream variables is named ifstream
(for “input-file stream”). The type for output-file stream variables is named
ofstream (for “output-file stream”). Thus, you can declare in_stream to be an
input stream for a file and out_stream to be an output stream for another file
as follows:

ifstream in_stream;
ofstream out_stream;

308	 Chapter 6 /  I/O Streams as an Introduction to Objects and Classes

A stream is a
variable

Declaring streams
ifstream and
ofstream

The types ifstream and ofstream are defined in the library with the header
file fstream, and so any program that declares stream variables in this way must
contain the following directive (normally near the beginning of the file):

#include <fstream>

When using the types ifstream and ofstream, your program must also
contain the following, normally either at the start of the file or at the start of
the function body that uses the types ifstream or ofstream:

using namespace std;

Stream variables, such as in_stream and out_stream declared earlier,
must each be connected to a file. This is called opening the file and is done
with a function named open. For example, suppose you want the input stream
in_stream connected to the file named infile.dat. Your program must then
contain the following before it reads any input from this file:

in_stream.open("infile.dat");

This may seem like rather strange syntax for a function call. We will
have more to say about this peculiar syntax in the next section. For now,
just notice a couple of details about how this call to open is written. First,
the stream variable name and a dot (that is, a period) is placed before the
function named open, and the file name is given as an argument to open.
Also notice that the file name is given in quotes. The file name that is
given as an argument is the same as the name you would use for the file if
you wanted to write in it using the editor. If the input file is in the same
directory as your program, you probably can simply give the name of the
file in the manner just described. In some situations you might also need
to specify the directory that contains the file. The details about specifying
directories varies from one system to another. If you need to specify a
directory, ask your instructor or some other local expert to explain the
details.

Once you have declared an input stream variable and connected it to a file
using the open function, your program can take input from the file using the
extraction operator >>. For example, the following reads two input numbers
from the file connected to in_stream and places them in the variables one_
number and another_number:

int one_number, another_number;
in_stream >> one_number >> another_number;

An output stream is opened (that is, connected to a file) in the same way
as just described for input streams. For example, the following declares the
output stream out_stream and connects it to the file named outfile.dat:

ofstream out_stream;
out_stream.open("outfile.dat");

	 6.1  Streams and Basic File I/O	 309

Connecting a
stream to a file
open

When used with a stream of type ofstream, the member function open will
create the output file if it does not already exist. If the output file does already
exist, the member function open will discard the contents of the file so that
the output file is empty after the call to open.

After a file is connected to the stream out_stream with a call to open,
the program can send output to that file using the insertion operator <<. For
example, the following writes two strings and the contents of the variables
one_number and another_number to the file that is connected to the stream
out_stream (which in this example is the file named outfile.dat):

out_stream << "one_number = " << one_number
<< " another_number = " << another_number;

Notice that when your program is dealing with a file, it is as if the file had
two names. One is the usual name for the file that is used by the operating
system. This name is called the external file name. In our sample code
the external file names were infile.dat and outfile.dat. The external file
name is in some sense the “real name” for the file. It is the name used by
the operating system. The conventions for spelling these external file names
vary from one system to another; you will need to learn these conventions
from your instructor or from some other local expert. The names infile.dat
and outfile.dat that we used in our examples might or might not look like
file names on your system. You should name your files following whatever
conventions your system uses. Although the external file name is the real
name for the file, it is typically used only once in a program. The external file
name is given as an argument to the function open, but after the file is opened,
the file is always referred to by naming the stream that is connected to the file. Thus,
within your program, the stream name serves as a second name for the file.

The sample program in Display 6.1 reads three numbers from one file and
writes their sum, as well as some text, to another file.

310	 Chapter 6 /  I/O Streams as an Introduction to Objects and Classes

A File Has Two Names

Every input and every output file used by your program has two names.
The external file name is the real name of the file, but it is used only in
the call to the function open, which connects the file to a stream. After
the call to open, you always use the stream name as the name of the file.

Every file should be closed when your program is finished getting input
from the file or sending output to the file. Closing a file disconnects the stream
from the file. A file is closed with a call to the function close. The following
lines from the program in Display 6.1 illustrate how to use the function close:

in_stream.close();
out_stream.close();

Notice that the function close takes no arguments. If your program ends
normally but without closing a file, the system will automatically close the file
for you. However, it is good to get in the habit of closing files for at least two
reasons. First, the system will only close files for you if your program ends in
a normal fashion. If your program ends abnormally due to an error, the file
will not be closed and may be left in a corrupted state. If your program closes
files as soon as it is finished with them, file corruption is less likely. A second
reason for closing a file is that you may want your program to send output
to a file and later read that output back into the program. To do this, your
program should close the file after it is finished writing to the file, and then
your program should connect the file to an input stream using the function

	 6.1  Streams and Basic File I/O	 311

Display 6.1   Simple File Input/Output

 1 //Reads three numbers from the file infile.dat, sums the numbers,
 2 //and writes the sum to the file outfile.dat.
 3 //(A better version of this program will be given in Display 6.2.)
 4 #include <fstream>
 5 int main()
 6 {
 7 using namespace std;
 8 ifstream in_stream;
 9 ofstream out_stream;
10
11 in_stream.open("infile.dat");
12 out_stream.open("outfile.dat");
13 int first, second, third;
14 in_stream >> first >> second >> third;
15 out_stream << "The sum of the first 3\n"
16 << "numbers in infile.dat\n"
17 << "is " << (first + second + third)
18 << endl;
19 in_stream.close();
20 out_stream.close();
21 return 0;
22 }

infile.dat outfile.dat

 (Not changed by program.) (After program is run.)

1 The sum of the first 3

2 numbers in infile.dat

3 is 6

4

There is no output to the screen and no input from the keyboard.

312	 Chapter 6 /  I/O Streams as an Introduction to Objects and Classes

open. (It is possible to open a file for both input and output, but this is done
in a slightly different way and we will not be discussing this alternative.)

Introduction to Classes and Objects

The streams in_stream and out_stream discussed in the last section and
the predefined streams cin and cout are objects. An object is a variable that
has functions as well as data associated with it. For example, the streams
in_stream and out_stream both have a function named open associated with
them. Two sample calls of these functions, along with the declarations of the
objects in_stream and out_stream, are given below:

ifstream in_stream;
ofstream out_stream;
in_stream.open("infile.dat");
out_stream.open("outfile.dat");

There is a reason for this peculiar notation. The function named open
that is associated with the object in_stream is a different function from the
function named open that is associated with the object out_stream. One
function opens a file for input, and the other opens a file for output. Of course,
these two functions are similar. They both “open files.” When we give two
functions the same name, it is because the two functions have some intuitive
similarity. However, these two functions named open are different functions,
even if they may be only slightly different. When the compiler sees a call to
a function named open, it must decide which of these two functions named
open you mean. The compiler determines this by looking at the name of the
object that precedes the dot, in this case, either in_stream or out_stream. A
function that is associated with an object is called a member function. So,
for example, open is a member function of the object in_stream, and another
function named open is a member of the object out_stream.

As we have just seen, different objects can have different member functions.
These functions may have the same names, as was true of the functions named
open, or they may have completely different names. The type of an object
determines which member functions the object has. If two objects are of the
same type, they may have different values, but they will have the same member
functions. For example, suppose you declare the following stream objects:

ifstream in_stream, in_stream2;
ofstream out_stream, out_stream2;

The functions in_stream.open and in_stream2.open are the same function.
Similarly, out_stream.open and out_stream2.open are the same function (but
they are different from the functions in_stream.open and in_stream2.open).

A type whose variables are objects—such as ifstream and ofstream—
is called a class. Since the member functions for an object are completely
determined by its class (that is, by its type), these functions are called member
functions of the class (as well as being called members of the object). For example,
the class ifstream has a member function called open, and the class ofstream

	 6.1  Streams and Basic File I/O	 313

has a different member function called open. The class ofstream also has a
member function named precision, but the class ifstream has no member
function named precision. You have already been using the member function
precision with the stream cout, but we will discuss it in more detail later.

When you call a member function in a program, you always specify an
object, usually by writing the object name and a dot before the function
name, as in the following example:

in_stream.open("infile.dat");

One reason for naming the object is that the function can have some effect on the
object. In the preceding example, the call to the function open connects the file
infile.dat to the stream in_stream, so it needs to know the name of this stream.

In a function call, such as

in_stream.open("infile.dat");

the dot is called the dot operator and the object named before the dot is
referred to as the calling object. In some ways the calling object is like an
additional argument to the function—the function can change the calling object
as if it were an argument—but the calling object plays an even larger role in the
function call. The calling object determines the meaning of the function name.
The compiler uses the type of the calling object to determine the meaning of the
function name. For example, in the earlier call to open, the type of the object
in_stream determines the meaning of the function name open.

Calling a member
function

Classes and Objects

An object is a variable that has functions associated with it. These
functions are called member functions. A class is a type whose variables
are objects. The object’s class (that is, the type of the object) determines
which member functions the object has.

Calling a Member Function

Syntax

Calling_Object.Member_Function_Name(Argument_List);

examples

in_stream.open("infile.dat");
out_stream.open("outfile.dat");
out_stream.precision(2);

The meaning of the Member_Function_Name is determined by the class of
(that is, the type of) the Calling_Object.

Dot Operator

314	 Chapter 6 /  I/O Streams as an Introduction to Objects and Classes

The function name close is analogous to open. The classes ifstream
and ofstream each have a member function named close. They both
“close files,” but they close them in different ways because the files were
opened and were manipulated in different ways. We will be discussing
more member functions for the classes ifstream and ofstream later in this
chapter.

■  Programming Tip   �Check Whether a File Was Opened
Successfully

A call to open can be unsuccessful for a number of reasons. For example,
if you open an input file and there is no file with the external name that
you specify, then the call to open will fail. When this happens, you might
not receive an error message and your program might simply proceed to
do something unexpected. Thus, you should always follow a call to open
with a test to see whether the call to open was successful and end the
program (or take some other appropriate action) if the call to open was
unsuccessful.

You can use the member function named fail to test whether a stream
operation has failed. There is a fail member function for each of the classes
ifstream and ofstream. The fail function takes no arguments and returns a
bool value. A call to the function fail for a stream named in_stream would
be as follows:

in_stream.fail()

This is a Boolean expression that can be used to control a while loop or an
if-else statement.

You should place a call to fail immediately after each call to open; if
the call to open fails, the function fail will return true (that is, the Boolean
expression will be satisfied). For example, if the following call to open fails,
then the program will output an error message and end; if the call succeeds,
the fail function returns false, so the program will continue.

in_stream.open("stuff.dat");
if (in_stream.fail())
{
 cout << "Input file opening failed.\n";
 exit(1);
}

The member
function fail

Ends the program

Objects and File I/O
Streams

VideoNote

fail is a member function, so it is called using the stream name and a
dot. Of course, the call to in_stream.fail refers only to a call to open of the
form in_stream.open, and not to any call to the function open made with any
other stream as the calling object.

	 6.1  Streams and Basic File I/O	 315

The exit statement shown earlier has nothing to do with classes and has
nothing directly to do with streams, but it is often used in this context. The
exit statement causes your program to end immediately. The exit function
returns its argument to the operating system. To use the exit statement, your
program must contain the following include directive:

#include <cstdlib>

When using exit, your program must also contain the following, normally
either at the start of the file or at the start of the function body that uses
exit:

using namespace std;	 ■

The function exit is a predefined function that takes a single integer
argument. By convention, 1 is used as the argument if the call to exit was
due to an error, and 0 is used otherwise.1 For our purposes, it makes no
difference what integer you use, but it pays to follow this convention since it is
important in more advanced programming.

1UNIX and Windows use 1 for error and 0 for success, but other operating systems may
reverse this convention. You should ask your instructor what values to use.

The exit Statement

The exit statement is written

exit(Integer_Value);

When the exit statement is executed, the program ends immediately.
Any Integer_Value may be used, but by convention, 1 is used for a
call to exit that is caused by an error, and 0 is used in other cases. The
exit statement is a call to the function exit, which is in the library with
header file named cstdlib. Therefore, any program that uses the exit
statement must contain the following directives:

#include <cstdlib>
using namespace std;

(These directives need not be given one immediately after the other.
They are placed in the same locations as similar directives we have
seen.)

316	 Chapter 6 /  I/O Streams as an Introduction to Objects and Classes

Display 6.2 contains the program from Display 6.1 rewritten to include
tests to see if the input and output files were opened successfully. It processes
files in exactly the same way as the program in Display 6.1. In particular,
assuming that the file infile.dat exists and has the contents shown in
Display 6.1, the program in Display 6.2 will create the file outfile.dat
that is shown in Display 6.1. However, if there were something wrong and
one of the calls to open failed, then the program in Display 6.2 would end
and send an appropriate error message to the screen. For example, if there
were no file named infile.dat, then the call to in_stream.open would
fail, the program would end, and an error message would be written to the
screen.

Notice that we used cout to output the error message; this is because
we want the error message to go to the screen, as opposed to going to a
file. Since this program uses cout to output to the screen (as well as doing
file I/O), we have added an include directive for the header file iostream.
(Actually, your program does not need to have #include <iostream>
when the program has #include <fstream>, but it causes no problems to
include it, and it reminds you that the program is using screen output in
addition to file I/O.)

Techniques for File I/O

As we already noted, the operators >> and << work the same for streams
connected to files as they do for cin and cout. However, the programming
style for file I/O is different from that for I/O using the screen and keyboard.
When reading input from the keyboard, you should prompt for input and
echo the input, like this:

cout << "Enter the number: ";
cin >> the_number;
cout << "The number you entered is " << the_number;

When your program takes its input from a file, you should not include such
prompt lines or echoing of input, because there is nobody there to read and
respond to the prompt and echo. When reading input from a file, you must be
certain the data in the file is exactly the kind of data the program expects. Your
program then simply reads the input file assuming that the data it needs will
be there when it is requested. If in_file is a stream variable that is connected
to an input file and you wish to replace the previous keyboard/screen I/O
shown with input from the file connected to in_file, then you would replace
those three lines with the following line:

in_file >> the_number;

You may have any number of streams opened for input or for output.
Thus, a single program can take input from the keyboard and also take input
from one or more files. The same program could send output to the screen and

	 6.1  Streams and Basic File I/O	 317

to one or more files. Alternatively, a program could take all of its input from
the keyboard and send output to both the screen and a file. Any combination
of input and output streams is allowed. Most of the examples in this book will
use cin and cout to do I/O using the keyboard and screen, but it is easy to
modify these programs so that the program takes its input from a file and/or
sends its output to a file.

Display 6.2   File I/O with Checks on open

 1 //Reads three numbers from the file infile.dat, sums the numbers,
 2 //and writes the sum to the file outfile.dat.
 3 #include <fstream>
 4 #include <iostream>
 5 #include <cstdlib>
 6 int main()
 7 {
 8 using namespace std;
 9 ifstream in_stream;
10 ofstream out_stream;
11 in_stream.open("infile.dat");
12 if (in_stream.fail())
13 {
14 cout << "Input file opening failed.\n";
15 exit(1);
16 }
17 out_stream.open("outfile.dat");
18 if (out_stream.fail())
19 {
20 cout << "Output file opening failed.\n";
21 exit(1);
22 }
23 int first, second, third;
24 in_stream >> first >> second >> third;
25 out_stream << "The sum of the first 3\n"
26 << "numbers in infile.dat\n"
27 << "is " << (first + second +third)
28 << endl;
29 in_stream.close();
30 out_stream.close();
31 return 0;
32 }

Screen Output (If the file infile.dat does not exist)

Input file opening failed.

318	 Chapter 6 /  I/O Streams as an Introduction to Objects and Classes

Summary of File I/O Statements

In this sample the input comes from a file with the directory name infile.
dat, and the output goes to a file with the directory name outfile.dat.

■	 Place the following include directives in your program file:

#include <fstream>
#include <iostream>
#include <cstdlib>

■	 Choose a stream name for the input stream (for example, in_stream), and de-
clare it to be a variable of type ifstream. Choose a stream name for the output
file (for example, out_stream), and declare it to be of type ofstream:

using namespace std;
ifstream in_stream;
ofstream out_stream;

■	 Connect each stream to a file using the member function open with the
external file name as an argument. Remember to use the member function
fail to test that the call to open was successful:

in_stream.open("infile.dat");
if (in_stream.fail())
{
 cout << "Input file opening failed.\n";
 exit(1);
}
out_stream.open("outfile.dat");
if (out_stream.fail())
{
 cout << "Output file opening failed.\n";
 exit(1);
}

■	 Use the stream in_stream to get input from the file infile.dat just like you
use cin to get input from the keyboard. For example:

in_stream >> some_variable >> some_other_variable;

■	 Use the stream out_stream to send output to the file outfile.dat just like
you use cout to send output to the screen. For example:

 out_stream << "some_variable = "
 << some_variable << endl;

■	 Close the streams using the function close:

 in_stream.close();
 out_stream.close();

For file I/O
For cout
For exit

	 6.1  Streams and Basic File I/O	 319

Self-Test Exercises

	  1.	 Suppose you are writing a program that uses a stream called fin that
will be connected to an input file, and a stream called fout that will
be connected to an output file. How do you declare fin and fout?
What include directive, if any, do you need to place in your program
file?

	  2.	 Suppose you are continuing to write the program discussed in the
previous exercise and you want it to take its input from the file stuff1.
dat and send its output to the file stuff2.dat. What statements do
you need to place in your program in order to connect the stream
fin to the file stuff1.dat and to connect the stream fout to the file
stuff2.dat? Be sure to include checks to make sure that the openings
were successful.

	  3.	 Suppose that you are still writing the same program that we discussed in
the previous two exercises and you reach the point at which you no longer
need to get input from the file stuff1.dat and no longer need to send
output to the file stuff2.dat. How do you close these files?

	  4.	 Suppose you want to change the program in Display 6.1 so that it sends
its output to the screen instead of the file outfile.dat. (The input should
still come from the file infile.dat.) What changes do you need to make
to the program?

	  5.	 What include directive do you need to place in your program file if your
program uses the function exit?

	  6.	 Continuing Self-Test Exercise 5, what does exit(1) do with its argument?

	  7.	 Suppose bla is an object, dobedo is a member function of the object bla,
and dobedo takes one argument of type int. How do you write a call to
the member function dobedo of the object bla using the argument 7?

	  8.	 What characteristics of files do ordinary program variables share? What
characteristics of files are different from ordinary variables in a program?

	  9.	N ame at least three member functions associated with an iostream
object, and give examples of usage of each.

	10.	 A program has read half of the lines in a file. What must the program do
to the file to enable reading the first line a second time?

	11.	 In the text it says “a file has two names.” What are the two names? When
is each name used?

320	 Chapter 6 /  I/O Streams as an Introduction to Objects and Classes

Display 6.3   Appending to a File (Optional) (part 1 of 2)

 1 //Appends data to the end of the file data.txt.
 2 #include <fstream>
 3 #include <iostream>
 4
 5 int main()
 6 {
 7 using namespace std;
 8
 9 cout << "Opening data.txt for appending.\n";
10 ofstream fout;
11 fout.open("data.txt", ios::app);
12 if (fout.fail())
13 {
14 cout << "Input file opening failed.\n";
15 exit(1);
16 }
17
18 fout << "5 6 pick up sticks.\n"
19 << "7 8 ain't C++ great!\n";
20
21 fout.close();
22 cout << "End of appending to file.\n";
23
24 return 0;
25 }

(continued)

Appending to a File (Optional)

When sending output to a file, your code must first use the member function
open to open a file and connect it to a stream of type ofstream. The way we
have done that thus far (with a single argument for the file name) always gives
an empty file. If a file with the specified name already exists, its old contents
are lost. There is an alternative way to open a file so that the output from your
program will be appended to the file after any data already in the file.

To append your output to a file named important.txt, you would use a
two-argument version of open, as illustrated by the following:

ofstream outStream;
outStream.open("important.txt", ios::app);

If the file important.txt does not exist, this will create an empty file with that
name to receive your program’s output, but if the file already exists, then all
the output from your program will be appended to the end of the file so that
old data in the file is not lost. This is illustrated in Display 6.3.

	 6.1  Streams and Basic File I/O	 321

The second argument ios::app is a special constant that is defined in
iostream and so requires the following include directive:

#include <iostream>

Your program should also include the following, normally either at the start
of the file or at the start of the function body that uses ios::app:

using namespace std;

File Names as Input (Optional)

Thus far, we have written the literal file names for our input and output files
into the code of our programs. We did this by giving the file name as the
argument to a call to the function open, as in the following example:

in_stream.open("infile.dat");

This can sometimes be inconvenient. For example, the program in Display
6.2 reads numbers from the file infile.dat and outputs their sum to the file
outfile.dat. If you want to perform the same calculation on the numbers
in another file named infile2.dat and write the sum of these numbers to
another file named outfile2.dat, then you must change the file names in the
two calls to the member function open and then recompile your program. A
preferable alternative is to write your program so that it asks the user to type
in the names of the input and output files. This way your program can use
different files each time it is run.

Display 6.3   Appending to a File (Optional) (part 2 of 2)

Sample Dialogue

data.txt data.txt
 (Before program is run.) (After program is run.)

1 2 buckle my shoe. 1 2 buckle my shoe.

3 4 shut the door. 3 4 shut the door.

5 6 pick up sticks.

7 8 ain't C++ great!

Screen Output

Opening data.txt for appending.

End of appending to file.

322	 Chapter 6 /  I/O Streams as an Introduction to Objects and Classes

A file name is a string and we will not discuss string handling in detail
until Chapter 8. However, it is easy to learn enough about strings so that you
can write programs that accept a file name as input. A string is just a sequence
of characters. We have already used string values in output statements such as
the following:

cout << "This is a string.";

We have also used string values as arguments to the member function open.
Whenever you write a literal string, as in the cout statement shown, you must
place the string in double quotes.

In order to read a file name into your program, you need a variable that
is capable of holding a string. We discuss the details of strings in Chapter 8,
but for now we will cover just enough to store a file name. A variable to hold a
string value is declared as in the following example:

char file_name[16];

This declaration is the same as if you had declared the variable to be of
type char, except that the variable name is followed by an integer in square
brackets that specifies the maximum number of characters you can have in
a string stored in the variable. This number must be one greater than the
maximum number of characters in the string value. So, in our example, the
variable file_name can contain any string that contains 15 or fewer characters.
The name file_name can be replaced by any other identifier (that is not a
keyword), and the number 16 can be replaced by any other positive integer.

You can input a string value to a string variable the same way that you
input values of other types. For example, consider the following piece of code:

cout << "Enter the file name (maximum of 15 characters):\n";
cin >> file_name;
cout << "OK, I will edit the file " << file_name << endl;

Appending to a File

If you want to append data to a file so that it goes after any existing
contents of the file, open the file as follows.

Syntax

Output_Stream.open(File_Name, ios::app);

Example

ofstream outStream;
outStream.open("important.txt", ios::app);

	 6.2  Tools for Stream I/O	 323

A possible dialogue for this code is

Enter the file name (maximum of 15 characters):
myfile.dat
OK, I will edit the file myfile.dat

Once your program has read the name of a file into a string variable, such
as the variable file_name, it can use this string variable as the argument to the
member function open. For example, the following will connect the input-file
stream in_stream to the file whose name is stored in the variable file_name
(and will use the member function fail to check whether the opening was
successful):

ifstream in_stream;
in_stream.open(file_name);
if (in_stream.fail())
{
 cout << "Input file opening failed.\n";
 exit(1);
}

Note that when you use a string variable as an argument to the member
function open, you do not use any quotes.

In Display 6.4 we have rewritten the program in Display 6.2 so that it
takes its input from and sends its output to whatever files the user specifies.
The input and output file names are read into the string variables in_file_
name and out_file_name and then these variables are used as the arguments
in calls to the member function open. Notice the declaration of the string
variables. You must include a number in square brackets after each string
variable name, as we did in Display 6.4.

String variables are not ordinary variables and cannot be used in all
the ways you can use ordinary variables. In particular, you cannot use an
assignment statement to change the value of a string variable.

6.2  Tools for Stream I/O

You shall see them on a beautiful quarto page, where a neat rivulet of text
shall meander through a meadow of margin.

Richard Brinsley Sheridan, The School for Scandal

Formatting Output with Stream Functions

The layout of a program’s output is called the format of the output. In C++
you can control the format with commands that determine such details as the
number of spaces between items and the number of digits after the decimal
point. You already used three output formatting instructions when you learned
the formula for outputting dollar amounts of money in the usual way (not in

String variables
as arguments to
open

Warning!

324	 Chapter 6 /  I/O Streams as an Introduction to Objects and Classes

Display 6.4   Inputting a File Name (Optional) (part 1 of 2)

 1 //Reads three numbers from the file specified by the user, sums the numbers,
 2 //and writes the sum to another file specified by the user.
 3 #include <fstream>
 4 #include <iostream>
 5 #include <cstdlib>
 6
 7 int main()
 8 {
 9 using namespace std;
10 char in_file_name[16], out_file_name[16];
11 ifstream in_stream;
12 ofstream out_stream;
13
14 cout << "I will sum three numbers taken from an input\n"
15 << "file and write the sum to an output file.\n";
16 cout << "Enter the input file name (maximum of 15 characters):\n";
17 cin >> in_file_name;
18 cout << "Enter the output file name (maximum of 15 characters):\n";
19 cin >> out_file_name;
20 cout << "I will read numbers from the file "
21 << in_file_name << " and\n"
22 << "place the sum in the file "
23 << out_file_name << endl;
24
25 in_stream.open(in_file_name);
26 if (in_stream.fail())
27 {
28 cout << "Input file opening failed.\n";
29 exit(1);
30 }
31
32 out_stream.open(out_file_name);
33 if (out_stream.fail())
34 {
35 cout << "Output file opening failed.\n";
36 exit(1);
37 }
38 int first, second, third;
39 in_stream >> first >> second >> third;
40 out_stream << "The sum of the first 3\n"
41 << "numbers in " << in_file_name << endl
42 << "is " << (first + second + third)
43 << endl;
44
45 in_stream.close();

(continued)

	 6.2  Tools for Stream I/O	 325

e-notation) with two digits after the decimal point. Before outputting amounts
of money, you inserted the following “magic formula” into your program:

cout.setf(ios::fixed);
cout.setf(ios::showpoint);
cout.precision(2);

Now that you’ve learned about object notation for streams, we can explain
this magic formula and a few other formatting commands.

The first thing to note is that you can use these formatting commands on
any output stream. If your program is sending output to a file that is connected
to an output stream called out_stream, you can use these same commands
to ensure that numbers with a decimal point will be written in the way we
normally write amounts of money. Just insert the following in your program:

out_stream.setf(ios::fixed);

Display 6.4   Inputting a File Name (Optional) (part 2 of 2)

46 out_stream.close();
47
48 cout << "End of Program.\n";
49 return 0;
50 }

numbers.dat sum.dat
 (Not changed by program.) (After program is run.)

1 The sum of the first 3

2 numbers in numbers.dat

3 is 6

4

Sample Dialogue

I will sum three numbers taken from an input

file and write the sum to an output file.

Enter the input file name (maximum of 15 characters):

numbers.dat

Enter the output file name (maximum of 15 characters):

sum.dat

I will read numbers from the file numbers.dat and

place the sum in the file sum.dat

End of Program.

326	 Chapter 6 /  I/O Streams as an Introduction to Objects and Classes

out_stream.setf(ios::showpoint);
out_stream.precision(2);

To explain this magic formula, we will consider the instructions in reverse
order.

Every output stream has a member function named precision. When
your program executes a call to precision such as the previous one for the
stream out_stream, then from that point on in your program, any number
with a decimal point that is output to that stream will be written with a total
of two significant figures, or with two digits after the decimal point, depending
on when your compiler was written. The following is some possible output
from a compiler that sets two significant digits:

23. 2.2e7 2.2 6.9e-1 0.00069

The following is some possible output from a compiler that sets two digits
after the decimal point:

23.56 2.26e7 2.21 0.69 0.69e-4

In this book, we assume the compiler sets two digits after the decimal point.
A call to precision applies only to the stream named in the call. If your

program has another output stream named out_stream_two, then the call to
out_stream.precision affects the output to the stream out_stream but has no
effect on the stream out_stream_two. Of course, you can also call precision
with the stream out_stream_two; you can even specify a different number of
digits for the numbers output to the stream out_stream_two, as in the following:

out_stream_two.precision(3);

The other formatting instructions in our magic formula are a bit more
complicated than the member function precision. We now discuss these
other instructions. The following are two calls to the member function setf
with the stream out_stream as the calling object:

out_stream.setf(ios::fixed);
out_stream.setf(ios::showpoint);

setf is an abbreviation for set flags. A flag is an instruction to do something
in one of two possible ways. If a flag is given as an argument to setf, then the
flag tells the computer to write output to that stream in some specific way.
What it causes the stream to do depends on the flag.

In the previous example, there are two calls to the function setf, and
these two calls set the two flags ios::fixed and ios::showpoint. The flag
ios::fixed causes the stream to output numbers of type double in what is
called fixed-point notation, which is a fancy phrase for the way we normally
write numbers. If the flag ios::fixed is set (by a call to setf), then all floating-
point numbers (such as numbers of type double) that are output to that stream
will be written in ordinary everyday notation, rather than e-notation.

	 6.2  Tools for Stream I/O	 327

The flag ios::showpoint tells the stream to always include a decimal
point in floating-point numbers, such as numbers of type double. So if the
number to be output has a value of 2.0, then it will be output as 2.0 and not
simply as 2; that is, the output will include the decimal point even if all the
digits after the decimal point are 0. Some common flags and the actions they
cause are described in Display 6.5.

Another useful flag is ios::showpos. If this flag is set for a stream, then
positive numbers output to that stream will be written with the plus sign
in front of them. If you want a plus sign to appear before positive numbers,
insert the following:

 cout.setf(ios::showpos);

Minus signs appear before negative numbers without setting any flags.

Display 6.5   Formatting Flags for setf

Flag Meaning Default

ios::fixed If this flag is set, floating-point numbers are not written in
e-notation. (Setting this flag automatically unsets the flag
ios::scientific.)

Not set

ios::scientific If this flag is set, floating-point numbers are written in
e-notation. (Setting this flag automatically unsets the flag
ios::fixed.) If neither ios::fixed nor ios::scientific is set,
then the system decides how to output each number.

Not set

ios::showpoint If this flag is set, a decimal point and trailing zeros are
always shown for floating-point numbers. If it is not set,
a number with all zeros after the decimal point might be
output without the decimal point and following zeros.

Not set

ios::showpos If this flag is set, a plus sign is output before positive
integer values.

Not set

ios::right If this flag is set and some field-width value is given with
a call to the member function width, then the next item
output will be at the right end of the space specified by
width. In other words, any extra blanks are placed before
the item output. (Setting this flag automatically unsets the
flag ios::left.)

Set

ios::left If this flag is set and some field-width value is given with
a call to the member function width, then the next item
output will be at the left end of the space specified by
width. In other words, any extra blanks are placed after
the item output. (Setting this flag automatically unsets the
flag ios::right.)

Not set

328	 Chapter 6 /  I/O Streams as an Introduction to Objects and Classes

One very commonly used formatting function is width. For example,
consider the following call to width made by the stream cout:

cout << "Start Now";
cout.width(4);
cout << 7 << endl;

This code causes the following line to appear on the screen:

Start Now 7

This output has exactly three spaces between the letter 'w' and the number 7.
The width function tells the stream how many spaces to use when giving an
item as output. In this case the item (namely, the number 7) occupies only
one space, and width said to use four spaces, so three of the spaces are blank.
If the output requires more space than you specified in the argument to width,
then as much additional space as is needed will be used. The entire item is
always output, no matter what argument you give to width.

A call to width applies only to the next item that is output. If you want to
output 12 numbers, using four spaces to output each number, then you must
call width 12 times. If this becomes a nuisance, you may prefer to use the
manipulator setw that is described in the next subsection.

Any flag that is set may be unset. To unset a flag, you use the function
unsetf. For example, the following will cause your program to stop including
plus signs on positive integers that are output to the stream cout:

cout.unsetf(ios::showpos);

Flag Terminology

Why are the arguments to setf, such as ios::showpoint, called flags?
And what is meant by the strange notation ios::?

The word flag is used for something that can be turned on or off. The
origin of the term apparently comes from some phrase similar to “when
the flag is up, do it.” Or perhaps the term was “when the flag is down, do
it.” Moreover, apparently nobody can recall what the exact originating
phrase was because programmers now say “when the flag is set” and
that does not conjure up any picture. In any event, when the flag
ios::showpoint is set (that is, when it is an argument to setf), the stream
that called the setf function will behave as described in Display 6.5; when
any other flag is set (that is, is given as an argument to setf), that signals
the stream to behave as Display 6.5 specifies for that flag.

The explanation for the notation ios:: is rather mundane for such exotic
notation. The ios indicates that the meaning of terms such as fixed or
showpoint is the meaning that they have when used with an input or
output stream. The notation :: means “use the meaning of what follows
the :: in the context of what comes before the ::.” We will say more
about this :: notation later in this book.

Manipulators

A manipulator is a function that is called in a nontraditional way. In turn, the
manipulator function calls a member function. Manipulators are placed after
the insertion operator <<, just as if the manipulator function call were an item
to be output. Like traditional functions, manipulators may or may not have
arguments. We have already seen one manipulator, endl. In this subsection
we will discuss two manipulators called setw and setprecision.

The manipulator setw and the member function width (which you have
already seen) do exactly the same thing. You call the setw manipulator by
writing it after the insertion operator <<, as if it were to be sent to the output
stream, and this in turn calls the member function width. For example, the
following outputs the numbers 10, 20, and 30, using the field widths specified:

cout << "Start" << setw(4) << 10
<< setw(4) << 20 << setw(6) << 30;

The preceding statement will produce the following output:

Start 10 20 30

(There are two spaces before the 10, two spaces before the 20, and four spaces
before the 30.)

The manipulator setprecision does exactly the same thing as the
member function precision (which you have already seen). However, a call
to setprecision is written after the insertion operator <<, in a manner similar
to how you call the setw manipulator. For example, the following outputs
the numbers listed using the number of digits after the decimal point that are
indicated by the call to setprecision:

cout.setf(ios::fixed);
cout.setf(ios::showpoint);
cout << "$" << setprecision(2) << 10.3 << endl
<< "$" << 20.5 << endl;

The statement above will produce the following output:

$10.30
$20.50

When you set the number of digits after the decimal point using the
manipulator setprecision, then just as was the case with the member
function precision, the setting stays in effect until you reset it to some other
number by another call to either setprecision or precision.

To use either of the manipulators setw or setprecision, you must
include the following directive in your program:

#include <iomanip>

Your program should also include the following:

using namespace std;

	 6.2  Tools for Stream I/O	 329

330	 Chapter 6 /  I/O Streams as an Introduction to Objects and Classes

Self-Test Exercises

	12.	 What output will be produced when the following lines are executed
(assuming the lines are embedded in a complete and correct program
with the proper include directives)?

cout << "*";
cout.width(5);
cout << 123
 << "*" << 123 << "*" << endl;
cout << "*" << setw(5) << 123
 << "*" << 123 << "*" << endl;

	13.	 What output will be produced when the following lines are executed
(assuming the lines are embedded in a complete and correct program
with the proper include directives)?

cout << "*" << setw(5) << 123;
cout.setf(ios::left);
cout << "*" << setw(5) << 123;
cout.setf(ios::right);
cout << "*" << setw(5) << 123 << "*" << endl;

	14.	 What output will be produced when the following lines are executed
(assuming the lines are embedded in a complete and correct program
with the proper include directives)?

cout << "*" << setw(5) << 123 << "*"
 << 123 << "*" << endl;
cout.setf(ios::showpos);
cout << "*" << setw(5) << 123 << "*"
 << 123 << "*" << endl;
cout.unsetf(ios::showpos);
cout.setf(ios::left);
cout << "*" << setw(5) << 123 << "*"
 << setw(5) << 123 << "*" << endl;

	15.	 What output will be sent to the file stuff.dat when the following lines
are executed (assuming the lines are embedded in a complete and correct
program with the proper include directives)?

ofstream fout;
fout.open("stuff.dat");
fout << "*" << setw(5) << 123 << "*"
 << 123 << "*" << endl;
fout.setf(ios::showpos);
fout << "*" << setw(5) << 123 << "*"
 << 123 << "*" << endl;

	 6.2  Tools for Stream I/O	 331

fout.unsetf(ios::showpos);
fout.setf(ios::left);
fout << "*" << setw(5) << 123 << "*"
 << setw(5) << 123 << "*" << endl;

	16.	 What output will be produced when the following line is executed
(assuming the line is embedded in a complete and correct program with
the proper include directives)?

cout << "*" << setw(3) << 12345 << "*" << endl;

	17.	 In formatting output, the following flag constants are used with the
stream member function setf. What effect does each have?

a.  ios::fixed

b.  ios::scientific

c.  ios::showpoint

d.  ios::showpos

e.  ios::right

f.  ios::left

	18.	H ere is a code segment that reads input from infile.dat and sends
output to outfile.dat. What changes are necessary to make the output
go to the screen? (The input is still to come from infile.dat.)

//Problem for Self Test. Copies three int numbers
//between files.
#include <fstream>
int main()
{

 using namespace std;

 ifstream instream;
 ofstream outstream;

 instream.open("infile.dat");
 outstream.open("outfile.dat");
 int first, second, third;
 instream >> first >> second >> third;
 outstream << "The sum of the first 3" << endl
 << "numbers in infile.dat is " << endl
 << (first + second + third) << endl;
 instream.close();
 outstream.close();
 return 0;
}

332	 Chapter 6 /  I/O Streams as an Introduction to Objects and Classes

Streams as Arguments to Functions

A stream can be an argument to a function. The only restriction is that
the function formal parameter must be call-by-reference. A stream parameter
cannot be a call-by-value parameter. For example, the function make_neat
in Display 6.6 has two stream parameters: one is of type ifstream and is for
a stream connected to an input file; another is of type ofstream and is for a
stream connected to an output file. We will discuss the other features of the
program in Display 6.6 in the next two subsections.

■  Programming Tip   Checking for the End of a File

That’s all there is, there isn’t any more.

Ethel Barrymore (1879–1959)

When you write a program that takes its input from a file, you will often want
the program to read all the data in the file. For example, if the file contains
numbers, you might want your program to calculate the average of all the
numbers in the file. Since you might run the program with different data files
at different times, the program cannot assume it knows how many numbers
are in the file. You would like to write your program so that it keeps reading
numbers from the file until there are no more numbers left to be read. If
in_stream is a stream connected to the input file, then the algorithm for
computing this average can be stated as follows:

double next, sum = 0;
int count = 0;
while (There are still numbers to be read)
{
 in_stream >> next;
 sum = sum + next;
 count++;
}

The average is sum / count.

This algorithm is already almost all C++ code, but we still must express
the following test in C++:

(There are still numbers to be read)

Even though it may not look correct at first, one way to express the
aforementioned test is the following:

(in_stream >> next)

The previous algorithm can thus be rewritten as the following C++ code (plus
one last line in pseudocode that is not the issue here):

Stream
parameters
must be call-by-
reference

	 6.2  Tools for Stream I/O	 333

Display 6.6   Formatting Output (part 1 of 2)

 1 //Illustrates output formatting instructions.
 2 //Reads all the numbers in the file rawdata.dat and writes the numbers
 3 //to the screen and to the file neat.dat in a neatly formatted way.
 4 #include <iostream>
 5 #include <fstream>
 6 #include <cstdlib>
 7 #include <iomanip>
 8 using namespace std;
 9 void make_neat(ifstream& messy_file, ofstream& neat_file,
10 int number_after_decimalpoint, int field_width);
11 //Precondition: The streams messy_file and neat_file have been connected
12 //to files using the function open.
13 //Postcondition: The numbers in the file connected to messy_file have been
14 //written to the screen and to the file connected to the stream neat_file.
15 //The numbers are written one per line, in fixed-point notation (that is, not in
16 //e-notation), with number_after_decimalpoint digits after the decimal point;
17 //each number is preceded by a plus or minus sign and each number is in a field
18 //of width field_width. (This function does not close the file.)
19 int main()
20 {
21 ifstream fin;
22 ofstream fout;
23
24 fin.open("rawdata.dat");
25 if (fin.fail())
26 {
27 cout << "Input file opening failed.\n";
28 exit(1);
29 }
30 fout.open("neat.dat");
31 if (fout.fail())
32 {
33 cout << "Output file opening failed.\n";
34 exit(1);
35 }
36
37 make_neat(fin, fout, 5, 12);
38
39 fin.close();
40 fout.close();
41
42 cout << "End of program.\n";
43 return 0;
44 }
45

(continued)

Needed for setw

Stream parameters must
be call-by-reference.

334	 Chapter 6 /  I/O Streams as an Introduction to Objects and Classes

Display 6.6   Formatting Output (part 2 of 2)

46 //Uses iostream, fstream, and iomanip:
47 void make_neat(ifstream& messy_file, ofstream& neat_file,
48 int number_after_decimalpoint, int field_width)
49 {
50 neat_file.setf(ios::fixed);
51 neat_file.setf(ios::showpoint);
52 neat_file.setf(ios::showpos);
53 neat_file.precision(number_after_decimalpoint);
54 cout.setf(ios::fixed);
55 cout.setf(ios::showpoint);
56 cout.setf(ios::showpos);
57 cout.precision(number_after_decimalpoint);
58
59 double next;
60 while (messy_file >> next)
61 {
62 cout << setw(field_width) << next << endl;
63 neat_file << setw(field_width) << next << endl;
64 }
65 }

rawdata.dat
(Not changed by program.)

10.37      -9.89897

2.313    -8.950 15.0

7.33333   92.8765

-1.237568432e2

neat.dat Screen Output
(After program is run.)

+10.37000

-9.89897

+2.31300

-8.95000

+15.00000

+7.33333

+92.87650

-123.75684

+10.37000

-9.89897

+2.31300

-8.95000

+15.00000

+7.33333

+92.87650

-123.75684

End of program.

 Not in e-notation
   Show decimal point
    Show + sign

Satisfied if there is a
next number to read

	 6.2  Tools for Stream I/O	 335

double next, sum = 0;
int count = 0;
while (in_stream >> next)
{
 sum = sum + next;
 count++;
}
The average is sum / count.

Notice that the loop body is not identical to what it was in our pseudocode.
Since in_stream >> next is now in the Boolean expression, it is no longer in
the loop body.

This loop may look a bit peculiar, because in_stream >> next is both
the way you input a number from the stream in_stream and the controlling
Boolean expression for the while loop. An expression involving the extraction
operator >> is simultaneously both an action and a Boolean condition.2 It is
an instruction to take one input number from the input stream, and it is also
a Boolean expression that is either satisfied or not. If there is another number
to be input, then the number is read and the Boolean expression is satisfied,
so the body of the loop is executed one more time. If there are no more
numbers to be read in, then nothing is input and the Boolean expression is
not satisfied, so the loop ends. In this example the type of the input variable
next was double, but this method of checking for the end of the file works the
same way for other data types, such as int and char.	 ■

A Note on Namespaces

We have tried to keep our using directives local to a function definition.
This is an admirable goal, but now we have a problem—functions whose
parameter type is in a namespace. In our immediate examples we need the
stream type names that are in the namespace std. Thus, we need a using
directive (or something) outside of the function definition body so that C++
will understand the parameter type names, such as ifstream. The easiest fix
is to simply place one using directive at the start of the file (after the include
directives). We have done this in Display 6.6.

Placing a single using directive at the start of a file is the easiest solution
to our problem, but many experts would not consider it the best solution,
since it would not allow the use of two namespaces that have names in
common, and that is the whole purpose of namespaces. At this point we are

2 Technically, the Boolean condition works this way: The overloading of operator >>
for the input stream classes is done with functions associated with the stream. This
function is named operator >>. The return value of this operator function is an input
stream reference (istream& or ifstream&). A function is provided that automatically
converts the stream reference to a bool value. The resulting value is true if the stream is
able to extract data, and false otherwise.

336	 Chapter 6 /  I/O Streams as an Introduction to Objects and Classes

only using the namespace std,3 so there is no problem. In Chapter 12, we will
teach you another way around this problem with parameters and namespaces.
This other approach will allow you to use any kinds of multiple namespaces.

Many programmers prefer to place using directives at the start of the
program file. For example, consider the following using directive:

using namespace std;

Many of the programs in this book do not place this using directive at the
start of the program file. Instead, this using directive is placed at the start of
each function definition that needs the namespace std (immediately after the
opening brace). An example of this is shown in Display 6.3. An even better
example is shown in Display 5.11. All of the programs that have appeared so
far in this book, and almost all programs that follow, would behave exactly
the same if there were just one using directive for the namespace std and that
one using directive were placed immediately after the include directives, as
in Display 6.6. For the namespace std, the using directive can safely be placed
at the start of the file (in almost all cases). For some other namespaces, a
single using directive will not always suffice, but you will not see any of these
cases for some time.

We advocate placing the using directives inside function definitions (or
inside some other small units of code) so that it does not interfere with any
other possible using directives. This trains you to use namespaces correctly
in preparation for when you write more complicated code later in your
programming career. In the meantime, we sometimes violate this rule ourselves
when following the rule becomes too burdensome to the other issues we are
discussing. If you are taking a course, do whatever your instructor requires.
Otherwise, you have some latitude in where you place your using directives.

  Programming Example    Cleaning Up a File Format

The program in Display 6.6 takes its input from the file rawdata.dat and
writes its output, in a neat format, both to the screen and to the file neat.dat.
The program copies numbers from the file rawdata.dat to the file neat.dat,
but it uses formatting instructions to write them in a neat way. The numbers
are written one per line in a field of width 12, which means that each number
is preceded by enough blanks so that the blanks plus the number occupy 12
spaces. The numbers are written in ordinary notation; that is, they are not
written in e-notation. Each number is written with five digits after the decimal

3 We are actually using two namespaces: the namespace std and a namespace called the
global namespace, which is a namespace that consists of all names that are not in some
other namespace. But this technical detail is not a big issue to us now.

	 6.2  Tools for Stream I/O	 337

point and with a plus or minus sign. The output to the screen is the same as
the output to the file neat.dat, except that the screen output has one extra
line that announces that the program is ending. The program uses a function,
named make_neat, that has formal parameters for the input-file stream and
the output-file stream.	

Self-Test Exercises

	19.	 What output will be produced when the following lines are executed,
assuming the file list.dat contains the data shown (and assuming the
lines are embedded in a complete and correct program with the proper
include directives)?

ifstream ins;
ins.open("list.dat");
int count = 0, next;
while (ins >> next)
{
 count++;
 cout << next << endl;
}
ins.close();
cout << count;

		 The file list.dat contains the following three numbers (and nothing
more)

1  2
3

	20.	 Write the definition for a void function called to_screen. The function
to_screen has one formal parameter called file_stream, which is of type
ifstream. The precondition and postcondition for the function are as
follows:

//Precondition: The stream file_stream has been connected
//to a file with a call to the member function open. The
//file contains a list of integers (and nothing else).
//Postcondition: The numbers in the file connected to
//file_stream have been written to the screen one per line.
//(This function does not close the file.)

	21.	 (This exercise is for those who have studied the optional section entitled
“File Names as Input.”) Suppose you are given the following string
variable declaration and input statement:

338	 Chapter 6 /  I/O Streams as an Introduction to Objects and Classes

#include <iostream>
using namespace std;
// ...
char name[21];
cout >> name;

		 Suppose this code segment is embedded in a correct program. What is the
longest name that can be entered into the string variable name?

6.3  Character I/O

Polonius: What do you read, my lord?

Hamlet: Words, words, words.

William Shakespeare, Hamlet

All data is input and output as character data. When your program outputs
the number 10, it is really the two characters '1' and '0' that are output.
Similarly, when the user wants to type in the number 10, he or she types in the
character '1' followed by the character '0'. Whether the computer interprets
this 10 as two characters or as the number 10 depends on how your program
is written. But, however your program is written, the computer hardware is
always reading the characters '1' and '0', not the number 10. This conversion
between characters and numbers is usually done automatically so that you
need not think about such detail. Sometimes, however, all this automatic help
gets in the way. Therefore, C++ provides some low-level facilities for input
and output of character data. These low-level facilities include no automatic
conversions. This allows you to bypass the automatic facilities and do input/
output in absolutely any way you want. You could even write input and
output functions that read and write numbers in Roman numeral notation, if
you wanted to be so perverse.

The Member Functions get and put

The function get allows your program to read in one character of input and
store it in a variable of type char. Every input stream, whether it is an input-
file stream or the stream cin, has get as a member function. We will describe
get as a member function of the stream cin, but it behaves in exactly the same
way for input-file streams as it does for cin, so you can apply all that we say
about get to input-file streams as well as to the stream cin.

Before now, we have used cin with the extraction operator >> in order to
read a character of input (or any other input, for that matter). When you use
the extraction operator >>, as we have been doing, some things are done for
you automatically, such as skipping blanks. With the member function get,
nothing is done automatically. If you want, for example, to skip over blanks
using cin.get, you must write code to read and discard the blanks.

	 6.3  Character I/O	 339

The member function get takes one argument, which should be a variable
of type char. That argument receives the input character that is read from the
input stream. For example, the following reads in the next input character
from the keyboard and stores it in the variable next_symbol:

char next_symbol;
cin.get(next_symbol);

It is important to note that your program can read any character in this way.
If the next input character is a blank, this code will not skip over the blank,
but will read the blank and set the value of next_symbol equal to the blank
character. If the next character is the new-line character '\n', that is, if the
program has just reached the end of an input line, then the call to cin.get
shown earlier sets the value of next_symbol equal to '\n'.

Although we write it as two symbols, '\n' is just a single character in C++.
With the member function get, the character '\n' can be input and output
just like any other character. For example, suppose your program contains the
following code:

char c1, c2, c3;
cin.get(c1);
cin.get(c2);
cin.get(c3);

and suppose you type in the following two lines of input to be read by this
code:

AB
CD

That is, suppose you type AB followed by Return and then CD followed by
Return. As you would expect, the value of c1 is set to 'A' and the value of c2 is
set to 'B'. That’s nothing new. But when this code fills the variable c3, things
are different from what they would be if you had used the extraction operator >>
instead of the member function get. When this code is executed on the input
we showed, the value of c3 is set to '\n'; that is, the value of c3 is set equal to
the new-line character. The variable c3 is not set equal to 'C'.

One thing you can do with the member function get is to have your
program detect the end of a line. The following loop will read a line of input
and stop after passing the new-line character '\n'. Then, any subsequent
input will be read from the beginning of the next line. For this first example,
we have simply echoed the input, but the same technique would allow you to
do whatever you want with the input:

cout << "Enter a line of input and I will echo it:\n";
char symbol;
do
{
 cin.get(symbol);

Reading blanks
and '\n'

Detecting the end
of an input line

340	 Chapter 6 /  I/O Streams as an Introduction to Objects and Classes

 cout << symbol;
} while (symbol != '\n');
cout << "That's all for this demonstration.";

This loop will read any line of input and echo it exactly, including blanks. The
following is a sample dialogue produced by this code:

Enter a line of input and I will echo it:
Do Be Do 1 2   34
Do Be Do 1 2   34
That's all for this demonstration.

Notice that the new-line character '\n' is both read and output. Since '\n' is
output, the string that begins with the word "That's" is on a new line.

The Member Function get

Every input stream has a member function named get that can be used
to read one character of input. Unlike the extraction operator >>, get
reads the next input character, no matter what that character is. In
particular, get reads a blank or the new-line character '\n' if either of
these is the next input character. The function get takes one argument,
which should be a variable of type char. When get is called, the next
input character is read and the argument variable (called Char_Variable
below) has its value set equal to this input character.

Syntax

Input_Stream.get(Char_Variable);

Example

char next_symbol;
cin.get(next_symbol);

If you wish to use get to read from a file, you use an input-file stream
in place of the stream cin. For example, if in_stream is an input stream
for a file, then the following reads one character from the input file and
places the character in the char variable next_symbol:

in_stream.get(next_symbol);

Before you can use get with an input-file stream such as in_stream, your
program must first connect the stream to the input file with a call to
open.

(continued)

	 6.3  Character I/O	 341

The member function put is analogous to the member function get
except that it is used for output rather than input. put allows your program to
output one character. The member function put takes one argument, which
should be an expression of type char, such as a constant or a variable of type
char. The value of the argument is output to the stream when the function is
called. For example, the following outputs the letter 'a' to the screen:

cout.put('a');

The function cout.put does not allow you to do anything you could not
do by using the methods we discussed previously, but we include it for
completeness.

If your program uses cin.get or cout.put, then just as with other uses of
cin and cout, your program should include the following directive:

#include <iostream>

Similarly, if your program uses get for an input-file stream or put for an
output-file stream, then just as with any other file I/O, your program should
contain the following directive:

#include <fstream>

'\n' and "\n"

'\n' and "\n" sometimes seem like the same thing. In a cout statement,
they produce the same effect, but they cannot be used interchangeably
in all situations. '\n' is a value of type char and can be stored in a
variable of type char. On the other hand, "\n" is a string that happens to
be made up of exactly one character. Thus, "\n" is not of type char and
cannot be stored in a variable of type char.

The Member Function put

Every output stream has a member function named put, which takes
one argument which should be an expression of type char. When the
member function put is called, the value of its argument (called
Char_Expression below) is output to the output stream.

Syntax

Output_Stream.put(Char_Expression);

(continued)

342	 Chapter 6 /  I/O Streams as an Introduction to Objects and Classes

When using either of these include directives, your program must also include
the following:

using namespace std;

The putback Member Function (Optional)

Sometimes your program needs to know the next character in the input stream.
However, after reading the next character, it might turn out that you do not
want to process that character and so you would like to simply put it back in
the input stream. For example, if you want your program to read up to but not
including the first blank it encounters in an input stream, then your program
must read that first blank in order to know when to stop reading—but then
that blank is no longer in the stream. Some other part of your program might
need to read and process this blank. There are a number of ways to deal with
this sort of situation, but the easiest is to use the member function putback. The
function putback is a member of every input stream. It takes one argument of
type char and it places the value of that argument back in the input stream. The
argument can be any expression that evaluates to a value of type char.

For example, the following code will read characters from the file connected to
the input stream fin and write them to the file connected to the output stream fout.
The code reads characters up to, but not including, the first blank it encounters.

fin.get(next);
while (next != ' ')
{
 fout.put(next);
 fin.get(next);
}
fin.putback(next);

Examples

cout.put(next_symbol);
cout.put('a');

If you wish to use put to output to a file, you use an output-file stream in
place of the stream cout. For example, if out_stream is an output stream
for a file, then the following will output the character 'Z' to the file
connected to out_stream:

out_stream.put('Z');

Before you can use put with an output-file stream, such as out_stream,
your program must first connect the stream to the output file with a call
to the member function open.

	 6.3  Character I/O	 343

Notice that after this code is executed, the blank that was read is still in the
input stream fin, because the code puts it back after reading it.

Notice that putback places a character in an input stream, while put places
a character in an output stream. The character that is put back into the input
stream with the member function putback need not be the last character read;
it can be any character you wish. If you put back a character other than the
last character read, the text in the input file will not be changed by putback,
although your program will behave as if the text in the input file had been
changed.

  Programming Example   Checking Input

If a user enters incorrect input, the entire run of the program can become
worthless. To ensure that your program is not hampered by incorrect input,
you should use input functions that allow the user to reenter input until the
input is correct. The function get_int in Display 6.7 asks the user whether the
input is correct and asks for a new value if the user says the input is incorrect.
The program in Display 6.7 is just a driver program to test the function get_
int, but the function, or one very similar to it, can be used in just about any
kind of program that takes its input from the keyboard.

Notice the call to the function new_line(). The function new_line reads all
the characters on the remainder of the current line but does nothing with them. This
amounts to discarding the remainder of the line. Thus, if the user types in No, then
the program reads the first letter, which is N, and then calls the function new_line,
which discards the rest of the input line. This means that if the user types 75 on
the next input line, as shown in the sample dialogue, the program will read the
number 75 and will not attempt to read the letter o in the word No. If the program
did not include a call to the function new_line, then the next item read would be
the o in the line containing No instead of the number 75 on the following line.

Display 6.7   Checking Input (part 1 of 2)

 1 //Program to demonstrate the functions new_line and get_input.
 2 #include <iostream>
 3 using namespace std;
 4
 5 void new_line();
 6 //Discards all the input remaining on the current input line.
 7 //Also discards the '\n' at the end of the line.
 8 //This version works only for input from the keyboard.
 9
10 void get_int(int& number);
11 //Postcondition: The variable number has been

(continued)

344	 Chapter 6 /  I/O Streams as an Introduction to Objects and Classes

Display 6.7   Checking Input (part 2 of 2)

12 //given a value that the user approves of.
13
14
15 int main()
16 {
17 int n;
18
19 get_int(n);
20 cout << "Final value read in = " << n << endl
21 << "End of demonstration.\n";
22 return 0;
23 }
24
25
26 //Uses iostream:
27 void new_line()
28 {
29 char symbol;
30 do
31 {
32 cin.get(symbol);
33 } while (symbol != '\n');
34 }
35 //Uses iostream:
36 void get_int(int& number)
37 {
38 char ans;
39 do
40 {
41 cout << "Enter input number: ";
42 cin >> number;
43 cout << "You entered " << number
44 << ". Is that correct? (yes/no): ";
45 cin >> ans;
46 new_line();
47 } while ((ans != 'Y') && (ans != 'y'));
48 }

Sample Dialogue

Enter input number: 57

You entered 57. Is that correct? (yes/no): No

Enter input number: 75

You entered 75. Is that correct? (yes/no): yes

Final value read in = 75

End of demonstration.

	 6.3  Character I/O	 345

Notice the Boolean expression that ends the do-while loop in the function
get_int. If the input is not correct, the user is supposed to type No (or some
variant such as no), which will cause one more iteration of the loop. However,
rather than checking to see if the user types a word that starts with 'N', the
do-while loop checks to see if the first letter of the user’s response is not equal
to 'Y' (and not equal to the lowercase version of 'Y'). As long as the user
makes no mistakes and responds with some form of Yes or No, but never with
anything else, then checking for No or checking for not being Yes are the same
thing. However, since the user might respond in some other way, checking
for not being Yes is safer. To see why this is safer, suppose the user makes a
mistake in entering the input number. The computer echoes the number and
asks if it is correct. The user should type in No, but suppose the user makes a
mistake and types in Bo, which is not unlikely since 'B' is right next to 'N' on
the keyboard. Since 'B' is not equal to 'Y', the body of the do-while loop
will be executed, and the user will be given a chance to reenter the input.

But, what happens if the correct response is Yes and the user mistakenly
enters something that begins with a letter other than 'Y' or 'y'? In that case,
the loop should not iterate, but it does iterate one extra time. This is a mistake,
but not nearly as bad a mistake as the one discussed in the last paragraph. It
means the user must type in the input number one extra time, but it does not
waste the entire run of the program. When checking input, it is better to risk
an extra loop iteration than to risk proceeding with incorrect input.

■  Pitfall   Unexpected '\n' in Input

When using the member function get, you must account for every character
of input, even the characters you do not think of as being symbols, such as
blanks and the new-line character '\n'. A common problem when using get
is forgetting to dispose of the '\n' that ends every input line. If there is a new-
line character in the input stream that is not read (and usually discarded), then
when your program next expects to read a “real” symbol using the member
function get, it will instead read the character '\n'. To clear the input stream
of any leftover '\n' characters, you can use the function new_line, which we
defined in Display 6.7. Let’s look at a concrete example.

It is legal to mix the different forms of cin. For example, the following is
legal:

cout << "Enter a number:\n";
int number;
cin >> number;
cout << "Now enter a letter:\n";
char symbol;
cin.get(symbol);

However, this mixing can produce problems, as illustrated by the following
dialogue:

When in doubt,
enter the input
again

346	 Chapter 6 /  I/O Streams as an Introduction to Objects and Classes

Enter a number:
21
Now enter a letter:
A

With this dialogue, the value of number will be 21, as you expect. However, if
you expect the value of the variable symbol to be 'A', you will be disappointed.
The value given to symbol is '\n'. After reading the number 21, the next
character in the input stream is the new-line character, '\n', and so that is
read next. Remember, get does not skip over line breaks and spaces. (In fact,
depending on what is in the rest of the program, you may not even get a
chance to type in the A. Once the variable symbol is filled with the character
'\n', the program proceeds to whatever statement is next in the program. If
the next statement sends output to the screen, the screen will be filled with
output before you get a chance to type in the A.)

Either of the following rewritings of the previous code will cause the previous
dialogue to fill the variable number with 21 and fill the variable symbol with 'A':

cout << "Enter a number:\n";
int number;
cin >> number;
cout << "Now enter a letter:\n";
char symbol;
cin >> symbol;

Alternatively, you can use the function new_line, defined in Display 6.7, as follows:

cout << "Enter a number:\n";
int number;
cin >> number;
new_line();
cout << "Now enter a letter:\n";
char symbol;
cin.get(symbol);

As this second rewrite indicates, you can mix the two forms of cin and have
your program work correctly, but it does require some extra care.	 ■

Making Stream Parameters Versatile

If you want to define a function that takes an input stream as an
argument and you want that argument to be cin in some cases and an
input-file stream in other cases, then use a formal parameter of type
istream (without an f ). However, an input-file stream, even if used as an
argument of type istream, must still be declared to be of type ifstream
(with an f ).

(continued)

	 6.3  Character I/O	 347

  PROGRAMMING EXAMPLE  Another new_line Function

As another example of how you can make a stream function more versatile,
consider the function new_line in Display 6.7. That function works only for
input from the keyboard, which is input from the predefined stream cin. The
function new_line in Display 6.7 has no arguments. Below we have rewritten
the function new_line so that it has a formal parameter of type istream for
the input stream:

//Uses iostream:
void new_line(istream& in_stream)
{
 char symbol;
 do
 {
 in_stream.get(symbol);
 } while (symbol != '\n');
}

Now, suppose your program contains this new version of the function
new_line. If your program is taking input from an input stream called fin
(which is connected to an input file), the following will discard all the input
left on the line currently being read from the input file:

new_line(fin);

On the other hand, if your program is also reading some input from the
keyboard, the following will discard the remainder of the input line that was
typed in at the keyboard:

new_line(cin);

If your program has only the rewritten version of new_line above, which
takes a stream argument such as fin or cin, you must always give the stream
name, even if the stream name is cin. But thanks to overloading, you can have
both versions of the function new_line in the same program: the version with

Similarly, if you want to define a function that takes an output stream
as an argument and you want that argument to be cout in some cases and
an output-file stream in other cases, then use a formal parameter of type
ostream. However, an output-file stream, even if used as an argument of
type ostream, must still be declared to be of type ofstream. You cannot
open or close a stream parameter of type istream or ostream. Open these
objects before passing them to your function and close them after the call.

Using both
versions of
new_line

348	 Chapter 6 /  I/O Streams as an Introduction to Objects and Classes

no arguments that is given in Display 6.7 and the version with one argument
of type istream that we just defined. In a program with both definitions of
new_line, the following two calls are equivalent:

new_line(cin);

and

new_line();

You do not really need two versions of the function new_line. The version
with one argument of type istream can serve all your needs. However, many
programmers find it convenient to have a version with no arguments for
keyboard input, since keyboard input is used so frequently.

Default Arguments for Functions (Optional)

An alternative to having two versions of the new_line function is to use
default arguments. In the following code, we have rewritten the new_line
function a third time:

//Uses iostream:
void new_line(istream& in_stream = cin)
{
 char symbol;
 do
 {
 in_stream.get(symbol);
 } while (symbol != '\n');
}

If we call this function as

new_line();

the formal parameter takes the default argument cin. If we call this as

new_line(fin);

the formal parameter takes the argument provided in the call to fin.
This facility is available to us with any argument type and any number of
arguments.

If some parameters are provided default arguments and some are not,
the formal parameters with default arguments must all be together at the end
of the argument list. If you provide several defaults and several nondefault
arguments, the call may provide either as few arguments as there are
nondefault arguments or more arguments, up to the number of parameters.
The arguments will be applied to the parameters without default arguments in
order, and then will be applied to the parameters with default arguments up
to the number of parameters.

Default Arguments
VideoNote

	 6.3  Character I/O	 349

Here is an example:

//To test default argument behavior
//Uses iostream
void default_args(int arg1, int arg2, int arg3 = -3,
 int arg4 = -4)
{
 cout << arg1 << ' ' << arg2 << ' ' << arg3 << ' ' << arg4
 << endl;

}

Calls to this may be made with two, three, or four arguments. For example,
the call

default_args(5, 6);

supplies the nondefault arguments and uses the two default arguments. The
output is

5 6 -3 -4

Next, consider

default_args(6, 7, 8);

This call supplies the nondefault arguments and the first default argument,
and the last argument uses the default. This call gives the following output:

6 7 8 -4

The call

default_args(5, 6, 7, 8);

assigns all the arguments from the argument list and gives the following
output:

5 6 7 8

Self-Test Exercises

	22.	 Suppose c is a variable of type char. What is the difference between the
following two statements?

cin >> c;

and

cin.get(c);

350	 Chapter 6 /  I/O Streams as an Introduction to Objects and Classes

	23.	 Suppose c is a variable of type char. What is the difference between the
following two statements?

cout << c;

and

cout.put(c);

	24.	 (This question is for those who have read the optional section “The
putback Member Function.”) The putback member function “puts back”
a symbol into an input stream. Does the symbol that is put back have to
be the last symbol input from the stream? For example, if your program
reads an 'a' from the input stream, can it use the putback function to put
back a 'b', or can it only put back an 'a'?

	25.	 Consider the following code (and assume that it is embedded in a
complete and correct program and then run):

char c1, c2, c3, c4;
cout << "Enter a line of input:\n";
cin.get(c1);
cin.get(c2);
cin.get(c3);
cin.get(c4);
cout << c1 << c2 << c3 << c4 << "END OF OUTPUT";

If the dialogue begins as follows, what will be the next line of output?

Enter a line of input:
a b c d e f g

	26.	 Consider the following code (and assume that it is embedded in a
complete and correct program and then run):

char next;
int count = 0;
cout << "Enter a line of input:\n";
cin.get(next);
while (next != '\n')
{
 if ((count % 2) == 0)
 cout << next;
 count++;
 cin.get(next);
}

If the dialogue begins as follows, what will be the next line of output?

Enter a line of input:
abcdef gh

True if count is even

	 6.3  Character I/O	 351

	27.	 Suppose that the program described in Self-Test Exercise 26 is run and
the dialogue begins as follows (instead of beginning as shown in Self-Test
Exercise 26). What will be the next line of output?

Enter a line of input:
0 1 2 3 4 5 6 7 8 9 10 11

	28.	 Consider the following code (and assume that it is embedded in a
complete and correct program and then run):

char next;
int count = 0;
cout << "Enter a line of input:\n";
cin >> next;
while (next != '\n')
{
 if ((count % 2) == 0)
 cout << next;
 count++;
 cin >> next;
}

If the dialogue begins as follows, what will be the next line of output?

Enter a line of input:
0 1 2 3 4 5 6 7 8 9 10 11

	29.	D efine a function called copy_char that takes one argument that is an
input stream. When called, copy_char will read one character of input
from the input stream given as its argument and will write that character
to the screen. You should be able to call your function using either cin
or an input-file stream as the argument to your function copy_char. (If
the argument is an input-file stream, then the stream is connected to a
file before the function is called, so copy_char will not open or close any
files.) For example, the first of the following two calls to copy_char will
copy a character from the file stuff.dat to the screen, and the second
will copy a character from the keyboard to the screen:

ifstream fin;
fin.open("stuff.dat");
copy_char(fin);
copy_char(cin);

	30.	D efine a function called copy_line that takes one argument that is an
input stream. When called, copy_line reads one line of input from the
input stream given as its argument and writes that line to the screen.
You should be able to call your function using either cin or an input-file
stream as the argument to your function copy_line. (If the argument

352	 Chapter 6 /  I/O Streams as an Introduction to Objects and Classes

is an input-file stream, then the stream is connected to a file before the
function is called, so copy_line will not open or close any files.) For
example, the first of the following two calls to copy_line will copy a line
from the file stuff.dat to the screen, and the second will copy a line
from the keyboard to the screen:

ifstream fin;
fin.open("stuff.dat");
copy_line(fin);
copy_line(cin);

	31.	D efine a function called send_line that takes one argument that is an
output stream. When called, send_line reads one line of input from the
keyboard and outputs the line to the output stream given as its argument.
You should be able to call your function using either cout or an output-
file stream as the argument to your function send_line. (If the argument
is an output-file stream, then the stream is connected to a file before the
function is called, so send_line will not open or close any files.) For
example, the first of the following calls to send_line copies a line from
the keyboard to the file morestuf.dat, and the second copies a line from
the keyboard to the screen:

ofstream fout;
fout.open("morestuf.dat");
cout << "Enter 2 lines of input:\n";
send_line(fout);
send_line(cout);

	32.	 (This exercise is for those who have studied the optional section on
default arguments.) What output does the following function provide in
response to the following calls?

void func(double x, double y = 1.1, double z = 2.3)
{
 cout << x << " " << y << " " << z << endl;
}

Calls:

a.	 func(2.0);

b.	 func(2.0, 3.0);

c.	 func(2.0, 3.0, 4.0);

	33.	 (This exercise is for those who have studied the optional section on default
arguments.) Write several functions that overload the function name to
get the same effect as all the calls in the default function arguments in the
previous Self-Test Exercise.

	 6.3  Character I/O	 353

The eof Member Function

Every input-file stream has a member function called eof that can be used to
determine when all of the file has been read and there is no more input left for
the program. This is the second technique we have presented for determining
when a program has read everything in a file.

The letters eof stand for end of file, and eof is normally pronounced by
saying the three letters e-o-f. The function eof takes no arguments, so if the
input stream is called fin, then a call to the function eof is written

fin.eof()

This is a Boolean expression that can be used to control a while loop, a do-
while loop, or an if-else statement. This expression is satisfied (that is, is
true) if the program has read past the end of the input file; otherwise, the
expression above is not satisfied (that is, is false).

Since we usually want to test that we are not at the end of a file, a call
to the member function eof is typically used with a not in front of it. Recall
that in C++ the symbol ! is used to express not. For example, consider the
following statement:

if (! fin.eof())
 cout << "Not done yet.";
else
 cout << "End of the file.";

The Boolean expression after the if means “not at the end of the file connected
to fin.” Thus, the if-else statement above will output the following to the
screen:

Not done yet.

provided the program has not yet read past the end of the file that is connected
to the stream fin. The if-else statement will output the following, if the
program has read beyond the end of the file:

End of the file.

As another example of using the eof member function, suppose that the
input stream in_stream has been connected to an input file with a call to
open. Then the entire contents of the file can be written to the screen with the
following while loop:

in_stream.get(next);
while (! in_stream.eof())
{
 cout << next;
 in_stream.get(next);

}

eof is usually
used with “not”

Ending an input
loop with the
eof function

 If you prefer, you can
use cout.put(next) here.

354	 Chapter 6 /  I/O Streams as an Introduction to Objects and Classes

This while loop reads each character from the input file into the char variable
next using the member function get, and then writes the character to the
screen. After the program has passed the end of the file, the value of in_
stream.eof() changes from false to true. So,

(! in_stream.eof())

changes from true to false and the loop ends.
Notice that in_stream.eof() does not become true until the

program attempts to read one character beyond the end of the file. For
example, suppose the file contains the following (without any new-line
after the c):

ab
c

This is actually the following list of four characters:

ab<the new-line character '\n'>c

This loop reads an 'a' and writes it to the screen, then reads a 'b' and writes
it to the screen, then reads the new-line character '\n' and writes it to the
screen, and then reads a 'c' and writes it to the screen. At that point the loop
will have read all the characters in the file. However, in_stream.eof() will
still be false. The value of in_stream.eof() will not change from false to true
until the program tries to read one more character. That is why the while loop
ends with in_stream.get(next). The loop needs to read one extra character
in order to end the loop.

There is a special end-of-file marker at the end of a file. The member
function eof does not change from false to true until this end-of-file marker
is read. That’s why the example while loop could read one character beyond
what you think of as the last character in the file. However, this end-of-file
marker is not an ordinary character and should not be manipulated like
an ordinary character. You can read this end-of-file marker but you should
not write it out again. If you write out the end-of-file marker, the result is
unpredictable. The system automatically places this end-of-file marker at the
end of each file for you.

The next Programming Example uses the eof member function to
determine when the program has read the entire input file.

You now have two methods for detecting the end of a file. You can use
the eof member function or you can use the method we described in the
Programming Tip entitled “Checking for the End of a File.” In most situations
you can use either method, but many programmers use the two different
methods in different situations. If you do not have any other reason to prefer
one of these two methods, then use the following general rule: Use the eof
member function when you are treating the input as text and reading the
input with the get member function; use the other method when you are
processing numeric data.

Deciding how to
test for the end
of an input file

	 6.3  Character I/O	 355

Self-Test Exercises

	34.	 Suppose ins is a file input stream that has been connected to a file with
the member function open. Suppose your program has just read the last
character in the file. At this point, would ins.eof() evaluate to true or
false?

	35.	 Write the definition for a void function called text_to_screen that has
one formal parameter called file_stream that is of type ifstream. The
precondition and postcondition for the function are as follows:

//Precondition: The stream file_stream has been connected
//to a file with a call to the member function open.
//Postcondition: The contents of the file connected to
//file_stream have been copied to the screen character by
//character, so that the screen output is the same as the
//contents of the text in the file.
//(This function does not close the file.)

  Programming Example   Editing a Text File

The program discussed here is a very simple example of text editing applied
to files. It might be used by a software firm to update its advertising literature.
The firm has been marketing compilers for the C programming language
and has recently introduced a line of C++ compilers. This program can be
used to automatically generate C++ advertising material from the existing
C advertising material. The program takes its input from a file that contains
advertising copy that says good things about C and writes similar advertising
copy about C++ in another file. The file that contains the C advertising copy
is called cad.dat, and the new file that receives the C++ advertising copy is
called cplusad.dat. The program is shown in Display 6.8.

The program simply reads every character in the file cad.dat and copies
the characters to the file cplusad.dat. Every character is copied unchanged,
except that when the uppercase letter 'C' is read from the input file, the
program writes the string "C++" to the output file. This program assumes that
whenever the letter 'C' occurs in the input file, it names the C programming
language; thus, this change is exactly what is needed to produce the updated
advertising copy.

Notice that the line breaks are preserved when the program reads
characters from the input file and writes the characters to the output file. The
new-line character '\n' is treated just like any other character. It is read from
the input file with the member function get, and it is written to the output
file using the insertion operator <<. We must use the member function get to

356	 Chapter 6 /  I/O Streams as an Introduction to Objects and Classes

read the input. If we instead use the extraction operator >> to read the input,
the program would skip over all the whitespace, which means that none of
the blanks and none of the new-line characters '\n' would be read from the
input file, so they would not be copied to the output file.

Also notice that the member function eof is used to detect the end of the
input file and end the while loop.	

Predefined Character Functions

In text processing, you often want to convert lowercase letters to uppercase or
vice versa. The predefined function toupper can be used to convert a lowercase
letter to an uppercase letter. For example, toupper('a') returns 'A'. If the
argument to the function toupper is anything other than a lowercase letter,
then toupper simply returns the argument unchanged. So toupper('A')
also returns 'A'. The function tolower is similar except that it converts an
uppercase letter to its lowercase version.

The functions toupper and tolower are in the library with the header file
cctype, so any program that uses these functions, or any other functions in
this library, must contain the following include directive:

#include <cctype>

Display 6.8   Editing a File of Text (part 1 of 2)

 1 //Program to create a file called cplusad.dat that is identical to the file
 2 //cad.dat, except that all occurrences of 'C' are replaced by "C++".
 3 //Assumes that the uppercase letter 'C' does not occur in cad.dat except
 4 //as the name of the C programming language.
 5 #include <fstream>
 6 #include <iostream>
 7 #include <cstdlib>
 8 using namespace std;
 9 void add_plus_plus(ifstream& in_stream, ofstream& out_stream);
10 //Precondition: in_stream has been connected to an input file with open.
11 //out_stream has been connected to an output file with open.
12 //Postcondition: The contents of the file connected to in_stream have been
13 //copied into the file connected to out_stream, but with each 'C' replaced
14 //by "C++". (The files are not closed by this function.)
15 int main()
16 {
17 ifstream fin;
18 ofstream fout;
19 cout << "Begin editing files.\n";
20 fin.open("cad.dat");
21 if (fin.fail())
22 {

(continued)

	 6.3  Character I/O	 357

Display 6.8   Editing a File of Text (part 2 of 2)

23 cout << "Input file opening failed.\n";
24 exit(1);
25 }
26 fout.open("cplusad.dat");
27 if (fout.fail())
28 {
29 cout << "Output file opening failed.\n";
30 exit(1);
31 }
32 add_plus_plus(fin, fout);
33 fin.close();
34 fout.close();
35 cout << "End of editing files.\n";
36 return 0;
37 }
38
39 void add_plus_plus(ifstream& in_stream, ofstream& out_stream)
40 {
41 char next;
42 in_stream.get(next);
43 while (! in_stream.eof())
44 {
45 if (next == 'C')
46 out_stream << "C++";
47 else
48 out_stream << next;
49 in_stream.get(next);
50 }
51 }

cad.dat
(Not changed by program.)

C is one of the world's most modern programming languages.
There is no language as versatile as C, and C is fun to use.

cplusad.dat
(After program is run.)

C++ is one of the world's most modern programming languages.
There is no language as versatile as C++, and C++ is fun to
use.

Screen Output

Begin editing files.

End of editing files.

358	 Chapter 6 /  I/O Streams as an Introduction to Objects and Classes

Display 6.9 contains descriptions of some of the most commonly used
functions in the library cctype.

The function isspace returns true if its argument is a whitespace character.
If the argument to isspace is not a whitespace character, then isspace returns
false. Thus, isspace('') returns true and isspace('a') returns false.

For example, the following code reads a sentence terminated with a period
and echoes the string with all whitespace characters replaced with the symbol '-':

char next;
do
{
 cin.get(next);

 if (isspace(next))

 cout << '-';
 else
 cout << next;
} while (next != '.');

For example, if the code above is given the following input:

Ahhdo  be  do.

then it will produce the following output:

Ahhdo--be--do.

True if the character in
next is whitespace

■  Pitfall   toupper and tolower Return Values

In many ways, C++ considers characters to be whole numbers, similar to the
numbers of type int. Each character is assigned a number, and when the
character is stored in a variable of type char, it is this number that is placed
in the computer’s memory. In C++ you can use a value of type char as a
number—for example, by placing it in a variable of type int. You can also
store a number of type int in a variable of type char (provided the number is
not too large). Thus, the type char can be used as the type for characters or as
a type for small whole numbers.

Usually you need not be concerned with this detail and can simply think
of values of type char as being characters and not worry about their use
as numbers. However, when using the functions in cctype, this detail can
be important. The functions toupper and tolower actually return values of
type int rather than values of type char; that is, they return the number
corresponding to the character we think of them as returning, rather than the
character itself. Thus, the following will not output the letter 'A', but will
instead output the number that is assigned to 'A':

cout << toupper('a');

	 6.3  Character I/O	 359

Display 6.9   Some Predefined Character Functions in cctype

Function Description Example

toupper(Char_Exp) Returns the uppercase
version of Char_Exp.

char c = toupper('a');
cout << c;
Outputs: A

tolower(Char_Exp) Returns the lowercase
version of Char_Exp.

char c = tolower('A');
cout << c;
Outputs: a

isupper(Char_Exp) Returns true provided
Char_Exp is an
uppercase letter;
otherwise, returns
false.

if (isupper(c))
 cout << c <<
 << " isuppercase.";
else
 cout << c
 << " is not uppercase.";

islower(Char_Exp) Returns true provided
Char_Exp is a lowercase
letter; otherwise,
returns false.

char c = 'a';
if (islower(c))
 cout << c <<<< " islowercase.";
Outputs: a is lowercase.

isalpha(Char_Exp) Returns true provided
Char_Exp is a letter
of the alphabet;
otherwise, returns
false.

char c = '$';
if (isalpha(c))
 cout << c << " is a letter.";
else
 cout << c
 <<" is not a letter.";
Outputs: $ is not a letter.

isdigit(Char_Exp) Returns true provided
Char_Exp is one of the
digits '0' through
'9'; otherwise,
returns false.

if (isdigit('3'))
 cout << "It's a digit.";
else
 cout << "It's not a digit.";
Outputs: It's a digit.

isspace(Char_Exp) Returns true provided
Char_Exp is a
whitespace character,
such as the blank
or new-line symbol;
otherwise, returns
false.

//Skips over one "word" and
//sets c equal to the first
//whitespace character after
//the "word":
do
{
 cin.get(c);

} while (! isspace(c));

360	 Chapter 6 /  I/O Streams as an Introduction to Objects and Classes

In order to get the computer to treat the value returned by toupper or tolower
as a value of type char (as opposed to a value of type int), you need to
indicate that you want a value of type char. One way to do this is to place
the value returned in a variable of type char. The following will output the
character 'A', which is usually what we want:

char c = toupper('a');
 cout << c;

Another way to get the computer to treat the value returned by toupper or
tolower as a value of type char is to use a type cast as follows:

 cout << static_cast<char>(toupper('a'));

(Type casts were discussed in Chapter 4 in the section “Type Casting.”)	 ■

Self-Test Exercises

	36.	 Consider the following code (and assume that it is embedded in a
complete and correct program and then run):

cout << "Enter a line of input:\n";
char next;
do
{
 cin.get(next);
 cout << next;
} while ((! isdigit(next)) && (next != '\n'));
cout << "<END OF OUTPUT";

If the dialogue begins as follows, what will be the next line of output?

Enter a line of input:
I’ll see you at 10:30 AM.

	37.	 Write some C++ code that will read a line of text and echo the line with all
uppercase letters deleted.

Chapter Summary

■	 A stream of type ifstream can be connected to a file with a call to the mem-
ber function open. Your program can then take input from that file.

■	 A stream of type ofstream can be connected to a file with a call to the mem-
ber function open. Your program can then send output to that file.

■	 You should use the member function fail to check whether a call to open
was successful.

Places 'A' in the
variable c

	 Answers to Self-Test Exercises	 361

■	 An object is a variable that has functions associated with it. These functions
are called member functions. A class is a type whose variables are objects.
A stream is an example of an object. The types ifstream and ofstream are
examples of classes.

■	 The following is the syntax you use when you write a call to a member func-
tion of an object:

Calling_Object.Member_Function_Name(Argument_List);

	 An example with the stream cout as the calling object and precision as the
member function is the following:

cout.precision(2);

■	 Stream member functions, such as width, setf, and precision, can be used
to format output. These output functions work the same for the stream cout,
which is connected to the screen, and for output streams connected to files.

■	E very input stream has a member function named get that can be used to
read one character of input. The member function get does not skip over
whitespace. Every output stream also has a member function named put
that can be used to write one character to the output stream.

■	 The member function eof can be used to test for when a program has reached
the end of an input file. The member function eof works well for text process-
ing. However, when processing numeric data, you might prefer to test for the
end of a file by using the other method we discussed in this chapter.

■	 A function may have formal parameters of a stream type, but they must be
call-by-reference parameters; they cannot be call-by-value parameters. The
type ifstream can be used for an input-file stream, and the type ofstream
can be used for an output-file stream. (See the next summary point for other
type possibilities.)

■	 If you use istream (spelled without the f) as the type for an input-stream
parameter, then the argument corresponding to that formal parameter can
be either the stream cin or an input-file stream of type ifstream (spelled
with the f). If you use ostream (spelled without the f) as the type for an
output stream parameter, then the argument corresponding to that formal
parameter can be either the stream cout or an output-file stream of type
ofstream (spelled with the f).

Answers to Self-Test Exercises

	  1.	 The streams fin and fout are declared as follows:

ifstream fin;
ofstream fout;

362	 Chapter 6 /  I/O Streams as an Introduction to Objects and Classes

		 The include directive that goes at the top of your file is

#include <fstream>

		 Your code also needs the following:

using namespace std;

  2.	 fin.open("stuff1.dat");

if (fin.fail())
{
 cout << "Input file opening failed.\n";
 exit(1);
}

fout.open("stuff2.dat");
if (fout.fail())
{
 cout << "Output file opening failed.\n";
 exit(1);
}

	3.	 fin.close();
		 fout.close();

	4.	 You need to replace the stream out_stream with the stream cout. Note that
you do not need to declare cout, you do not need to call open with cout,
and you do not need to close cout.

	5.	 #include <cstdlib>

		 Your code also needs the following:

using namespace std;

	6.	 The exit(1) function returns the argument to the operating system. By con-
vention, the operating system uses a 1 as an indication of error status and 0
as an indication of success. What is actually done is system-dependent.

	7.	 bla.dobedo(7);

	8.	 Both files and program variables store values and can have values retrieved
from them. Program variables exist only while the program runs, whereas
files may exist before a program is run and may continue to exist after a
program stops. In short, files may be permanent; variables are not. Files
provide the ability to store large quantities of data, whereas program vari-
ables do not provide quite so large a store.

	9.	 We have seen the open, close, and fail member functions at this point.
The following illustrate their use.

	 Answers to Self-Test Exercises	 363

int c;
ifstream in;
ofstream out;
in.open("in.dat");
if (in.fail())
{
 cout << "Input file opening failed.\n";
 exit(1);
}
in >> c;

out.open("out.dat");
if (out.fail())
{
 cout << "Output file opening failed.\n";
 exit(1);
}
out << c;

out.close();
in.close();

	10.	 This is the “starting over” the text describes at the beginning of this chapter.
The file must be closed and opened again. This action puts the read posi-
tion at the start of the file, ready to be read again.

	11.	 The two names are the external file name and the stream name. The external
file name is the one used by the operating system. It is the real name of
the file, but it is used only in the call to the function open, which connects
the file to a stream. The stream name is a stream variable (typically of type
ifstream or ofstream). After the call to open, your program always uses
the stream name as the name of the file.

	12.		 *  123*123*
			 *  123*123*

		E ach of the spaces contains exactly two blank characters. Notice that a call
to width or call to setw only lasts for one output item.

	13.		 *  123*123  *  123*

		E ach of the spaces consists of exactly two blank characters.

	14.		 *  123*123*
	 * +123*+123*
	 *123  *123  *

		 There is just one space between the * and the + on the second line. Each of
the other spaces contains exactly two blank characters.

364	 Chapter 6 /  I/O Streams as an Introduction to Objects and Classes

	15.	 The output to the file stuff.dat will be exactly the same as the output
given in the answer to Exercise 14.

	16.		 *12345*

		N otice that the entire integer is output even though this requires more
space than was specified by setw.

	17.	 a.	� ios::fixed. Setting this flag causes floating-point numbers not to be
displayed in e-notation, that is, not in scientific notation. Setting this
flag unsets ios::scientific.

		 b.	� ios::scientific. Setting this flag causes floating-point numbers to be
displayed in e-notation, that is, in scientific notation. Setting this flag
unsets ios::fixed.

		 c.	� ios::showpoint. Setting this flag causes the decimal point and trailing
zeros to be always displayed.

		 d.	� ios::showpos. Setting this flag causes a plus sign to be output before
positive integer values.

		 e.	� ios::right. Setting this flag causes subsequent output to be placed at
the right end of any field that is set with the width member function.
That is, any extra blanks are put before the output. Setting this flag
unsets ios::left.

		 f.	� ios::left. Setting this flag causes subsequent output to be placed at
the left end of any field that is set with the width member function.
That is, any extra blanks are put after the output. Setting this flag unsets
ios::right.

	18.	 You need to replace outstream with cout and delete the open and close
calls for outstream. You do not need to declare cout, open cout, or close
cout. The #include <fstream> directive has all the iostream members
you need for screen I/O, though it does no harm, and may make the pro-
gram clearer, to #include <iostream>.

	19.		 1
	 2
	 3
	 3

	20.	 void to_screen(ifstream& file_stream)
{
 int next;
 while (file_stream >> next)
 cout << next << endl;
}

	 Answers to Self-Test Exercises	 365

	21.	 The maximum number of characters that can be typed in for a string vari-
able is one less than the declared size. Here the value is 20.

	22.	 The statement

cin >> c;

		 reads the next nonwhite character, whereas

cin.get(c);

		 reads the next character whether the character is nonwhite or not.

	23.	 The two statements are equivalent. Both of the statements output the value
of the variable c.

	24.	 The character that is “put back” into the input stream with the member
function putback need not be the last character read. If your program reads
an 'a' from the input stream, it can use the putback function to put back
a 'b'. (The text in the input file will not be changed by putback, although
your program will behave as if the text in the input file had been changed.)

	25.	 The complete dialogue is

	 Enter a line of input:
	 a b c d e f g
	 a b END OF OUTPUT

	26.	 The complete dialogue is

	 Enter a line of input:
	 abcdef  gh
	 ace h

		N ote that the output is simply every other character of the input, and note
that the blank is treated just like any other character.

	27.	 The complete dialogue is

	 Enter a line of input:
	 0 1 2 3 4 5 6 7 8 9 10 11
	 01234567891 1

		 Be sure to note that only the '1' in the input string 10 is output. This is because
cin.get is reading characters, not numbers, and so it reads the input 10 as the
two characters, '1' and '0'. Since this code is written to echo only every other
character, the '0' is not output. Since the '0' is not output, the next character,
which is a blank, is output, and so there is one blank in the output. Similarly,
only one of the two '1' characters in 11 is output. If this is unclear, write the
input on a sheet of paper and use a small square for the blank character. Then,
cross out every other character; the output shown above is what is left.

366	 Chapter 6 /  I/O Streams as an Introduction to Objects and Classes

	28.	 This code contains an infinite loop and will continue as long as the user
continues to give it input. The Boolean expression (next != '\n') is
always true because next is filled via the statement

cin >> next;

		 and this statement always skips the new-line character '\n' (as well as any
blanks). The code will run and if the user gives no additional input, the
dialogue will be as follows:

	 Enter a line of input:
	 0 1 2 3 4 5 6 7 8 9 10 11
	 0246811

		N otice that the code in Self-Test Exercise 27 used cin.get, so it reads every
character, whether the character is a blank or not, and then it outputs every
other character. So the code in Self-Test Exercise 27 outputs every other
character even if the character is a blank. On the other hand, the code in
this Self-Test Exercise uses cin and >>, so it skips over all blanks and consid-
ers only nonblank characters (which in this case are the digits '0' through
'9'). Thus, this code outputs every other nonblank character. The two '1'
characters in the output are the first character in the input 10 and the first
character in the input 11.

	29.	 void copy_char(istream& source_file)
{
 char next;
 source_file.get(next);
 cout << next;
}

	30.	 void copy_line(istream& source_file)
{
 char next;
 do
 {
 source_file.get(next);
 cout << next;
 } while (next != '\n');
}

	31.	 void send_line(ostream& target_stream)
{
 char next;
 do
 {
 cin.get(next);
 target_stream << next;
 } while (next != '\n');
}

32.	 a.	 2.0 1.1 2.3
b.	 2.0 3.0 2.3
c.	 2.0 3.0 4.0

	33.	 One set of functions follows:
void func(double x)
{
 double y = 1.1;
 double z = 2.3;
 cout << x << " " << y << " " << z << endl;
}
void func(double x, double y)
{
 double z = 2.3;
 cout << x << " " << y << " " << z << endl;
}
void func(double x, double y, double z)
{
 cout << x << " " << y << " " << z << endl;
}

	34.	 It would evaluate to false. Your program must attempt to read one more
character (beyond the last character) before it changes to true.

	35.	 void text_to_screen(ifstream& file_stream)
{
 char next;
 file_stream.get(next);
 while (! file_stream.eof())
 {
 cout << next;
 file_stream.get(next);
 }
}

		 If you prefer, you can use cout.put(next); instead of cout << next;.

	36.	 The complete dialogue is as follows:

	 Enter a line of input:
	 I’ll see you at 10:30 AM.
	 I'll see you at 1 <END OF OUTPUT

	37.	 cout << "Enter a line of input:\n";
char next;
do
{
 cin.get(next);
 if (!isupper(next))
 cout << next;
} while (next != '\n');

	 Answers to Self-Test Exercises	 367

368	 Chapter 6 /  I/O Streams as an Introduction to Objects and Classes

		N ote that you should use !isupper(next) and not use islower(next).
This is because islower(next) is false if next contains a character that is
not a letter (such as the blank or comma symbol).

Practice Programs

Practice Programs can generally be solved with a short program that directly applies
the programming principles presented in this chapter.

	1.	 Write a program that will search a file of numbers of type int and write the
largest and the smallest numbers to the screen. The file contains nothing
but numbers of type int separated by blanks or line breaks. If this is being
done as a class assignment, obtain the file name from your instructor.

	2.	 Write a program that takes its input from a file of numbers of type double
and outputs the average of the numbers in the file to the screen. The file
contains nothing but numbers of type double separated by blanks and/or
line breaks. If this is being done as a class assignment, obtain the file name
from your instructor.

	3.	 a. � Compute the median of a data file. The median is the number that
has the same number of data elements greater than the number as
there are less than the number. For purposes of this problem, you are
to assume that the data is sorted (that is, is in increasing order). The
median is the middle element of the file if there are an odd number
of elements, or the average of the two middle elements if the file has
an even number of elements. You will need to open the file, count
the elements, close the file and calculate the location of the middle
of the file, open the file again (recall the “start over” discussion in
this chapter), count up to the file entries you need, and calculate the
middle.

If your instructor has assigned this problem, ask for a data file to test
your program with. Otherwise, construct several files on your own, in-
cluding one with an even number of data points, increasing, and one
with an odd number, also increasing.

		 b. �F or a sorted file, a quartile is one of three numbers: The first has one-
fourth the data values less than or equal to it, one-fourth the data values
between the first and second numbers, one-fourth the data points be-
tween the second and the third, and one-fourth above the third quartile.
Find the three quartiles for the data file you used for part (a).

(Hint: You should recognize that having done part (a) you have one-
third of your job done—you have the second quartile already. You also
should recognize that you have done almost all the work toward finding
the other two quartiles as well.)

	 Practice Programs	 369

	4.	 Write a program that takes its input from a file of numbers of type double.
The program outputs to the screen the average and standard deviation of
the numbers in the file. The file contains nothing but numbers of type
double separated by blanks and/or line breaks. The standard deviation of
a list of numbers n1, n2, n3, and so forth is defined as the square root of the
average of the following numbers:

(n1 – a)2, (n2 – a)2, (n3 – a)2, and so forth

The number a is the average of the numbers n1, n2, n3, and so forth.
If this is being done as a class assignment, obtain the file name from
your instructor.

(Hint: Write your program so that it first reads the entire file and com-
putes the average of all the numbers, and then closes the file, then
reopens the file and computes the standard deviation.)

	5.	 Write a program that gives and takes advice on program writing. The pro-
gram starts by writing a piece of advice to the screen and asking the user to
type in a different piece of advice. The program then ends. The next person
to run the program receives the advice given by the person who last ran
the program. The advice is kept in a file, and the contents of the file change
after each run of the program. You can use your editor to enter the initial
piece of advice in the file so that the first person who runs the program
receives some advice. Allow the user to type in advice of any length so that
it can be any number of lines long. The user is told to end his or her advice
by pressing the Return key two times. Your program can then test to see
that it has reached the end of the input by checking to see when it reads
two consecutive occurrences of the character '\n'.

	6.	 Write a program that reads text from one file and writes an edited version
of the same text to another file. The edited version is identical to the un-
edited version except that every string of two or more consecutive blanks
is replaced by a single blank. Thus, the text is edited to remove any extra
blank characters. Your program should define a function that is called with
the input- and output-file streams as arguments. If this is being done as a
class assignment, obtain the file names from your instructor.

	7.	 Write a program that merges the numbers in two files and writes all the
numbers into a third file. Your program takes input from two different
files and writes its output to a third file. Each input file contains a list of
numbers of type int in sorted order from the smallest to the largest. After
the program is run, the output file will contain all the numbers in the two
input files in one longer list in sorted order from smallest to largest. Your
program should define a function that is called with the two input-file
streams and the output-file stream as three arguments. If this is being done
as a class assignment, obtain the file names from your instructor.

370	 Chapter 6 /  I/O Streams as an Introduction to Objects and Classes

Programming Projects

Programming Projects require more problem-solving than Practice Programs and
can usually be solved many different ways. Visit www.myprogramminglab.com to
complete many of these Programming Projects online and get instant feedback.

	1.	 Write a program to generate personalized junk mail. The program takes
input both from an input file and from the keyboard. The input file con-
tains the text of a letter, except that the name of the recipient is indicated
by the three characters #N#. The program asks the user for a name and then
writes the letter to a second file but with the three letters #N# replaced by
the name. The three-letter string #N# will occur exactly once in the letter.

(Hint: Have your program read from the input file until it encoun-
ters the three characters #N#, and have it copy what it reads to the
output file as it goes. When it encounters the three letters #N#, it then
sends output to the screen asking for the name from the keyboard.
You should be able to figure out the rest of the details. Your program
should define a function that is called with the input- and output-file
streams as arguments. If this is being done as a class assignment, ob-
tain the file names from your instructor.)

Harder version (using material in the optional section “File Names as
Input”): Allow the string #N# to occur any number of times in the file.
In this case, the name is stored in two string variables. For this version,
assume that there is a first name and last name but no middle names
or initials.

	2.	 Write a program to compute numeric grades for a course. The course records
are in a file that will serve as the input file. The input file is in exactly the fol-
lowing format: Each line contains a student’s last name, then one space, then
the student’s first name, then one space, then ten quiz scores all on one line.
The quiz scores are whole numbers and are separated by one space. Your
program will take its input from this file and send its output to a second file.
The data in the output file will be the same as the data in the input file except
that there will be one additional number (of type double) at the end of each
line. This number will be the average of the student’s ten quiz scores. If this is
being done as a class assignment, obtain the file names from your instructor.
Use at least one function that has file streams as all or some of its arguments.

	  3.	E nhance the program you wrote for Programming Project 2 in all of the
following ways.

		 a. � The list of quiz scores on each line will contain ten or fewer quiz scores.
(If there are fewer than ten quiz scores, that means the student missed
one or more quizzes.) The average score is still the sum of the quiz
scores divided by 10. This amounts to giving the student a 0 for any
missed quiz.

www.myprogramminglab.com

	 Programming Projects	 371

		 b. � The output file will contain a line (or lines) at the beginning of the file
explaining the output. Use formatting instructions to make the layout
neat and easy to read.

		 c. � After placing the desired output in an output file, your program will close
all files and then copy the contents of the “output” file to the “input” file
so that the net effect is to change the contents of the input file.

Use at least two functions that have file streams as all or some of their
arguments. If this is being done as a class assignment, obtain the file
names from your instructor.

	  4.	 Write a program that will compute the average word length (average num-
ber of characters per word) for a file that contains some text. A word is
defined to be any string of symbols that is preceded and followed by one
of the following at each end: a blank, a comma, a period, the beginning of
a line, or the end of a line. Your program should define a function that is
called with the input-file stream as an argument. This function should also
work with the stream cin as the input stream, although the function will
not be called with cin as an argument in this program. If this is being done
as a class assignment, obtain the file names from your instructor.

	  5.	 Write a program that will correct a C++ program that has errors in which
operator, << or >>, it uses with cin and cout. The program replaces each
(incorrect) occurrence of

 cin <<

with the corrected version

 cin >>

and each (incorrect) occurrence of

 cout >>

with the corrected version

 cout <<

For an easier version, assume that there is always exactly one blank space
between any occurrence of cin and a following <<, and similarly assume
that there is always exactly one blank space between each occurrence of
cout and a following >>.

For a harder version, allow for the possibility that there may be any
number of blanks, even zero blanks, between cin and << and between
cout and >>. In this harder case, the replacement corrected version has
only one blank between the cin or cout and the following operator. The
program to be corrected is in one file and the corrected version is output

372	 Chapter 6 /  I/O Streams as an Introduction to Objects and Classes

to a second file. Your program should define a function that is called with
the input- and output-file streams as arguments.

If this is being done as a class assignment, obtain the file names from
your instructor and ask your instructor whether you should do the
easier version or the harder version.

(Hint: Even if you are doing the harder version, you will probably find
it easier and quicker to first do the easier version and then modify your
program so that it performs the harder task.)

	  6.	 Write a program that allows the user to type in any one-line question and
then answers that question. The program will not really pay any attention
to the question, but will simply read the question line and discard all that
it reads. It always gives one of the following answers:

I'm not sure, but I think you will find the answer in Chapter #N.
That's a good question.
If I were you, I would not worry about such things.
That question has puzzled philosophers for centuries.
I don't know. I'm just a machine.
Think about it and the answer will come to you.
I used to know the answer to that question, but I've forgotten it.
The answer can be found in a secret place in the woods.

These answers are stored in a file (one answer per line), and your program
simply reads the next answer from the file and writes it out as the answer
to the question. After your program has read the entire file, it simply
closes the file, reopens the file, and starts down the list of answers again.

Whenever your program outputs the first answer, it should replace
the two symbols #N with a number between 1 and 18 (including the
possibility of 1 and 18). In order to choose a number between 1 and 18,
your program should initialize a variable to 18 and decrease the variable’s
value by 1 each time it outputs a number so that the chapter numbers
count backward from 18 to 1. When the variable reaches the value 0,
your program should change its value back to 18. Give the number 17
the name NUMBER_OF_CHAPTERS with a global named constant declaration
using the const modifier.

(Hint: Use the function new_line defined in this chapter.)

	  7.	 This project is the same as Programming Project 6, except that in this
project your program will use a more sophisticated method for choosing
the answer to a question. When your program reads a question, it counts
the number of characters in the question and stores the number in a variable
named count. It then responds with answer number count % ANSWERS. The
first answer in the file is answer number 0, the next is answer number 1, then
2, and so forth. ANSWERS is defined in a constant declaration, as shown next,
so that it is equal to the number of answers in the answer file:

	 Programming Projects	 373

const int ANSWERS = 8;

This way you can change the answer file so that it contains more or fewer
answers and you need change only the constant declaration to make
your program work correctly for a different number of possible answers.
Assume that the answer listed first in the file will always be the following,
even if the answer file is changed:

I'm not sure, but I think you will find the answer in Chapter #N.

When replacing the two characters #N with a number, use the number
(count % NUMBER_OF_CHAPTERS + 1), where count is the variable
discussed above, and NUMBER_OF_CHAPTERS is a global named constant
defined to be equal to the number of chapters in this book.

	  8.	 This program numbers the lines found in a text file. Write a program that
reads text from a file and outputs each line to the screen and to another file
preceded by a line number. Print the line number at the start of the line
and right-adjusted in a field of three spaces. Follow the line number with a
colon, then one space, then the text of the line. You should get a character
at a time and write code to ignore leading blanks on each line. You may
assume that the lines are short enough to fit within a line on the screen.
Otherwise, allow default printer or screen output behavior if the line is too
long (that is, wrap or truncate).

A somewhat harder version determines the number of spaces needed
in the field for the line numbers by counting lines before processing
the lines of the file. This version of the program should insert a new
line after the last complete word that will fit within a 72-character line.

	  9.	 Write a program that computes all of the following statistics for a file
and outputs the statistics to both the screen and to another file: the total
number of occurrences of characters in the file, the total number of non-
whitespace characters in the file, and the total number of occurrences of
letters in the file.

	10.	 The text file babynames2012.txt, which is included in the source code for
this book and is available online from the book’s Web site, contains a list
of the 1000 most popular boy and girl names in the United States for the
year 2012 as compiled by the Social Security Administration.

This is a space-delimited file of 1000 entries in which the rank is listed
first, followed by the corresponding boy name and girl name. The most
popular names are listed first and the least popular names are listed last.
For example, the file begins with

1 Jacob Sophia
2 Mason Emma
3 Ethan Isabella

374	 Chapter 6 /  I/O Streams as an Introduction to Objects and Classes

This indicates that Jacob is the most popular boy name and Sophia is the
most popular girl name. Mason is the second most popular boy name and
Emma is the second most popular girl name.

Write a program that allows the user to input a name. The program
should then read from the file and search for a matching name among the
girls and boys. If a match is found, it should output the rank of the name.
The program should also indicate if there is no match.

For example, if the user enters the name “Justice,” then the program
should output:

Justice is ranked 519 in popularity among boys.
Justice is ranked 518 in popularity among girls.

If the user enters the name “Walter,” then the program should output:

Walter is ranked 376 in popularity among boys.
Walter is not ranked among the top 1000 girl names.

	11.	 To complete this problem you must have a computer that is capable of
viewing Scalable Vector Graphics (SVG) files. Your Web browser may al-
ready be able to view these files. To test to see if your browser can display
SVG files, type in the rectline.svg file below and see if you can open it
in your Web browser. If your Web browser cannot view the file, then you
can search on the Web and download a free SVG viewer.

The graphics screen to draw an image uses a coordinate system in which
(0, 0) is located in the upper-left corner. The x coordinate increases to
the right, and the y coordinate increases to the bottom. Consequently,
coordinate (100, 0) would be located 100 pixels directly toward the
right from the upper-left corner, and coordinate (0, 100) would be lo-
cated 100 pixels directly toward the bottom from the upper-left corner.
This is illustrated in the figure below.

Solution to Programming
Project 6.11

VideoNote

(100,0)(0,0)

(0,100)
(100,100)

The SVG format defines a graphics image using XML. The specifica-
tion for the image is stored in a text file and can be displayed by an
SVG viewer. Here is a sample SVG file that draws two rectangles and a
line. To view it, save it to a text file with the “.svg” extension, such as
rectline.svg, and open it with your SVG viewer.

	 Programming Projects	 375

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="500" height="500"
xmlns="http://www.w3.org/2000/svg">

<rect x="20" y="20" width="50" height="250"
style="fill:blue;"/>
<rect x="75" y="100" width="150" height="50"
style="fill:rgb(0,255,0);"/>
<line x1="0" y1="0" x2="300" y2="300"
style="stroke:purple;stroke-width:2"/>

</svg>

For purposes of this problem, you can ignore the first five lines and the
last line and consider them “boilerplate” that must be inserted to properly
create the image.

The lines that begins with <rect x="20"…draw a blue rectangle whose
upper-left corner is at coordinate (20, 20) and whose width is 50 pixels
and height is 250 pixels.

The lines that begin with <rect x="75"…draw a green rectangle (RGB
color value of 0,255,0 is all green) whose upper-left corner is at coordinate
(75, 100) and whose width is 150 pixels and height is 50 pixels.

Finally, the <line> tag draws a purple line from (0, 0) to (300, 300) with
a width of 2.

Based on this example, write a program that inputs four nonnegative
integer values and creates the SVG file that displays a simple bar chart that
depicts the integer values. Your program should scale the values so they
are always drawn with a maximum height of 400 pixels. For example, if
your input values to graph were 20, 40, 60, and 120, you might generate a
SVG file that would display as follows:

	12.	 Refer to Programming Project 11 for information about the SVG format.
Shown below is another example that illustrates how to draw circles,
ellipses, and multiple lines:

376	 Chapter 6 /  I/O Streams as an Introduction to Objects and Classes

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="500" height="500"
xmlns="http://www.w3.org/2000/svg">

<circle cx="100" cy="50" r="30"
stroke="green" stroke-width="3" fill="gold"/>

<ellipse cx="100" cy="200" rx="50" ry="100"
style="fill:purple;stroke:black;stroke-width:2"/>

<polyline points="10,10 40,40 20,100 120,140"
style="fill-opacity:0;stroke:red;stroke-width:2"/>

</svg>

The <circle> tag draws a circle centered at (100, 50) with radius 30 and
pen width of 3. It is filled in with gold and has a border in green.

The <ellipse> tag draws an ellipse centered at (100, 200) with x radius of
30 and y radius of 100. It is filled using purple with a black border.

The <polyline> tag draws a red line from (10, 10) to (40, 40) to
(20, 100) to (120, 140). The fill-opacity is set to 0, making the fill of the
polygon transparent.

Based on these examples and those presented in Project 18, write a
program that creates an SVG image that draws a picture of your professor.
It can be somewhat abstract and simple. If you wish to draw a fancier
image, you can research the SVG picture format; there are additional tags
that can draw using filters, gradients, and polygons.

	13.	 Write a program that prompts the user to input the name of a text file and
then outputs the number of words in the file. You can consider a “word” to
be any text that is surrounded by whitespace (for example, a space, carriage
return, newline) or borders the beginning or end of the file.

	14.	 The following is an old word puzzle: “Name a common word, besides
tremendous, stupendous and horrendous, that ends in dous.” If you think
about this for a while, it will probably come to you. However, we can also
solve this puzzle by reading a text file of English words and outputting
the word if it contains “dous” at the end. The text file “words.txt” contains
87, 314 English words, including the word that completes the puzzle. This
file is available online with the source code for the book. Write a program
that reads each word from the text file and outputs only those containing
“dous” at the end to solve the puzzle.

Arrays

7.1  Introduction to Arrays  378
Declaring and Referencing Arrays  378
Programming Tip: Use for Loops with Arrays  380
Pitfall: Array Indexes Always Start with Zero  380
Programming Tip: Use a Defined Constant for the

Size of an Array  380
Arrays in Memory  382
Pitfall: Array Index Out of Range  383
Initializing Arrays  386
Programming Tip: C++11 Range-Based for

Statement  386

7.2  Arrays in Functions  389
Indexed Variables as Function Arguments  389
Entire Arrays as Function Arguments  391
The const Parameter Modifier  394
Pitfall: Inconsistent Use of const Parameters  397
Functions That Return an Array  397
Case Study: Production Graph  398

7.3  Programming with Arrays  411
Partially Filled Arrays  411
Programming Tip: Do Not Skimp on Formal

Parameters  414
Programming Example: Searching an Array  414
Programming Example: Sorting an Array  417
Programming Example: Bubble Sort  421

7.4 M ultidimensional Arrays  424
Multidimensional Array Basics  425
Multidimensional Array Parameters  425
Programming Example: Two-Dimensional

Grading Program  427
Pitfall: Using Commas Between Array

Indexes  431

7

Chapter Summary  432
Answers to Self-Test Exercises  433

Practice Programs  437
Programming Projects  439

Introduction

An array is used to process a collection of data all of which is of the same
type, such as a list of temperatures or a list of names. This chapter introduces
the basics of defining and using arrays in C++ and presents many of the basic
techniques used when designing algorithms and programs that use arrays.

Prerequisites

This chapter uses material from Chapters 2 through 6.

7.1  Introduction to Arrays

Suppose we wish to write a program that reads in five test scores and performs
some manipulations on these scores. For instance, the program might
compute the highest test score and then output the amount by which each
score falls short of the highest. The highest score is not known until all five
scores are read in. Hence, all five scores must be retained in storage so that
after the highest score is computed each score can be compared to it.

To retain the five scores, we will need something equivalent to five
variables of type int. We could use five individual variables of type int, but
five variables are hard to keep track of, and we may later want to change our
program to handle 100 scores; certainly, 100 variables are impractical. An
array is the perfect solution. An array behaves like a list of variables with a
uniform naming mechanism that can be declared in a single line of simple
code. For example, the names for the five individual variables we need might
be score[0], score[1], score[2], score[3], and score[4]. The part that
does not change—in this case, score—is the name of the array. The part that
can change is the integer in the square brackets, [].

Declaring and Referencing Arrays

In C++, an array consisting of five variables of type int can be declared as
follows:

int score[5];

This declaration is like declaring the following five variables to all be of type int:

378

It is a capital mistake to theorize before one has data.

Sir Arthur Conan Doyle, Scandal in Bohemia (Sherlock Holmes)

score[0], score[1], score[2], score[3], score[4]

The individual variables that together make up the array are referred to in a
variety of different ways. We will call them indexed variables, though they
are also sometimes called subscripted variables or elements of the array. The
number in square brackets is called an index or a subscript. In C++, indexes
are numbered starting with 0, not with 1 or any other number except 0. The
number of indexed variables in an array is called the declared size of the
array, or sometimes simply the size of the array. When an array is declared,
the size of the array is given in square brackets after the array name. The
indexed variables are then numbered (also using square brackets), starting
with 0 and ending with the integer that is one less than the size of the array.

In our example, the indexed variables were of type int, but an array can
have indexed variables of any type. For example, to declare an array with
indexed variables of type double, simply use the type name double instead of
int in the declaration of the array. All the indexed variables for one array are,
however, of the same type. This type is called the base type of the array. Thus,
in our example of the array score, the base type is int.

You can declare arrays and regular variables together. For example, the
following declares the two int variables next and max in addition to the array
score:

int next, score[5], max;

An indexed variable like score[3] can be used anyplace that an ordinary
variable of type int can be used.

Do not confuse the two ways to use the square brackets [] with an array
name. When used in a declaration, such as

int score[5];

the number enclosed in the square brackets specifies how many indexed
variables the array has. When used anywhere else, the number enclosed in the
square brackets tells which indexed variable is meant. For example, score[0]
through score[4] are indexed variables.

The index inside the square brackets need not be given as an integer
constant. You can use any expression in the square brackets as long as the
expression evaluates to one of the integers 0 through the integer that is one
less than the size of the array. For example, the following will set the value of
score[3] equal to 99:

int n = 2;
score[n + 1] = 99;

Although they may look different, score[n+1] and score[3] are the same
indexed variable in the code above. That is because n + 1 evaluates to 3.

The identity of an indexed variable, such as score[i], is determined by
the value of its index, which in this instance is i. Thus, you can write programs

	 7.1  Introduction to Arrays	 379

that say things such as “do such and such to the ith indexed variable,” where
the value of i is computed by the program. For example, the program in
Display 7.1 reads in scores and processes them in the way we described at the
start of this chapter.

■  Programming Tip  Use for Loops with Arrays

The second for loop in Display 7.1 illustrates a common way to step through
an array using a for loop:

for (i = 0; i < 5; i++)
 cout << score[i] << " off by "
 << (max - score[i]) << endl;

The for statement is ideally suited to array manipulations.	 ■

Pitfall  Array Indexes Always Start with Zero

The indexes of an array always start with 0 and end with the integer that is one
less than the size of the array.	 ■

■  Programming Tip � Use a Defined Constant for the Size of
an Array

Look again at the program in Display 7.1. It only works for classes that have
exactly five students. Most classes do not have exactly five students. One way
to make a program more versatile is to use a defined constant for the size of
each array. For example, the program in Display 7.1 could be rewritten to use
the following defined constant:

const int NUMBER_OF_STUDENTS = 5;

The line with the array declaration would then be

int i, score[NUMBER_OF_STUDENTS], max;

Of course, all places that have a 5 for the size of the array should also be changed to
have NUMBER_OF_STUDENTS instead of 5. If these changes are made to the program
(or better still, if the program had been written this way in the first place), then the
program can be rewritten to work for any number of students by simply changing
the one line that defines the constant NUMBER_OF_STUDENTS. Note that on many
compilers you cannot use a variable for the array size, such as the following:

cout << "Enter number of students:\n";
cin >> number;
int score[number]; //ILLEGAL ON MANY COMPILERS!

380	 Chapter 7 /  Arrays

Display 7.1   Program Using an Array

 1 //Reads in 5 scores and shows how much each
 2 //score differs from the highest score.
 3 #include <iostream>

 4 int main()
 5 {
 6 using namespace std;
 7 int i, score[5], max;

 8 cout << "Enter 5 scores:\n";
 9 cin >> score[0];
10 max = score[0];
11 for (i = 1; i < 5; i++)
12 {
13 cin >> score[i];
14 if (score[i] > max)
15 max = score[i];
16 //max is the largest of the values score[0],..., score[i].
17 }

18 cout << "The highest score is " << max << endl
19 << "The scores and their\n"
20 << "differences from the highest are:\n";
21 for (i = 0; i < 5; i++)
22 cout << score[i] << " off by "
23 << (max − score[i]) << endl;

24 return 0;
25 }

Sample Dialogue

Enter 5 scores:

5 9 2 10 6

The highest score is 10

The scores and their

differences from the highest are:

5 off by 5

9 off by 1

2 off by 8

10 off by 0

6 off by 4

	 7.1  Introduction to Arrays	 381

Some but not all compilers will allow you to specify an array size with a
variable in this way. However, for the sake of portability you should not do
so, even if your compiler permits it. (In Chapter 9 we will discuss a different
kind of array whose size can be determined when the program is run.	 ■

Arrays in Memory

Before discussing how arrays are represented in a computer’s memory, let’s first
see how a simple variable, such as a variable of type int or double, is represented
in the computer’s memory. A computer’s memory consists of a list of numbered
locations called bytes.1 The number of a byte is known as its address. A simple
variable is implemented as a portion of memory consisting of some number of
consecutive bytes. The number of bytes is determined by the type of the variable.
Thus, a simple variable in memory is described by two pieces of information: an
address in memory (giving the location of the first byte for that variable) and the
type of the variable, which tells how many bytes of memory the variable requires.
When we speak of the address of a variable, it is this address we are talking about.
When your program stores a value in the variable, what really happens is that the
value (coded as 0s and 1s) is placed in those bytes of memory that are assigned to
that variable. Similarly, when a variable is given as a (call-by-reference) argument
to a function, it is the address of the variable that is actually given to the calling
function. Now let’s move on to discuss how arrays are stored in memory.

Array indexed variables are represented in memory the same way as
ordinary variables, but with arrays there is a little more to the story. The
locations of the various array indexed variables are always placed next to one
another in memory. For example, consider the following:

int a[6];

When you declare this array, the computer reserves enough memory to hold
six variables of type int. Moreover, the computer always places these variables
one after the other in memory. The computer then remembers the address of
indexed variable a[0], but it does not remember the address of any other indexed
variable. When your program needs the address of some other indexed variable,
the computer calculates the address for this other indexed variable from the
address of a[0]. For example, if you start at the address of a[0] and count past
enough memory for three variables of type int, then you will be at the address of
a[3]. To obtain the address of a[3], the computer starts with the address of a[0]
(which is a number). The computer then adds the number of bytes needed to
hold three variables of type int to the number for the address of a[0]. The result
is the address of a[3]. This implementation is diagrammed in Display 7.2.

Many of the peculiarities of arrays in C++ can be understood only in terms of
these details about memory. For example, in the next Pitfall section, we use these
details to explain what happens when your program uses an illegal array index.

382	 Chapter 7 /  Arrays

1 A byte consists of 8 bits, but the exact size of a byte is not important to this discussion.

Pitfall  Array Index Out of Range

The most common programming error made when using arrays is attempting
to reference a nonexistent array index. For example, consider the following
array declaration:

int a[6];

When using the array a, every index expression must evaluate to one of the
integers 0 through 5. For example, if your program contains the indexed
variable a[i], the i must evaluate to one of the six integers 0, 1, 2, 3, 4, or 5.
If i evaluates to anything else, that is an error. When an index expression
evaluates to some value other than those allowed by the array declaration,
the index is said to be out of range or simply illegal. On most systems,
the result of an illegal array index is that your program will do something
wrong, possibly disastrously wrong, and will do so without giving you any
warning.

Attackers have also exploited this type of error to break into software.
An out-of-range programming error could potentially compromise the entire
system, so take great care to avoid this error. In 2011, the Common Weakness
Enumeration (CWE)/SANS Institute identified this type of error as the third
most dangerous programmer error.

	 7.1  Introduction to Arrays	 383

Array Declaration

Syntax

Type_Name Array_Name[Declared_Size];

Examples

int big_array[100];
double a[3];
double b[5];
char grade[10], one_grade;

An array declaration, of the form shown, will define Declared_Size
indexed variables, namely, the indexed variables Array_Name[0] through
Array_Name[Declared_Size-1]. Each indexed variable is a variable of
type Type_Name.

The array a consists of the indexed variables a[0], a[1], and a[2], all of
type double. The array b consists of the indexed variables b[0], b[1],
b[2], b[3], and b[4], also all of type double. You can combine array
declarations with the declaration of simple variables such as the variable
one_grade shown above.

Array Walkthrough
VideoNote

384	 Chapter 7 /  Arrays

For example, suppose your system is typical, the array a is declared as
shown, and your program contains the following:

a[i] = 238;

Now, suppose the value of i, unfortunately, happens to be 7. The computer
proceeds as if a[7] were a legal indexed variable. The computer calculates
the address where a[7] would be (if only there were an a[7]), and places the
value 238 in that location in memory. However, there is no indexed variable
a[7], and the memory that receives this 238 probably belongs to some other
variable, maybe a variable named more_stuff. So the value of more_stuff
has been unintentionally changed. The situation is illustrated in Display 7.2.

Array indexes get out of range most commonly at the first or last
iteration of a loop that processes the array. So, it pays to carefully check
all array processing loops to be certain that they begin and end with legal
array indexes.

Display 7.2   An Array in Memory

1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034

a[0⋅]

some variable
named stuff
some variable
named more_stuff

a[1]

a[2]

a[3]

a[5]

a[4]

address of a[0⋅]

On this computer each
indexed variable uses
2 bytes, so a[3]begins
2 × 3 = 6 bytes after
the start of a[0⋅].

There is no indexed
variable a[6], but if
there were one, it
would be here.

There is no indexed
variable a[7], but if
there were one, it
would be here.

int a[6];

	 7.1  Introduction to Arrays	 385

It may sound simple to keep the array indexes within a valid range. In
practice it is more difficult, because there are often subtle or unanticipated
ways to change an index variable. For example, consider the following code
that inputs some numbers into an array:

int num;
int a[10];

cout << "How many numbers? (max of 10)" << endl;
cin >> num;
for (int i = 0; i <= num; i++)

{
   cout << "Enter number " << i << endl;
   cin >> a[i];
}

This program suffers from two errors. First, the loop has an off-by-one
error. By starting at index 0 and continuing up to and including num the loop
will input num+1 numbers instead of num numbers. As long as a value less than
ten is entered for num then you might not notice the problem. The program
won't crash because the numbers will all be entered with the addition of one
extra number which still fits in the array. However, if 10 is entered for num
then the eleventh number will be stored at index a[10] which is one off the
end of the array. To fix this problem the loop should be written as:

for (int i = 0; i < num; i++)

Another problem is the lack of input validation. A malicious or
mischievous user could enter 100 as the number of values to enter; the loop
would then simply execute 100 times and input data well past the end of
the array (the program may crash before looping 100 times as numbers past
the end of the array could cause mischief). To address this problem we can
validate that the user’s input is within valid range:

cout << "How many numbers? (max of 10)" << endl;
cin >> num;
cout << num << endl;
if (num <= 10)
{
 for (int i = 0; i < num; i++)
 {

 cout << "Enter number " << i << endl;
 cin >> a[i];

 }
}

Even this modified version has the potential for error. If a value is entered for
num that exceeds its maximum size then there is the possibility for overflow.
For example, on most systems a signed short can only store a number up

386	 Chapter 7 /  Arrays

to +32767. Entering a larger value results in overflow which could store 0 or
a negative value in num. Although the for loop will not run if num is zero or
negative the program would erroneously pass the if statement. We explore
this type of error again in Chapter 8.	 ■

Initializing Arrays

An array can be initialized when it is declared. When initializing the array, the
values for the various indexed variables are enclosed in braces and separated
with commas. For example,

int children[3] = {2, 12, 1};

This declaration is equivalent to the following code:

int children[3];
children[0] = 2;
children[1] = 12;
children[2] = 1;

If you list fewer values than there are indexed variables, those values will
be used to initialize the first few indexed variables, and the remaining
indexed variables will be initialized to a 0 of the array base type. In this
situation, indexed variables not provided with initializers are initialized
to 0. However, arrays with no initializers and other variables declared
within a function definition, including the main function of a program, are
not initialized. Although array indexed variables (and other variables) may
sometimes be automatically initialized to 0, you cannot and should not
count on it.

If you initialize an array when it is declared, you can omit the size of the
array, and the array will automatically be declared to have the minimum size
needed for the initialization values. For example, the following declaration

int b[] = {5, 12, 11};

is equivalent to

int b[3] = {5, 12, 11};

■  PROGRAMMING TIP C++11 Range-Based for Statement

C++11 includes a new type of for loop, the range-based for loop, that
simplifies iteration over every element in an array. The syntax is shown below:

for (datatype varname : array)
{
	 // varname is successively set to each element in the array
}

Range-Based For Loop
VideoNote

For example:

int arr[] = {2, 4, 6, 8};
for (int x : arr)
 cout << x;
cout << endl;

This will output: 2468

When defining the variable that will iterate through the array we can
use the same modifiers that are available when defining a parameter for
a function. The example we used above for variable x is equivalent to
pass-by-value. If we change x inside the loop it doesn’t change the array.
We could define x as pass by reference using & and then changes to x
will be made to the array. We could also use const to indicate that the
variable can’t be changed. The example below increments every element
in the array and then outputs them. We used the auto datatype in the
output loop to automatically determine the type of element inside the
array.

int arr[] = {2, 4, 6, 8};
for (int& x : arr)
  x++;
for (auto x : arr)
  cout << x;
cout << endl;

This will output: 3579. The range-based for loop is especially convenient
when iterating over vectors, which are introduced in Chapter 8, and iterating
over containers, which are discussed in Chapter 18.	 ■

Self-Test Exercises

	  1.	 Describe the difference in the meaning of int a[5] and the meaning of
a[4]. What is the meaning of the [5] and [4] in each case?

	  2.	 In the array declaration

double score[5];

state the following:

a.  The array name
b.  The base type
c.  The declared size of the array
d.  The range of values that an index for this array can have
e. O ne of the indexed variables (or elements) of this array

	 7.1  Introduction to Arrays	 387

388	 Chapter 7 /  Arrays

	  3.	 Identify any errors in the following array declarations.

a.  int x[4] = { 8, 7, 6, 4, 3 };

b.  int x[] = { 8, 7, 6, 4 };

c.  const int SIZE = 4;

d.  int x[SIZE];

	  4.	 What is the output of the following code?

char symbol[3] = {'a', 'b', 'c'};

for (int index = 0; index < 3; index++)
 cout << symbol[index];

	  5.	 What is the output of the following code?

double a[3] = {1.1, 2.2, 3.3};
cout << a[0] << " " << a[1] << " " << a[2] << endl;
a[1] = a[2];
cout << a[0] << " " << a[1] << " " << a[2] << endl;

	  6.	 What is the output of the following code?

int i, temp[10];

for (i = 0; i < 10; i++)
 temp[i] = 2 * i;

for (i = 0; i < 10; i++)
 cout << temp[i] << " ";
cout << endl;

for (i = 0; i < 10; i = i + 2)
 cout << temp[i] << " ";

	  7.	 What is wrong with the following piece of code?

int sample_array[10];

for (int index = 1; index <= 10; index++)
 sample_array[index] = 3 * index;

	  8.	 Suppose we expect the elements of the array a to be ordered so that

a[0] ≤ a[1] ≤ a[2] ≤ ...

However, to be safe we want our program to test the array and issue a warning
in case it turns out that some elements are out of order. The following code is
supposed to output such a warning, but it contains a bug. What is it?

double a[10];
<Some code to fill the array a goes here.>

	 7.2  Arrays in Functions	 389

for (int index = 0; index < 10; index++)
 if (a[index] > a[index + 1])
 cout << "Array elements " << index << " and "
 << (index + 1) << " are out of order.";

	  9.	 Write some C++ code that will fill an array a with 20 values of type int read
in from the keyboard. You need not write a full program, just the code to do
this, but do give the declarations for the array and for all variables.

	10.	 Suppose you have the following array declaration in your program:

int your_array[7];

Also, suppose that in your implementation of C++, variables of type int use
2 bytes of memory. When you run your program, how much memory will
this array consume? Suppose that when you run your program, the system
assigns the memory address 1000 to the indexed variable your_array[0].
What will be the address of the indexed variable your_array[3]?

7.2  Arrays in Functions

You can use both array indexed variables and entire arrays as arguments to
functions. We first discuss array indexed variables as arguments to functions.

Indexed Variables as Function Arguments

An indexed variable can be an argument to a function in exactly the same
way that any variable can be an argument. For example, suppose a program
contains the following declarations:

int i, n, a[10];

If my_function takes one argument of type int, then the following is legal:

my_function(n);

Since an indexed variable of the array a is also a variable of type int, just like n,
the following is equally legal:

my_function(a[3]);

There is one subtlety that does apply to indexed variables used as
arguments. For example, consider the following function call:

my_function(a[i]);

If the value of i is 3, then the argument is a[3]. On the other hand, if the
value of i is 0, then this call is equivalent to the following:

my_function(a[0]);

390	 Chapter 7 /  Arrays

The indexed expression is evaluated in order to determine exactly which
indexed variable is given as the argument.

Display 7.3 contains an example of indexed variables used as function
arguments. The program shown gives five additional vacation days to each of
three employees in a small business. The program is extremely simple, but it does
illustrate how indexed variables are used as arguments to functions. Notice the
function adjust_days. This function has a formal parameter called old_days
that is of type int. In the main body of the program, this function is called with
the argument vacation[number] for various values of number. Notice that there
was nothing special about the formal parameter old_days. It is just an ordinary
formal parameter of type int, which is the base type of the array vacation. In
Display 7.3 the indexed variables are call-by-value arguments. The same remarks
apply to call-by-reference arguments. An indexed variable can be a call-by-value
argument or a call-by-reference argument.

Display 7.3   Indexed Variable as an Argument (part 1 of 2)

 1 //Illustrates the use of an indexed variable as an argument.
 2 //Adds 5 to each employee's allowed number of vacation days.
 3 #include <iostream>
 4 const int NUMBER_OF_EMPLOYEES = 3;

 5 int adjust_days(int old_days);
 6 //Returns old_days plus 5.

 7 int main()
 8 {
 9 using namespace std;
10 int vacation[NUMBER_OF_EMPLOYEES], number;
11 cout << "Enter allowed vacation days for employees 1"
12 << " through " << NUMBER_OF_EMPLOYEES << ":\n";
13 for (number = 1; number <= NUMBER_OF_EMPLOYEES; number++)
14 cin >> vacation[number − 1];
15 for (number = 0; number < NUMBER_OF_EMPLOYEES; number++)
16 vacation[number] = adjust_days(vacation[number]);
17 cout << "The revised number of vacation days are:\n";
18 for (number = 1; number <= NUMBER_OF_EMPLOYEES; number++)
19 cout << "Employee number " << number
20 << " vacation days = " << vacation[number-1] << endl;
21 return 0;
22 }

23 int adjust_days(int old_days)
24 {
25 return (old_days + 5);
26 }

(continued)

	 7.2  Arrays in Functions	 391

Self-Test Exercises

	11.	 Consider the following function definition:

void tripler(int& n)
{
 n = 3*n;
}

Which of the following are acceptable function calls?

int a[3] = {4, 5, 6}, number = 2;
tripler(number);
tripler(a[2]);
tripler(a[3]);
tripler(a[number]);
tripler(a);

	12.	 What (if anything) is wrong with the following code? The definition of
tripler is given in Self-Test Exercise 11.

int b[5] = {1, 2, 3, 4, 5};
for (int i = 1; i <= 5; i++)
 tripler(b[i]);

Entire Arrays as Function Arguments

A function can have a formal parameter for an entire array so that when the
function is called, the argument that is plugged in for this formal parameter
is an entire array. However, a formal parameter for an entire array is neither a
call-by-value parameter nor a call-by-reference parameter; it is a new kind of
formal parameter referred to as an array parameter. Let’s start with an example.

Display 7.3   Indexed Variable as an Argument (part 2 of 2)

Sample Dialogue

Enter allowed vacation days for employees 1 through 3:

10 20 5

The revised number of vacation days are:

Employee number 1 vacation days = 15

Employee number 2 vacation days = 25

Employee number 3 vacation days = 10

Passing Arrays to Functions
VideoNote

392	 Chapter 7 /  Arrays

The function defined in Display 7.4 has one array parameter, a, which will be
replaced by an entire array when the function is called. It also has one ordinary
call-by-value parameter (size) that is assumed to be an integer value equal to the
size of the array. This function fills its array argument (that is, fills all the array’s
indexed variables) with values typed in from the keyboard, and then the function
outputs a message to the screen telling the index of the last array index used.

The formal parameter int a[] is an array parameter. The square brackets,
with no index expression inside, are what C++ uses to indicate an array
parameter. An array parameter is not quite a call-by-reference parameter,
but for most practical purposes it behaves very much like a call-by-reference
parameter. Let’s go through this example in detail to see how an array
argument works in this case. (An array argument is, of course, an array that is
plugged in for an array parameter, such as a[].)

When the function fill_up is called it must have two arguments: The first
gives an array of integers, and the second should give the declared size of the
array. For example, the following is an acceptable function call:

int score[5], number_of_scores = 5;
fill_up(score, number_of_scores);

This call to fill_up will fill the array score with five integers typed in at
the keyboard. Notice that the formal parameter a[ ] (which is used in the
function declaration and the heading of the function definition) is given with
square brackets, but no index expression. (You may insert a number inside
the square brackets for an array parameter, but the compiler will simply

Display 7.4   Function with an Array Parameter

Function Declaration

 1 void fill_up(int a[], int size);
 2 //Precondition: size is the declared size of the array a.
 3 //The user will type in size integers.
 4 //Postcondition: The array a is filled with size integers
 5 //from the keyboard.

Function Definition

 1 //Uses iostream:
 2 void fill_up(int a[], int size)
 3 {
 4 using namespace std;
 5 cout << "Enter " << size << " numbers:\n";
 6 for (int i = 0; i < size; i++)
 7 cin >> a[i];
 8 size--;
 9 cout << "The last array index used is " << size << endl;
10 }

	 7.2  Arrays in Functions	 393

ignore the number, so we do not use such numbers in this book.) On the
other hand, the argument given in the function call (score in this example)
is given without any square brackets or any index expression. What happens
to the array argument score in this function call? Very loosely speaking, the
argument score is plugged in for the formal array parameter a in the body of
the function, and then the function body is executed. Thus, the function call

fill_up(score, number_of_scores);

is equivalent to the following code:

{
 using namespace std;
 size = 5;
 cout << "Enter " << size << " numbers:\n";
 for (int i = 0; i < size; i++)
 cin >> score[i];
 size--;
 cout << "The last array index used is " << size << endl;
}

Arrays in memory

5 is the value of
number_of_scores

The formal parameter a is a different kind of parameter from the ones
we have seen before now. The formal parameter a is merely a placeholder for
the argument score. When the function fill_up is called with score as
the array argument, the computer behaves as if a were replaced with the
corresponding argument score. When an array is used as an argument in a
function call, any action that is performed on the array parameter is performed on the
array argument, so the values of the indexed variables of the array argument can be
changed by the function. If the formal parameter in the function body is changed
(for example, with a cin statement), then the array argument will be changed.

So far it looks like an array parameter is simply a call-by-reference
parameter for an array. That is close to being true, but an array parameter
is slightly different from a call-by-reference parameter. To help explain the
difference, let’s review some details about arrays.

Recall that an array is stored as a contiguous chunk of memory. For
example, consider the following declaration for the array score:

int score[5];

When you declare this array, the computer reserves enough memory to
hold five variables of type int, which are stored one after the other in the
computer’s memory. The computer does not remember the addresses of each
of these five indexed variables; it remembers only the address of indexed
variable score[0]. For example, when your program needs score[3], the
computer calculates the address of score[3]from the address of score[0]. The
computer knows that score[3] is located three int variables past score[0].
Thus, to obtain the address of score[3], the computer takes the address of
score[0] and adds a number that represents the amount of memory used by
three int variables; the result is the address of score[3].

394	 Chapter 7 /  Arrays

Viewed this way, an array has three parts: the address (location in memory)
of the first indexed variable, the base type of the array (which determines how
much memory each indexed variable uses), and the size of the array (that is,
the number of indexed variables). When an array is used as an array argument
to a function, only the first of these three parts is given to the function. When
an array argument is plugged in for its corresponding formal parameter, all
that is plugged in is the address of the array’s first indexed variable. The base
type of the array argument must match the base type of the formal parameter,
so the function also knows the base type of the array. However, the array
argument does not tell the function the size of the array. When the code in
the function body is executed, the computer knows where the array starts in
memory and how much memory each indexed variable uses, but(unless you
make special provisions) it does not know how many indexed variables the
array has. That is why it is critical that you always have another int argument
telling the function the size of the array. That is also why an array parameter
is not the same as a call-by-reference parameter. You can think of an array
parameter as a weak form of call-by-reference parameter in which everything
about the array is told to the function except for the size of the array.2

These array parameters may seem a little strange, but they have at least
one very nice property as a direct result of their seemingly strange definition.
This advantage is best illustrated by again looking at our example of the
function fill_up given in Display 7.4. That same function can be used to fill
an array of any size, as long as the base type of the array is int. For example,
suppose you have the following array declarations:

int score[5], time[10];

The first of the following calls to fill_up fills the array score with five values
and the second fills the array time with ten values:

fill_up(score, 5);
fill_up(time, 10);

You can use the same function for array arguments of different sizes because
the size is a separate argument.

The const Parameter Modifier

When you use an array argument in a function call, the function can change
the values stored in the array. This is usually fine. However, in a complicated
function definition, you might write code that inadvertently changes one or
more of the values stored in an array, even though the array should not be
changed at all. As a precaution, you can tell the compiler that you do not

2 If you have heard of pointers, this will sound like pointers, and indeed an array argument
is passed by passing a pointer to its first (zeroth) index variable. We will discuss this in
Chapter 9. If you have not yet learned about pointers, you can safely ignore this footnote.

Array argument

Different size
array arguments
can be plugged
in for the same
array parameter

	 7.2  Arrays in Functions	 395

Array Formal Parameters and Arguments

An argument to a function may be an entire array, but an argument for
an entire array is neither a call-by-value argument nor a call-by-reference
argument. It is a new kind of argument known as an array argument.
When an array argument is plugged in for an array parameter, all that
is given to the function is the address in memory of the first indexed
variable of the array argument (the one indexed by 0). The array
argument does not tell the function the size of the array. Therefore,
when you have an array parameter to a function, you normally must also
have another formal parameter of type int that gives the size of the
array (as in the example below).

An array argument is like a call-by-reference argument in the following
way: If the function body changes the array parameter, then when the
function is called, that change is actually made to the array argument.
Thus, a function can change the values of an array argument (that is, can
change the values of its indexed variables).

(continued)

intend to change the array argument, and the computer will then check to
make sure your code does not inadvertently change any of the values in the
array. To tell the compiler that an array argument should not be changed by
your function, you insert the modifier const before the array parameter for
that argument position. An array parameter that is modified with a const is
called a constant array parameter.

For example, the following function outputs the values in an array but
does not change the values in the array:

void show_the_world(int a[], int size_of_a)
//Precondition: size_of_a is the declared size of the array a.
//All indexed variables of a have been given values.
//Postcondition: The values in a have been written
//to the screen.
{
 cout << "The array contains the following values:\n";
 for (int i = 0; i < size_of_a; i++)
 cout << a[i] << " ";
 cout << endl;
}

This function will work fine. However, as an added safety measure you can
add the modifier const to the function heading as follows:

void show_the_world(const int a[], int size_of_a)

With the addition of this modifier const, the computer will issue an error
message if your function definition contains a mistake that changes any of the

396	 Chapter 7 /  Arrays

values in the array argument. For example, the following is a version of the
function show_the_world that contains a mistake that inadvertently changes
the value of the array argument. Fortunately, this version of the function
definition includes the modifier const, so that an error message will tell us
that the array a is changed. This error message will help to explain the mistake:

void show_the_world(const int a[], int size_of_a)
//Precondition: size_of_a is the declared size of the array a.
//All indexed variables of a have been given values.
//Postcondition: The values in a have been written
//to the screen.
{
 cout << "The array contains the following values:\n";
 for (int i = 0; i < size_of_a; a[i]++)
 cout << a[i] << " ";
 cout << endl;
}

The syntax for a function declaration with an array parameter is as
follows:

syntax

Type_Returned Function_Name(..., Base_Type Array_
Name[],...);

Example

void sum_array(double& sum, double a[], int size);

Mistake, but the compiler
will not catch it unless you
use the const modifier.

If we had not used the const modifier in this function definition and if we
made the mistake shown, the function would compile and run with no error
messages. However, the code would contain an infinite loop that continually
increments a[0] and writes its new value to the screen.

The problem with this incorrect version of show_the_world is that the
wrong item is incremented in the for loop. The indexed variable a[i] is
incremented, but it should be the index i that is incremented. In this incorrect
version, the index i starts with the value 0 and that value is never changed. But
a[i], which is the same as a[0], is incremented. When the indexed variable
a[i] is incremented, that changes a value in the array, and since we included
the modifier const, the computer will issue a warning message. That error
message should serve as a clue to what is wrong.

You normally have a function declaration in your program in addition
to the function definition. When you use the const modifier in a function
definition, you must also use it in the function declaration so that the func-
tion heading and the function declaration are consistent.

	 7.2  Arrays in Functions	 397

The modifier const can be used with any kind of parameter, but it is
normally used only with array parameters and call-by-reference parameters for
classes, which are discussed in Chapter 11.

Pitfall  Inconsistent Use of const Parameters

The const parameter modifier is an all-or-nothing proposition. If you use
it for one array parameter of a particular type, then you should use it for
every other array parameter that has that type and that is not changed by
the function. The reason has to do with function calls within function calls.
Consider the definition of the function show_difference, which is given
below along with the declaration of a function used in the definition:

double compute_average(int a[], int number_used);
//Returns the average of the elements in the first number_used
//elements of the array a. The array a is unchanged.

void show_difference(const int a[], int number_used)
{
 double average = compute_average(a, number_used);
 cout << "Average of the " << number_used
 << " numbers = " << average << endl
 << "The numbers are:\n";
 for (int index = 0; index < number_used; index++)
 cout << a[index] << " differs from average by "
 << (a[index] − average) << endl;
}

This code will generate an error message or warning message with most
compilers. The function compute_average does not change its parameter a.
However, when the compiler processes the function definition for show_
difference, it will think that compute_average does (or at least might)
change the value of its parameter a. This is because, when it is translating
the function definition for show_difference, all the compiler knows about
the function compute_average is the function declaration for compute_
average, and the function declaration does not contain a const to tell the
compiler that the parameter a will not be changed. Thus, if you use const
with the parameter a in the function show_difference, then you should
also use the modifier const with the parameter a in the function compute_
average. The function declaration for compute_average should be as follows:

double compute_average(const int a[], int number_used);	 ■

Functions That Return an Array

A function may not return an array in the same way that it returns a value
of type int or double. There is a way to obtain something more or less

398	 Chapter 7 /  Arrays

equivalent to a function that returns an array. The thing to do is to return
a pointer to the array. However, we have not yet covered pointers. We will
discuss returning a pointer to an array when we discuss the interaction of
arrays and pointers in Chapter 9. Until then, you have no way to write a
function that returns an array.

Case Study  Production Graph

In this case study we use arrays in the top-down design of a program. We use
both indexed variables and entire arrays as arguments to the functions for
subtasks.

Problem Definition

The Apex Plastic Spoon Manufacturing Company has commissioned us to
write a program that will display a bar graph showing the productivity of
each of its four manufacturing plants for any given week. Plants keep separate
production figures for each department, such as the teaspoon department,
soup spoon department, plain cocktail spoon department, colored cocktail
spoon department, and so forth. Moreover, each plant has a different number
of departments. For example, only one plant manufactures colored cocktail
spoons. The input is entered plant-by-plant and consists of a list of numbers
giving the production for each department in that plant. The output will
consist of a bar graph in the following form:

Plant #1 **********
Plant #2 *************
Plant #3 *******************
Plant #4 *****

Each asterisk represents 1000 units of output.
We decide to read in the input separately for each department in a plant.

Since departments cannot produce a negative number of spoons, we know
that the production figure for each department will be nonnegative. Hence,
we can use a negative number as a sentinel value to mark the end of the
production numbers for each plant.

Since output is in units of 1000, it must be scaled by dividing it by 1000.
This presents a problem since the computer must display a whole number of
asterisks. It cannot display 1.6 asterisks for 1600 units. We will thus round to
the nearest 1000th. Thus, 1600 will be the same as 2000 and will produce two
asterisks. A precise statement of the program’s input and output is as follows.

Input

There are four manufacturing plants numbered 1 through 4. The following
input is given for each of the four plants: a list of numbers giving the
production for each department in that plant. The list is terminated with a
negative number that serves as a sentinel value.

Output

A bar graph showing the total production for each plant. Each asterisk in the
bar graph equals 1000 units. The production of each plant is rounded to the
nearest 1000 units.

Analysis of the Problem

We will use an array called production, which will hold the total production
for each of the four plants. In C++, array indexes always start with 0. But
since the plants are numbered 1 through 4, rather than 0 through 3, we will
not use the plant number as the array index. Instead, we will place the total
production for plant number n in the indexed variable production[n−1]. The
total output for plant number 1 will be held in production[0], the figures for
plant 2 will be held in production[1], and so forth.

Since the output is in thousands of units, the program will scale the values
of the array elements. If the total output for plant number 3 is 4040 units, then
the value of production[2] will initially be set to 4040. This value of 4040 will
then be scaled to 4 so that the value of production[2] is changed to 4, and four
asterisks will be output in the graph to represent the output for plant number 3.

The task for our program can be divided into the following subtasks:

	 ■	 input_data: Read the input data for each plant and set the value of
the indexed variable production[plant_number-1] equal to the total
production for that plant, where plant_number is the number of the plant.

	 ■	 scale: For each plant_number, change the value of the indexed variable
production[plant_number − 1] to the correct number of asterisks.

	 ■	 graph: Output the bar graph.

The entire array production will be an argument for the functions that
carry out these subtasks. As is usual with an array parameter, this means we
must have an additional formal parameter for the size of the array, which
in this case is the same as the number of plants. We will use a defined
constant for the number of plants, and this constant will serve as the size
of the array production. The main part of our program, together with
the function declarations for the functions that perform the subtasks and the
defined constant for the number of plants, is shown in Display 7.5. Notice
that, since there is no reason to change the array parameter to the function
graph, we have made that array parameter a constant parameter by adding
the const parameter modifier. The material in Display 7.5 is the outline for
our program, and if it is in a separate file, that file can be compiled so that we
can check for any syntax errors in this outline before we go on to define the
functions corresponding to the function declarations shown.

Having compiled the file shown in Display 7.5, we are ready to design the
implementation of the functions for the three subtasks. For each of these three
functions, we will design an algorithm, write the code for the function, and
test the function before we go on to design the next function.

Subtasks

	 7.2  Arrays in Functions	 399

400	 Chapter 7 /  Arrays

Algorithm Design for input_data

The function declaration and descriptive comment for the function input_
data is shown in Display 7.5. As indicated in the body of the main part of our
program (also shown in Display 7.5), when input_data is called, the formal
array parameter a will be replaced with the array production, and since the
last plant number is the same as the number of plants, the formal parameter
last_plant_number will be replaced by NUMBER_OF_PLANTS. The algorithm for
input_data is straightforward:

For plant_number equal to each of 1, 2, through last_plant_number do
the following:

Read in all the data for plant whose number is plant_number.

Sum the numbers.

Set production[plant_number -1] equal to that total.

Coding for input_data

The algorithm for the function input_data translates to the following code:

//Uses iostream:
void input_data(int a[], int last_plant_number)
{
 using namespace std;
 for (int plant_number = 1;
 plant_number <= last_plant_number; plant_number++)
 {
 cout << endl
 << "Enter production data for plant number "
 << plant_number << endl;
 get_total(a[plant_number - 1]);
 }
}

The code is routine since all the work is done by the function get_total,
which we still need to design. But before we move on to discuss the function
get_total, let’s observe a few things about the function input_data. Notice
that we store the figures for plant number plant_number in the indexed
variable with index plant_number-1; this is because arrays always start with
index 0, while the plant numbers start with 1. Also, notice that we use an
indexed variable for the argument to the function get_total. The function
get_total really does all the work for the function input_data.

The function get_total does all the input work for one plant. It reads
the production figures for that plant, sums the figures, and stores the total
in the indexed variable for that plant. But get_total does not need to know
that its argument is an indexed variable. To a function such as get_total, an
indexed variable is just like any other variable of type int. Thus, get_total
will have an ordinary call-by-reference parameter of type int. That means that

	 7.2  Arrays in Functions	 401

Display 7.5   Outline of the Graph Program

 1 //Reads data and displays a bar graph showing productivity for each plant.
 2 #include <iostream>
 3 const int NUMBER_OF_PLANTS = 4;
 4

 5 void input_data(int a[], int last_plant_number);
 6 //Precondition: last_plant_number is the declared size of the array a.
 7 //Postcondition: For plant_number = 1 through last_plant_number:
 8 //a[plant_number − 1] equals the total production for plant number plant_number.
 9
10 void scale(int a[], int size);
11 //Precondition: a[0] through a[size − 1] each has a nonnegative value.
12 //Postcondition: a[i] has been changed to the number of 1000s (rounded to
13 //an integer) that were originally in a[i], for all i such that 0 <= i <= size − 1.
14
15 void graph(const int asterisk_count[], int last_plant_number);
16 //Precondition: asterisk_count[0] through asterisk_count[last_plant_number − 1]
17 //have nonnegative values.
18 //Postcondition: A bar graph has been displayed saying that plant
19 //number N has produced asterisk_count[N − 1] 1000s of units, for each N such that
20 //1 <= N <= last_plant_number
21
22 int main()
23 {
24 using namespace std;
25 int production[NUMBER_OF_PLANTS];
26
27 cout << "This program displays a graph showing\n"
28 << "production for each plant in the company.\n";
29
30 input_data(production, NUMBER_OF_PLANTS);
31 scale(production, NUMBER_OF_PLANTS);
32 graph(production, NUMBER_OF_PLANTS);
33
34 return 0;
35 }
36

get_total is just an ordinary input function like others that we have seen
before we discussed arrays. The function get_total reads in a list of numbers
ended with a sentinel value, sums the numbers as it reads them in, and sets
the value of its argument, which is a variable of type int, equal to this sum.
There is nothing new to us in the function get_total. Display 7.6 shows the
function definitions for both get_total and input_data. The functions are
embedded in a simple test program.

402	 Chapter 7 /  Arrays

Testing input_data

Every function should be tested in a program in which it is the only untested
function. The function input_data includes a call to the function get_total.
Therefore, we should test get_total in a driver program of its own. Once
get_total has been completely tested, we can use it in a program, like the
one in Display 7.6, to test the function input_data.

When testing the function input_data, we should include tests with all
possible kinds of production figures for a plant. We should include a plant
that has no production figures (as we did for plant 4 in Display 7.6); we
should include a test for a plant with only one production figure (as we did
for plant 3 in Display 7.6); and we should include a test for a plant with more
than one production figure (as we did for plants 1 and 2 in Display 7.6). We
should test for both nonzero and zero production figures, which is why we
included a 0 in the input list for plant 2 in Display 7.6.

Algorithm Design for scale

The function scale changes the value of each indexed variable in the array
production so that it shows the number of asterisks to print out. Since there
should be one asterisk for every 1000 units of production, the value of each
indexed variable must be divided by 1000.0. Then to get a whole number of
asterisks, this number is rounded to the nearest integer. This method can be
used to scale the values in any array a of any size, so the function declaration
for scale, shown in Display 7.5 and repeated here, is stated in terms of an
arbitrary array a of some arbitrary size:

void scale(int a[], int size);
//Precondition: a[0] through a[size - 1] each has a
//nonnegative value.
//Postcondition: a[i] has been changed to the number of 1000s
//(rounded to an integer) that were originally in a[i], for
//all i such that 0 <= i <= size - 1.

When the function scale is called, the array parameter a will be replaced
by the array production, and the formal parameter size will be replaced by
NUMBER_OF_PLANTS so that the function call looks like the following:

scale(production, NUMBER_OF_PLANTS);

The algorithm for the function scale is as follows:

for (int index = 0; index < size; index++)

Divide the value of a[index] by 1000 and round the result to the nearest
whole number; the result is the new value of a[index].

Coding for scale

The algorithm for scale translates into the C++ code given next, where round is
a function we still need to define. The function round takes one argument of type
double and returns a type int value that is the integer nearest to its argument;
that is, the function round will round its argument to the nearest whole number.

	 7.2  Arrays in Functions	 403

Display 7.6   Test of Function input_data (part 1 of 3)

 1 //Tests the function input_data.
 2 #include <iostream>
 3 const int NUMBER_OF_PLANTS = 4;
 4
 5 void input_data(int a[], int last_plant_number);
 6 //Precondition: last_plant_number is the declared size of the array a.
 7 //Postcondition: For plant_number = 1 through last_plant_number:
 8 //a[plant_number-1] equals the total production for plant number plant_number.
 9
10 void get_total(int& sum);
11 //Reads nonnegative integers from the keyboard and
12 //places their total in sum.
13
14 int main()
15 {
16 using namespace std;
17 int production[NUMBER_OF_PLANTS];
18 char ans;
19
20 do
21 {
22 input_data(production, NUMBER_OF_PLANTS);
23 cout << endl
24 << "Total production for each"
25 << " of plants 1 through 4:\n";
26 for (int number = 1; number <= NUMBER_OF_PLANTS; number++)
27 cout << production[number − 1] << " ";
28
29 cout << endl
30 << "Test Again?(Type y or n and Return): ";
31 cin >> ans;
32 } while ((ans != 'N') && (ans != 'n'));
33
34 cout << endl;
35
36 return 0;
37 }
38 //Uses iostream:
39 void input_data(int a[], int last_plant_number)
40 {
41 using namespace std;
42 for (int plant_number = 1;
43 plant_number <= last_plant_number; plant_number++)
44 {
45 cout << endl
46 << "Enter production data for plant number "

(continued)

404	 Chapter 7 /  Arrays

Display 7.6   Test of Function input_data (part 2 of 3)

47 << plant_number << endl;
48 get_total(a[plant_number - 1]);
49 }
50 }
51
52
53 //Uses iostream:
54 void get_total(int& sum)
55 {
56 using namespace std;
57 cout << "Enter number of units produced by each department.\n"
58 << "Append a negative number to the end of the list.\n";
59
60 sum = 0;
61 int next;
62 cin >> next;
63 while (next >= 0)
64 {
65 sum = sum + next;
66 cin >> next;
67 }
68
69 cout << "Total = " << sum << endl;
70 }

Sample Dialogue

Enter production data for plant number 1

Enter number of units produced by each department.

Append a negative number to the end of the list.

1 2 3 −1

Total = 6

Enter production data for plant number 2

Enter number of units produced by each department.

Append a negative number to the end of the list.

0 2 3 −1

Total = 5

Enter production data for plant number 3

Enter number of units produced by each department.

Append a negative number to the end of the list.

2 −1

Total = 2

(continued)

	 7.2  Arrays in Functions	 405

void scale(int a[], int size)
{
 for (int index = 0; index < size; index++)
 a[index] = round(a[index]/1000.0);
}

Notice that we divided by 1000.0, not by 1000 (without the decimal point). If we
had divided by 1000, we would have performed integer division. For example,
2600/1000 would give the answer 2, but 2600/1000.0 gives the answer 2.6. It
is true that we want an integer for the final answer after rounding, but we want
2600 divided by 1000 to produce 3, not 2, when it is rounded to a whole number.

We now turn to the definition of the function round, which rounds its
argument to the nearest integer. For example, round(2.3) returns 2, and
round(2.6) returns 3. The code for the function round, as well as that for scale,
is given in Display 7.7. The code for round may require a bit of explanation.

The function round uses the predefined function floor from the library
with the header file cmath. The function floor returns the whole number just
below its argument. For example, floor(2.1) and floor(2.9) both return 2.
To see that round works correctly, let’s look at some examples. Consider
round(2.4). The value returned is

floor(2.4 + 0.5)

which is floor(2.9), and that is 2.0. In fact, for any number that is greater
than or equal to 2.0 and strictly less than 2.5, that number plus 0.5 will be less
than 3.0, and so floor applied to that number plus 0.5 will return 2.0. Thus,
round applied to any number that is greater than or equal to 2.0 and strictly
less than 2.5 will return 2. (Since the function declaration for round specifies
that the type for the value returned is int, the computed value of 2.0 is type
cast to the integer value 2 without a decimal point using static_cast<int>.)

Now consider numbers greater than or equal to 2.5, for example, 2.6. The
value returned by the call round(2.6) is

floor(2.6 + 0.5)

Display 7.6   Test of Function input_data (part 3 of 3)

Enter production data for plant number 4

Enter number of units produced by each department.

Append a negative number to the end of the list.

−1

Total = 0

Total production for each of plants 1 through 4:

6 5 2 0

Test Again?(Type y or n and Return): n

406	 Chapter 7 /  Arrays

Display 7.7   The Function scale

 1 //Demonstration program for the function scale.
 2 #include <iostream>
 3 #include <cmath>
 4
 5 void scale(int a[], int size);
 6 //Precondition: a[0] through a[size − 1] each has a nonnegative value.
 7 //Postcondition: a[i] has been changed to the number of 1000s (rounded to
 8 //an integer) that were originally in a[i], for all i such that 0 <= i <= size − 1.
 9
10 int round(double number);
11 //Precondition: number >= 0.
12 //Returns number rounded to the nearest integer.
13
14 int main()
15 {
16 using namespace std;
17 int some_array[4], index;
18 cout << "Enter 4 numbers to scale: ";
19 for (index = 0; index < 4; index++)
20 cin >> some_array[index];
21 scale(some_array, 4);
22 cout << "Values scaled to the number of 1000s are: ";
23 for (index = 0; index < 4; index++)
24 cout << some_array[index] << " ";
25 cout << endl;
26 return 0;
27 }
28
29 void scale(int a[], int size)
30 {
31 for (int index = 0; index < size; index++)
32 a[index] = round(a[index]/1000.0);
33 }
34
35 //Uses cmath:
36 int round(double number)
37 {
38 using namespace std;
39 return static_cast<int>(floor(number + 0.5));
40 }

Sample Dialogue

Enter 4 numbers to scale: 2600 999 465 3501

Values scaled to the number of 1000s are: 3 1 0 4

	 7.2  Arrays in Functions	 407

which is floor(3.1) and that is 3.0. In fact, for any number that is greater
than or equal to 2.5 and less than or equal to 3.0, that number plus 0.5 will
be greater than 3.0. Thus, round called with any number that is greater than or
equal to 2.5 and less than or equal to 3.0 will return 3.

Thus, round works correctly for all arguments between 2.0 and 3.0.
Clearly, there is nothing special about arguments between 2.0 and 3.0.
A similar argument applies to all nonnegative numbers. So, round works
correctly for all nonnegative arguments.

Testing scale

Display 7.7 contains a demonstration program for the function scale, but the
testing programs for the functions round and scale should be more elabo-
rate than this simple program. In particular, they should allow you to retest
the tested function several times rather than just once. We will not give the
complete testing programs, but you should first test round (which is used by
scale) in a driver program of its own, and then test scale in a driver program.
The program to test round should test arguments that are 0, arguments that
round up (like 2.6), and arguments that round down like 2.3. The program to
test scale should test a similar variety of values for the elements of the array.

The Function graph

The complete program for producing the desired bar graph is shown in
Display 7.8. We have not taken you step-by-step through the design of the
function graph because it is quite straightforward.

Display 7.8   Production Graph Program (part 1 of 3)

 1 //Reads data and displays a bar graph showing productivity for each plant.
 2 #include <iostream>
 3 #include <cmath>
 4 const int NUMBER_OF_PLANTS = 4;

 5 void input_data(int a[], int last_plant_number);
 6 //Precondition: last_plant_number is the declared size of the array a.
 7 //Postcondition: For plant_number = 1 through last_plant_number:
 8 //a[plant_number − 1] equals the total production for plant number plant_number.

 9 void scale(int a[], int size);
10 //Precondition: a[0] through a[size − 1] each has a nonnegative value.
11 //Postcondition: a[i] has been changed to the number of 1000s (rounded to
12 //an integer) that were originally in a[i], for all i such that 0 <= i <= size − 1.

13 void graph(const int asterisk_count[], int last_plant_number);
14 //Precondition: asterisk_count[0] through asterisk_count[last_plant_number − 1]
15 //have nonnegative values.
16 //Postcondition: A bar graph has been displayed saying that plant
17 //number N has produced asterisk_count[N − 1] 1000s of units, for each N such that
18 //1 <= N <= last_plant_number

(continued)

408	 Chapter 7 /  Arrays

Display 7.8   Production Graph Program (part 2 of 3)

19 void get_total(int& sum);
20 //Reads nonnegative integers from the keyboard and
21 //places their total in sum.
22 int round(double number);
23 //Precondition: number >= 0.
24 //Returns number rounded to the nearest integer.

25 void print_asterisks(int n);
26 //Prints n asterisks to the screen.

27 int main()
28 {
29 using namespace std;
30 int production[NUMBER_OF_PLANTS];

31 cout << "This program displays a graph showing\n"
32 << "production for each plant in the company.\n";
33 input_data(production, NUMBER_OF_PLANTS);
34 scale(production, NUMBER_OF_PLANTS);
35 graph(production, NUMBER_OF_PLANTS);
36 return 0;
37 }

38 //Uses iostream:
39 void input_data(int a[], int last_plant_number)

 <The rest of the definition of input_data is given in Display 7.6.>

40 //Uses iostream:
41 void get_total(int& sum)

 <The rest of the definition of get_total is given in Display 7.6.>

42 void scale(int a[], int size)

 <The rest of the definition of scale is given in Display 7.7.>

43 //Uses cmath:
44 int round(double number)

 <The rest of the definition of round is given in Display 7.7.>

45 //Uses iostream:
46 void graph(const int asterisk_count[], int last_plant_number)
47 {
48 using namespace std;
49 cout << "\nUnits produced in thousands of units:\n";
50 for (int plant_number = 1;
51 plant_number <= last_plant_number; plant_number++)
52 {
53 cout << "Plant #" << plant_number << " ";
54 print_asterisks(asterisk_count[plant_number - 1]);
55 cout << endl;
56 }
57 }

(continued)

Display 7.8   Production Graph Program (part 3 of 3)

58 //Uses iostream:
59 void print_asterisks(int n)
60 {
61 using namespace std;
62 for (int count = 1; count <= n; count++)
63 cout << "*";
64 }

Sample Dialogue

This program displays a graph showing

production for each plant in the company.

Enter production data for plant number 1

Enter number of units produced by each department.

Append a negative number to the end of the list.

2000 3000 1000 −1

Total = 6000

Enter production data for plant number 2

Enter number of units produced by each department.

Append a negative number to the end of the list.

2050 3002 1300 −1

Total = 6352

Enter production data for plant number 3

Enter number of units produced by each department.

Append a negative number to the end of the list.

5000 4020 500 4348 −1

Total = 13868

Enter production data for plant number 4

Enter number of units produced by each department.

Append a negative number to the end of the list.

2507 6050 1809 −1

Total = 10366

Units produced in thousands of units: Plant #1 ******

Plant #2 ******

Plant #3 **************

Plant #4 **********

	 7.2  Arrays in Functions	 409

410	 Chapter 7 /  Arrays

Self-Test Exercises

	13.	 Write a function definition for a function called one_more, which has
a formal parameter for an array of integers and increases the value of
each array element by one. Add any other formal parameters that are
needed.

	14.	 Consider the following function definition:

void too2(int a[], int how_many)
{
 for (int index = 0; index < how_many; index++)
 a[index] = 2;
}

Which of the following are acceptable function calls?

int my_array[29];
too2(my_array, 29);
too2(my_array, 10);
too2(my_array, 55);
"Hey too2. Please, come over here."
int your_array[100];
too2(your_array, 100);
too2(my_array[3], 29);

	15.	 Insert const before any of the following array parameters that can be
changed to constant array parameters:

void output(double a[], int size);
//Precondition: a[0] through a[size - 1] have values.
//Postcondition: a[0] through a[size - 1] have been
//written out.

void drop_odd(int a[], int size);
//Precondition: a[0] through a[size - 1] have values.
//Postcondition: All odd numbers in a[0] through
//a[size - 1] have been changed to 0.

	16.	 Write a function named out_of_order that takes as parameters an array
of double s and an int parameter named size and returns a value of type
int. This function will test this array for being out of order, meaning that
the array violates the following condition:

a[0] <= a[1] <= a[2] <= ...

The function returns −1 if the elements are not out of order; otherwise, it
will return the index of the first element of the array that is out of order.
For example, consider the declaration

	 7.3  Programming with Arrays	 411

double a[10] = {1.2, 2.1, 3.3, 2.5, 4.5,
 7.9, 5.4, 8.7, 9.9, 1.0};

In this array, a[2] and a[3] are the first pair out of order, and a[3] is
the first element out of order, so the function returns 3. If the array were
sorted, the function would return −1.

7.3  Programming with Arrays

Never trust to general impressions, my boy, but concentrate yourself upon
details.

Sir Arthur Conan Doyle, A Case of Identity (Sherlock Holmes)

In this section we discuss partially filled arrays and give a brief introduction to
sorting and searching of arrays. This section includes no new material about
the C++ language, but does include more practice with C++ array parameters.

Partially Filled Arrays

Often the exact size needed for an array is not known when a program is
written, or the size may vary from one run of the program to another. One
common and easy way to handle this situation is to declare the array to be of
the largest size the program could possibly need. The program is then free to
use as much or as little of the array as is needed.

Partially filled arrays require some care. The program must keep track of
how much of the array is used and must not reference any indexed variable
that has not been given a value. The program in Display 7.9 illustrates this
point. The program reads in a list of golf scores and shows how much each
score differs from the average. This program will work for lists as short as
one score, as long as ten scores, and for any length in between. The scores are
stored in the array score, which has ten indexed variables, but the program
uses only as much of the array as it needs. The variable number_used keeps
track of how many elements are stored in the array. The elements (that is, the
scores) are stored in positions score[0] through score[number_used - 1].

The details are very similar to what they would be if number_used were
the declared size of the array and the entire array were used. In particular,
the variable number_used usually must be an argument to any function that
manipulates the partially filled array. Since the argument number_used (when
used properly) can often ensure that the function will not reference an illegal
array index, this sometimes (but not always) eliminates the need for an
argument that gives the declared size of the array. For example, the functions
show_difference and compute_average use the argument number_used to
ensure that only legal array indexes are used. However, the function fill_
array needs to know the maximum declared size for the array so that it does
not overfill the array.

412	 Chapter 7 /  Arrays

Display 7.9   Partially Filled Array (part 1 of 2)

 1 //Shows the difference between each of a list of golf scores and their average.
 2 #include <iostream>
 3 const int MAX_NUMBER_SCORES = 10;

 4 void fill_array(int a[], int size, int& number_used);
 5 //Precondition: size is the declared size of the array a.
 6 //Postcondition: number_used is the number of values stored in a.
 7 //a[0] through a[number_used − 1] have been filled with
 8 //nonnegative integers read from the keyboard.

 9 double compute_average(const int a[], int number_used);
10 //Precondition: a[0] through a[number_used − 1] have values; number_used> 0.
11 //Returns the average of numbers a[0] through a[number_used − 1].

12 void show_difference(const int a[],int number_used);
13 //Precondition: The first number_used indexed variables of a have values.
14 //Postcondition: Gives screen output showing how much each of the first
15 //number_used elements of a differs from their average.

16 int main()
17 {
18 using namespace std;
19 int score[MAX_NUMBER_SCORES], number_used;

20 cout << "This program reads golf scores and shows\n"
21 << "how much each differs from the average.\n";
22
23 cout << "Enter golf scores:\n";
24 fill_array(score, MAX_NUMBER_SCORES, number_used);
25 show_difference(score, number_used);

26 return 0;
27 }
28 //Uses iostream:
29 void fill_array(int a[], int size, int& number_used)
30 {
31 using namespace std;
32 cout << "Enter up to " << size << " nonnegative whole numbers.\n"
33 << "Mark the end of the list with a negative number.\n";
34 int next, index = 0;
35 cin >> next;
36 while ((next >= 0) && (index < size))
37 {
38 a[index] = next;
39 index++;
40 cin >> next;
41 }

42 number_used = index;
43 }

(continued)

	 7.3  Programming with Arrays	 413

Display 7.9   Partially Filled Array (part 2 of 2)

44 double compute_average(const int a[], int number_used)
45 {
46 double total = 0;
47 for (int index = 0; index < number_used; index++)
48 total = total + a[index];
49 if (number_used> 0)
50 {
51 return (total/number_used);
52 }
53 else
54 {
55 using namespace std;
56 cout << "ERROR: number of elements is 0 in compute_average.\n"
57 << "compute_average returns 0.\n";
58 return 0;
59 }
60 }

61 void show_difference(const int a[], int number_used)
62 {
63 using namespace std;
64 double average = compute_average(a, number_used);
65 cout << "Average of the " << number_used
66 << " scores = " << average << endl
67 << "The scores are:\n";
68 for (int index = 0; index < number_used; index++)
69 cout << a[index] << " differs from average by "
70 << (a[index] - average) << endl;
71 }

Sample Dialogue

This program reads golf scores and shows

how much each differs from the average.

Enter golf scores:

Enter up to 10 nonnegative whole numbers.

Mark the end of the list with a negative number.

69 74 68 −1

Average of the 3 scores = 70.3333

The scores are:

69 differs from average by -1.33333

74 differs from average by 3.66667

68 differs from average by -2.33333

414	 Chapter 7 /  Arrays

■  Programming Tip  Do Not Skimp on Formal Parameters

Notice the function fill_array in Display 7.9. When fill_array is called,
the declared array size MAX_NUMBER_SCORES is given as one of the arguments,
as shown in the following function call from Display 7.9:

fill_array(score, MAX_NUMBER_SCORES, number_used);

You might protest that MAX_NUMBER_SCORES is a globally defined constant and
so could be used in the definition of fill_array without the need to make it
an argument. You would be correct, and if we did not use fill_array in any
program other than the one in Display 7.9, we could get by without making
MAX_NUMBER_SCORES an argument to fill_array. However, fill_array is
a generally useful function that you may want to use in several different
programs. We do in fact also use the function fill_array in the program
in Display 7.10, discussed in the next subsection. In the program in Display
7.10, the argument for the declared array size is a different named global
constant. If we had written the global constant MAX_NUMBER_SCORES into the
body of the function fill_array, we would not have been able to reuse the
function in the program in Display 7.10.	 ■

  Programming Example    Searching an Array

A common programming task is to search an array for a given value. For
example, the array may contain the student numbers for all students in a
given course. To tell whether a particular student is enrolled, the array is
searched to see if it contains the student’s number. The program in Display
7.10 fills an array and then searches the array for values specified by the user.
A real application program would be much more elaborate, but this shows
all the essentials of the sequential search algorithm. The sequential search
algorithm is the most straightforward searching algorithm you could imagine:
The program looks at the array elements in the order first to last to see if the
target number is equal to any of the array elements.

In Display 7.10, the function search is used to search the array. When
searching an array, you often want to know more than simply whether or not
the target value is in the array. If the target value is in the array, you often want
to know the index of the indexed variable holding that target value, since the
index may serve as a guide to some additional information about the target
value. Therefore, we designed the function search to return an index giving
the location of the target value in the array, provided the target value is, in
fact, in the array. If the target value is not in the array, search returns -1. Let’s
look at the function search in a little more detail.

The function search uses a while loop to check the array elements one
after the other to see whether any of them equals the target value. The variable

Display 7.10   Searching an Array (part 1 of 2)

 1 //Searches a partially filled array of nonnegative integers.
 2 #include <iostream>
 3 const int DECLARED_SIZE = 20;

 4 void fill_array(int a[], int size, int& number_used);
 5 //Precondition: size is the declared size of the array a.
 6 //Postcondition: number_used is the number of values stored in a.
 7 //a[0] through a[number_used − 1] have been filled with
 8 //nonnegative integers read from the keyboard.

 9 int search(const int a[], int number_used, int target);
10 //Precondition: number_used is <= the declared size of a.
11 //Also, a[0] through a[number_used − 1] have values.
12 //Returns the first index such that a[index] == target,
13 //provided there is such an index; otherwise, returns −1.

14 int main()
15 {
16 using namespace std;
17 int arr[DECLARED_SIZE], list_size, target;

18 fill_array(arr, DECLARED_SIZE, list_size);

19 char ans;
20 int result;
21 do
22 {
23 cout << "Enter a number to search for: ";
24 cin >> target;

25 result = search(arr, list_size, target);
26 if (result == −1)
27 cout << target << " is not on the list.\n";
28 else
29 cout << target << " is stored in array position "
30 << result << endl
31 << "(Remember: The first position is 0.)\n";

32 cout << "Search again?(y/n followed by Return): ";
33 cin >> ans;
34 } while ((ans != 'n') && (ans != 'N'));

35 cout << "End of program.\n";
36 return 0;
37 }
38 //Uses iostream:
39 void fill_array(int a[], int size, int& number_used)

 <The rest of the definition of fill_array is given in Display 7.9.>

40
(continued)

	 7.3  Programming with Arrays	 415

416	 Chapter 7 /  Arrays

found is used as a flag to record whether or not the target element has been
found. If the target element is found in the array, found is set to true, which
in turn ends the while loop.

Even if we used fill_array in only one program, it can still be a good
idea to make the declared array size an argument to fill_array. Displaying
the declared size of the array as an argument reminds us that the function
needs this information in a critically important way.

Display 7.10   Searching an Array (part 2 of 2)

41 int search(const int a[], int number_used, int target)
42 {
43
44 int index = 0;
45 bool found = false;
46 while ((!found) && (index < number_used))
47 if (target == a[index])
48 found = true;
49 else
50 index++;
51
52 if (found)
53 return index;
54 else
55 return −1;
56 }

Sample Dialogue

Enter up to 20 nonnegative whole numbers.

Mark the end of the list with a negative number.

10 20 30 40 50 60 70 80 −1

Enter a number to search for: 10

10 is stored in array position 0.

(Remember: The first position is 0.)

Search again?(y/n followed by Return): y

Enter a number to search for: 40

40 is stored in array position 3.

(Remember: The first position is 0.)

Search again?(y/n followed by Return): y

Enter a number to search for: 42

42 is not on the list.

Search again?(y/n followed by Return): n

End of program.

	 7.3  Programming with Arrays	 417

  Programming Example    Sorting an Array

One of the most widely encountered programming tasks, and certainly the
most thoroughly studied, is sorting a list of values, such as a list of sales
figures that must be sorted from lowest to highest or from highest to lowest,
or a list of words that must be sorted into alphabetical order. In this section
we describe a function called sort that sorts a partially filled array of numbers
so that they are ordered from smallest to largest.

The procedure sort has one array parameter a. The array a will be
partially filled, so there is an additional formal parameter called number_used,
which tells how many array positions are used. Thus, the declaration and
precondition for the function sort is

void sort(int a[], int number_used);
//Precondition: number_used <= declared size of the array a.
//Array elements a[0] through a[number_used - 1] have values.

The function sort rearranges the elements in array a so that after the
function call is completed the elements are sorted as follows:

a[0] ≤ a[1] ≤ a[2] ≤ ... ≤ a[number_used - 1]

The algorithm we use to do the sorting is called selection sort. It is one of the
easiest of the sorting algorithms to understand.

One way to design an algorithm is to rely on the definition of the problem.
In this case the problem is to sort an array a from smallest to largest. That means
rearranging the values so that a[0] is the smallest, a[1] the next smallest, and
so forth. That definition yields an outline for the selection sort algorithm:

for (int index = 0; index < number_used; index++)
 Place the indexth smallest element in a[index]

There are many ways to realize this general approach. The details could
be developed using two arrays and copying the elements from one array
to the other in sorted order, but one array should be both adequate and
economical. Therefore, the function sort uses only the one array containing
the values to be sorted. The function sort rearranges the values in the array a
by interchanging pairs of values. Let us go through a concrete example so that
you can see how the algorithm works.

Consider the array shown in Display 7.11. The algorithm will place the
smallest value in a[0]. The smallest value is the value in a[3]. So the algorithm
interchanges the values of a[0] and a[3]. The algorithm then looks for the next
smallest element. The value in a[0] is now the smallest element and so the next
smallest element is the smallest of the remaining elements a[1], a[2], a[3], …,
a[9]. In the example in Display 7.11, the next smallest element is in a[5], so the
algorithm interchanges the values of a[1] and a[5]. This positioning of the second
smallest element is illustrated in the fourth and fifth array pictures in Display 7.11.
The algorithm then positions the third smallest element, and so forth.

Selection Sort Walkthrough
VideoNote

418	 Chapter 7 /  Arrays

As the sorting proceeds, the beginning array elements are set equal to
the correct sorted values. The sorted portion of the array grows by adding
elements one after the other from the elements in the unsorted end of the
array. Notice that the algorithm need not do anything with the value in
the last indexed variable, a[9]. That is because once the other elements are
positioned correctly, a[9] must also have the correct value. After all, the
correct value for a[9] is the smallest value left to be moved, and the only
value left to be moved is the value that is already in a[9].

The definition of the function sort, included in a demonstration program,
is given in Display 7.12. sort uses the function index_of_smallest to find the
index of the smallest element in the unsorted end of the array, and then it does
an interchange to move this element down into the sorted part of the array.

The function swap_values, shown in Display 7.12, is used to interchange
the values of indexed variables. For example, the following call will interchange
the values of a[0] and a[3]:

swap_values(a[0], a[3]);

The function swap_values was explained in Chapter 5.

Display 7.11   Selection Sort

a[0⋅]

8 10⋅6 2 416 18 14 12

20⋅2 10⋅4 8 616 18 14 12

20⋅2 10⋅6 8 416 18 14 12

20⋅2 10⋅6 8 416 18 14 12

20⋅

20⋅

8 10⋅6 2 416 18 14 12

a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]

	 7.3  Programming with Arrays	 419

Display 7.12   Sorting an Array (part 1 of 2)

 1 //Tests the procedure sort.
 2 #include <iostream>

 3 void fill_array(int a[], int size, int&number_used);
 4 //Precondition: size is the declared size of the array a.
 5 //Postcondition: number_used is the number of values stored in a.
 6 //a[0] through a[number_used − 1] have been filled with
 7 //nonnegative integers read from the keyboard.

 8 void sort(int a[], int number_used);
 9 //Precondition: number_used <= declared size of the array a.
10 //The array elements a[0] through a[number_used − 1] have values.
11 //Postcondition: The values of a[0] through a[number_used − 1] have
12 //been rearranged so that a[0] <= a[1] <= ... <= a[number_used − 1].

13 void swap_values(int &v1, int &v2);
14 //Interchanges the values of v1 and v2.

15 int index_of_smallest(const int a[], int start_index, int number_used);
16 //Precondition: 0 <= start_index < number_used. Referenced array elements have
17 //values.
18 //Returns the index i such that a[i] is the smallest of the values
19 //a[start_index], a[start_index + 1], ..., a[number_used − 1].

20 int main()
21 {
22 using namespace std;
23 cout << "This program sorts numbers from lowest to highest.\n";

24 int sample_array[10], number_used;
25 fill_array(sample_array, 10, number_used);
26 sort(sample_array, number_used);

27 cout << "In sorted order the numbers are:\n";
28 for (int index = 0; index < number_used; index++)
29 cout << sample_array[index] << " ";
30 cout << endl;

31 return 0;
32 }

33 //Uses iostream:
34 void fill_array(int a[], int size, int&number_used)

 <The rest of the definition of fill_array is given in Display 7.9.>

35 void sort(int a[], int number_used)
36 {
37 int index_of_next_smallest;
38 for (int index = 0; index < number_used − 1; index++)

(continued)

420	 Chapter 7 /  Arrays

Display 7.12   Sorting an Array (part 2 of 2)

39 {//Place the correct value in a[index]:
40 index_of_next_smallest =
41 index_of_smallest(a, index, number_used);
42 swap_values(a[index], a[index_of_next_smallest]);
43 //a[0] <= a[1] <=...<= a[index] are the smallest of the original array
44 //elements. The rest of the elements are in the remaining positions.
45 }
46 }
47

48 void swap_values(int& v1, int& v2)
49 {
50 int temp;
51 temp = v1;
52 v1 = v2;
53 v2 = temp;
54 }
55

56 int index_of_smallest(const int a[], int start_index, int number_used)
57 {
58 int min = a[start_index],
59 index_of_min = start_index;
60 for (int index = start_index + 1; index < number_used; index++)
61 if (a[index] < min)
62 {
63 min = a[index];
64 index_of_min = index;
65 //min is the smallest of a[start_index] through a[index]
66 }
67
68 return index_of_min;
69 }

Sample Dialogue

This program sorts numbers from lowest to highest.

Enter up to 10 nonnegative whole numbers.

Mark the end of the list with a negative number.

80 30 50 70 60 90 20 30 40 −1

In sorted order the numbers are:

20 30 30 40 50 60 70 80 90

  Programming Example   Bubble Sort

The selection sort algorithm that we just described is not the only way to sort
an array. In fact, computer scientists have devised scores of sorting algorithms!
Some of these algorithms are more efficient than others and some work
only for particular types of data. Bubble sort is a simple and general sorting
algorithm that is similar to selection sort.

If we use bubble sort to sort an array in ascending order, then the largest
value is successively “bubbled” toward the end of the array. For example, if we
start with an unsorted array consisting of the following integers:

Initial array:	 {3, 10, 9, 2, 5}

Then after the first pass we will have moved the largest value, 10, to the end
of the array:

After first pass:	 {3, 9, 2, 5, 10}

The second pass will move the second largest value, 9, to the second to last
index of the array:

After second pass:	 {3, 2, 5, 9, 10}

The third pass will move the third largest value, 5, to the third to last index
of the array (where it already is):

After third pass:	 {2, 3, 5, 9, 10}

The fourth pass will move the fourth largest value, 3, to the fourth to last
index of the array (where it already is):

After fourth pass:	 {2, 3, 5, 9, 10}

At this point the algorithm is done. The remaining number at the
beginning of the array doesn’t need to be examined since it is the only
number left and must be the smallest. To design a program based on
bubble sort note that we are placing the largest item at index length-1,
the second largest item at length-2, the next at length-3, etc. This
corresponds to a loop that starts at index length-1 of the array and
counts down to index 1 of the array. We don’t need to include index 0
since that will contain the smallest element. One way to implement the
loop is with the following code, where variable i corresponds to the
target index:

for (int i = length-1; i > 0; i--)

The “bubble” part of bubble sort happens inside each iteration of this
loop. The bubble step consists of another loop that moves the largest number
toward the index i in the array. First, the largest number between index 0 and

	 7.3  Programming with Arrays	 421

Bubble Sort Walkthrough
VideoNote

422	 Chapter 7 /  Arrays

index i will be bubbled up to index i. We start the bubbling procedure by
comparing the number at index 0 with the number at index 1. If the number
at index 0 is larger than the number at index 1 then the values are swapped so
we end up with the largest number at index 1. If the number at index 0 is less
than or equal to the number at index 1 then nothing happens. Starting with
the following unsorted array:

Initial array:	 {3, 10, 9, 2, 5}

Then the first step of the bubbling procedure will compare 3 to 10. Since
10 > 3 nothing happens and the end result is the number 10 is at index 1:

After step 1:	 {3, 10, 9, 2, 5}

The procedure is repeated for successively larger values until we reach i.
The second step will compare the numbers at index 1 and 2, which is values
10 and 9. Since 10 is larger than 9 we swap the numbers resulting in the
following:

After step 2:	 {3, 9, 10, 2, 5}

The process is repeated two more times:

After step 3:	 {3, 9, 2, 10, 5}
After step 4:	 {3, 9, 2, 5, 10}

This ends the first iteration of the bubble sort algorithm. We have bubbled
the largest number to the end of the array. The next iteration would bubble
the second largest number to the second to last position, and so forth, where
variable i represents the target index for the bubbled number. If we use
variable j to reference the index of the bubbled item then our loop code looks
like this:

for (int i = length-1; i > 0; i--)
	 for (int j = 0; j < i; j++)

Inside the loop we must compare the items at index j and index j+1. The
largest should be moved into index j+1. The completed algorithm is shown
below and a complete example in Display 7.13.

for (int i = length-1; i > 0; i--)
 for (int j = 0; j < i; j++)
 if (arr[j] > arr[j+1])
 {
 int temp = arr[j+1];
 arr[j+1] = arr[j];
 arr[j] = temp;
 }

Display 7.13   Bubble Sort Program

 1 //DISPLAY 7.13 Bubble Sort Program
 2	 //Sorts an array of integers using Bubble Sort.
 3	 #include <iostream>
 4	
 5	 void bubblesort(int arr[], int length);
 6	 //Precondition: length <= declared size of the array arr.
 7	 //The array elements arr[0] through a[length - 1] have values.
 8	 //Postcondition: The values of arr[0] through arr[length - 1] have
 9	 //been rearranged so that arr[0] <= a[1] <= <= arr[length - 1].
 10	
 11	 int main()
 12	 {
 13	 using namespace std;
 14 	 int a[] = {3, 10, 9, 2, 5, 1};
 15	
 16	 bubblesort(a, 6);
 17	 for (int i=0; i<6; i++)
 18	 {
 19	 cout << a[i] << " ";
 20	 }
 21	 cout << endl;
 22	 return 0;
 23	 }
 24	
 25	 void bubblesort(int arr[], int length)
 26	 {
 27	 // Bubble largest number toward the right
 28	 for (int i = length-1; i > 0; i--)
 29	 for (int j = 0; j < i; j++)
 30	 if (arr[j] > arr[j+1])
 31	 {
 32	 // Swap the numbers
 33	 int temp = arr[j+1];
 34	 arr[j+1] = arr[j];
 35	 arr[j] = temp;
 36	 }
 37	 }

Sample Dialogue

1 2 3 5 9 10

	 7.3  Programming with Arrays	 423

424	 Chapter 7 /  Arrays

Self-Test Exercises

	17.	 Write a program that will read up to ten nonnegative integers into an
array called number_array and then write the integers back to the screen.
For this exercise you need not use any functions. This is just a toy program
and can be very minimal.

	18.	 Write a program that will read up to ten letters into an array and write
the letters back to the screen in the reverse order. For example, if the
input is

abcd.

then the output should be

dcba

Use a period as a sentinel value to mark the end of the input. Call the
array letter_box. For this exercise you need not use any functions. This is
just a toy program and can be very minimal.

	19.	 Following is the declaration for an alternative version of the function
search defined in Display 7.12. In order to use this alternative version of
the search function, we would need to rewrite the program slightly, but
for this exercise all you need to do is to write the function definition for
this alternative version of search.

bool search(const int a[], int number_used,
int target, int& where);
//Precondition: number_used is <= the declared size of the
//array a; a[0] through a[number_used - 1] have values.
//Postcondition: If target is one of the elements a[0]
//through a[number_used - 1], then this function returns
//true and sets the value of where so that a[where] ==
//target; otherwise this function returns false and the
//value of where is unchanged.

7.4  Multidimensional Arrays

Two indexes are better than one.

Found on the wall of a Computer Science department restroom

C++ allows you to declare arrays with more than one index. In this section we
describe these multidimensional arrays.

	 7.4  Multidimensional Arrays	 425

Multidimensional Array Basics

It is sometimes useful to have an array with more than one index, and this is
allowed in C++. The following declares an array of characters called page. The
array page has two indexes: The first index ranges from 0 to 29, and the second
from 0 to 99.

char page[30][100];

The indexed variables for this array each have two indexes. For example,
page[0][0], page[15][32], and page[29][99] are three of the indexed
variables for this array. Note that each index must be enclosed in its own set
of square brackets. As was true of the one-dimensional arrays we have already
seen, each indexed variable for a multidimensional array is a variable of the
base type.

An array may have any number of indexes, but perhaps the most common
number of indexes is two. A two-dimensional array can be visualized as a
two-dimensional display with the first index giving the row and the second
index giving the column. For example, the array indexed variables of the two-
dimensional array page can be visualized as follows:

page[0][0], page[0][1], ..., page[0][99]
page[1][0], page[1][1], ..., page[1][99]
page[2][0], page[2][1], ..., page[2][99]
 .
 .
 .
page[29][0], page[29][1], ..., page[29][99]

You might use the array page to store all the characters on a page of text
that has 30 lines (numbered 0 through 29) and 100 characters on each line
(numbered 0 through 99).

In C++, a two-dimensional array, such as page, is actually an array of
arrays. The example array page is actually a one-dimensional array of size
30, whose base type is a one-dimensional array of characters of size 100.
Normally, this need not concern you, and you can usually act as if the array
page is actually an array with two indexes (rather than an array of arrays, which
is harder to keep track of). There is, however, at least one situation where a
two-dimensional array looks very much like an array of arrays, namely, when
you have a function with an array parameter for a two-dimensional array,
which is discussed in the next subsection.

Multidimensional Array Parameters

The following declaration of a two-dimensional array is actually declaring a
one-dimensional array of size 30, whose base type is a one-dimensional array
of characters of size 100:

A multidimens-
ional array is an
array of arrays

426	 Chapter 7 /  Arrays

Multidimensional Array Declaration

Syntax

Type Array_Name[Size_Dim_1][Size_Dim_2]...[Size_Dim_Last];

Examples

char page[30][100];
int matrix[2][3];
double three_d_picture[10][20][30];

An array declaration, of the form shown, defines one indexed variable
for each combination of array indexes. For example, the second of the
sample declarations defines the following six indexed variables for the
array matrix:

matrix[0][0], matrix[0][1], matrix[0][2],
matrix[1][0], matrix[1][1], matrix[1][2]

char page[30][100];

Viewing a two-dimensional array as an array of arrays will help you to
understand how C++ handles parameters for multidimensional arrays. For
example, the following function takes an array argument, like page, and prints
it to the screen:

void display_page(const char p[][100], int size_dimension_1)
{
 for (int index1 = 0; index1 < size_dimension_1; index1++)
 {//Printing one line:
 for (int index2 = 0; index2 < 100; index2++)
 cout << p[index1][index2];
 cout << endl;
 }
}

Notice that with a two-dimensional array parameter, the size of the first
dimension is not given, so we must include an int parameter to give the size
of this first dimension. (As with ordinary arrays, the compiler will allow you
to specify the first dimension by placing a number within the first pair of
square brackets. However, such a number is only a comment; the compiler
ignores any such number.) The size of the second dimension (and all other
dimensions if there are more than two) is given after the array parameter, as
shown for the parameter

const char p[][100]

Multidimensional Array Parameters

When a multidimensional array parameter is given in a function heading
or function declaration, the size of the first dimension is not given, but
the remaining dimension sizes must be given in square brackets. Since
the first dimension size is not given, you usually need an additional
parameter of type int that gives the size of this first dimension. Below
is an example of a function declaration with a two-dimensional array
parameter p:

void get_page(char p[][100], int size_dimension_1);

Display 7.14 contains a program that uses a two-dimensional array, named
grade, to store and then display the grade records for a small class. The class has
four students and includes three quizzes. Display 7.15 illustrates how the array
grade is used to store data. The first array index is used to designate a student,
and the second array index is used to designate a quiz. Since the students and
quizzes are numbered starting with 1 rather than 0, we must subtract 1 from
the student number and subtract 1 from the quiz number to obtain the indexed
variable that stores a particular quiz score. For example, the score that student
number 4 received on quiz number 1 is recorded in grade[3][0].

Our program also uses two ordinary one-dimensional arrays. The array
st_ave will be used to record the average quiz score for each of the students. For
example, the program will set st_ave[0] equal to the average of the quiz scores
received by student 1, st_ave[1] equal to the average of the quiz scores received
by student 2, and so forth. The array quiz_ave will be used to record the average
score for each quiz. For example, the program will set quiz_ave[0] equal to the
average of all the student scores for quiz 1, quiz_ave[1] will record the average

If you realize that a multidimensional array is an array of arrays, then this rule
begins to make sense. Since the two-dimensional array parameter

const char p[][100]

is a parameter for an array of arrays, the first dimension is really the index
of the array and is treated just like an array index for an ordinary, one-
dimensional array. The second dimension is part of the description of the
base type, which is an array of characters of size 100.

  Programming Example Two-Dimensional
Grading Program

	 7.4  Multidimensional Arrays	 427

428	 Chapter 7 /  Arrays

Display 7.14   Two-Dimensional Array (part 1 of 3)

 1 //Reads quiz scores for each student into the two-dimensional array grade (but
 2 //the input code is not shown in this display). Computes the average score
 3 //for each student and the average score for each quiz. Displays the quiz scores
 4 //and the averages.
 5 #include <iostream>
 6 #include <iomanip>
 7 const int NUMBER_STUDENTS = 4, NUMBER_QUIZZES = 3;
 8
 9 void compute_st_ave(const int grade[][NUMBER_QUIZZES], double st_ave[]);
10 //Precondition: Global constants NUMBER_STUDENTS and NUMBER_QUIZZES
11 //are the dimensions of the array grade. Each of the indexed variables
12 //grade[st_num − 1, quiz_num − 1] contains the score for student st_num on quiz
13 //quiz_num.
14 //Postcondition: Each st_ave[st_num − 1] contains the average for student
15 //number stu_num.
16

17 void compute_quiz_ave(const int grade[][NUMBER_QUIZZES], double quiz_ave[]);
18 //Precondition: Global constants NUMBER_STUDENTS and NUMBER_QUIZZES
19 //are the dimensions of the array grade. Each of the indexed variables
20 //grade[st_num − 1, quiz_num − 1] contains the score for student st_num on quiz
21 //quiz_num.
22 //Postcondition: Each quiz_ave[quiz_num − 1] contains the average for quiz number
23 //quiz_num.
24

25 void display(const int grade[][NUMBER_QUIZZES],
26 const double st_ave[], const double quiz_ave[]);
27 //Precondition: Global constants NUMBER_STUDENTS and NUMBER_QUIZZES are the
28 //dimensions of the array grade. Each of the indexed variables grade[st_num − 1,
29 //quiz_num − 1] contains the score for student st_num on quiz quiz_num. Each
30 //st_ave[st_num − 1] contains the average for student stu_num. Each
31 //quiz_ave[quiz_num − 1] contains the average for quiz number quiz_num.
32 //Postcondition: All the data in grade, st_ave, and quiz_ave has been output.
33

34 int main()
35 {
36 using namespace std;
37 int grade[NUMBER_STUDENTS][NUMBER_QUIZZES];
38 double st_ave[NUMBER_STUDENTS];
39 double quiz_ave[NUMBER_QUIZZES];
40

 <The code for filling the array grade goes here, but is not shown.>

(continued)

Display 7.14   Two-Dimensional Array (part 2 of 3)

41 compute_st_ave(grade, st_ave);
42 compute_quiz_ave(grade, quiz_ave);
43 display(grade, st_ave, quiz_ave);
44 return 0;
45 }

46 void compute_st_ave(const int grade[][NUMBER_QUIZZES], double st_ave[])
47 {
48 for (int st_num = 1; st_num <= NUMBER_STUDENTS; st_num++)
49 {//Process one st_num:
50 double sum = 0;
51 for (int quiz_num = 1; quiz_num <= NUMBER_QUIZZES; quiz_num++)
52 sum = sum + grade[st_num − 1][quiz_num − 1];
53 //sum contains the sum of the quiz scores for student number st_num.
54 st_ave[st_num − 1] = sum/NUMBER_QUIZZES;
55 //Average for student st_num is the value of st_ave[st_num-1]
56 }
57 }
58
59
60 void compute_quiz_ave(const int grade[][NUMBER_QUIZZES], double quiz_ave[])
61 {
62 for (int quiz_num = 1; quiz_num <= NUMBER_QUIZZES; quiz_num++)
63 {//Process one quiz (for all students):
64 double sum = 0;
65 for (int st_num = 1; st_num <= NUMBER_STUDENTS; st_num++)
66 sum = sum + grade[st_num − 1][quiz_num − 1];
67 //sum contains the sum of all student scores on quiz number quiz_num.
68 quiz_ave[quiz_num − 1] = sum/NUMBER_STUDENTS;
69 //Average for quiz quiz_num is the value of quiz_ave[quiz_num - 1]
70 }
71 }
72
73
74 //Uses iostream and iomanip:
75 void display(const int grade[][NUMBER_QUIZZES],
76 const double st_ave[], const double quiz_ave[])
77 {
78 using namespace std;
79 cout.setf(ios::fixed);
80 cout.setf(ios::showpoint);
81 cout.precision(1);
82 cout << setw(10) << "Student"
83 << setw(5) << "Ave"
84 << setw(15) << "Quizzes\n";
85 for (int st_num = 1; st_num <= NUMBER_STUDENTS; st_num++)
86 {//Display for one st_num:

(continued)

	 7.4  Multidimensional Arrays	 429

430	 Chapter 7 /  Arrays

Display 7.14   Two-Dimensional Array (part 3 of 3)

87 cout << setw(10) << st_num
88 << setw(5) << st_ave[st_num − 1] << " ";
89 for (int quiz_num = 1; quiz_num <= NUMBER_QUIZZES; quiz_num++)
90 cout << setw(5) << grade[st_num − 1][quiz_num − 1];
91 cout << endl;
92 }

93 cout << "Quiz averages = ";
94 for (int quiz_num = 1; quiz_num <= NUMBER_QUIZZES; quiz_num++)
95 cout << setw(5) << quiz_ave[quiz_num − 1];
96 cout << endl;
97 }

Sample Dialogue

<The dialogue for filling the array grade is not shown.>

Student Ave Quizzes

1 10.0 10 10 10

2 1.0 2 0 1

3 7.7 8 6 9

4 7.3 8 4 10

Quiz averages = 7.0 5.0 7.5

Display 7.15   The Two-Dimensional Array grade

student 1 grade[0⋅][0⋅] grade[0⋅][1] grade[0⋅][2]

student 2 grade[1][0⋅] grade[1][1] grade[1][2]

student 3 grade[2][0⋅] grade[2][1] grade[2][2]

student 4 grade[3][0⋅] grade[3][1] grade[3][2]

qu
iz

1

qu
iz

2

qu
iz

3

grade[3][2] is the
grade that student 4
received on quiz 3.

grade[3][0⋅] is the
grade that student 4
received on quiz 1.

grade[3][1] is the
grade that student 4
received on quiz 2.

qu
iz

1

qu
iz

2

qu
iz

3

student 1 10⋅ 10⋅ 10⋅ 10.0⋅ st_ave[0⋅]

student 2 2 0⋅ 1 1.0⋅ st_ave[1]

student 3 8 6 9 7.7 st_ave[2]

student 4 8 4 10⋅ 7.3 st_ave[3]

quiz_ave 7.0⋅ 5.0⋅ 7.5

q
u
i
z
_
a
v
e
[0
⋅]

q
u
i
z
_
a
v
e
[
1
]

q
u
i
z
_
a
v
e
[
2
]

Display 7.16   The Two-Dimensional Array grade (Another View)

score for quiz 2, and so forth. Display 7.16 illustrates the relationship between
the arrays grade, st_ave, and quiz_ave. In that display, we have shown some
sample data for the array grade. This data, in turn, determines the values that
the program stores in st_ave and in quiz_ave. Display 7.16 also shows these
values, which the program computes for st_ave and quiz_ave.

The complete program for filling the array grade and then computing and
displaying both the student averages and the quiz averages is shown in Display
7.14. In that program we have declared array dimensions as global named
constants. Since the procedures are particular to this program and could not be
reused elsewhere, we have used these globally defined constants in the procedure
bodies, rather than having parameters for the size of the array dimensions. Since it
is routine, the display does not show the code that fills the array.

Pitfall  Using Commas Between Array Indexes

Note that in Display 7.14 we wrote an indexed variable for the two-
dimensional array grade as grade[st_num - 1][quiz_num - 1] with two
pairs of square brackets. In some other programming languages it would be
written with one pair of brackets and commas as follows: grade[st_num - 1,
quiz_num - 1]; this is incorrect in C++. If you use grade[st_num - 1, quiz_
num - 1] in C++ you are unlikely to get any error message, but it is incorrect
usage and will cause your program to misbehave.	 ■

	 7.4  Multidimensional Arrays	 431

432	 Chapter 7 /  Arrays

Self-Test Exercises

	20.	 What is the output produced by the following code?

int my_array[4][4], index1, index2;
for (index1 = 0; index1 < 4; index1++)
 for (index2 = 0; index2 < 4; index2++)
 my_array[index1][index2] = index2;
for (index1 = 0; index1 < 4; index1++)
{
 for (index2 = 0; index2 < 4; index2++)
 cout << my_array[index1][index2] << " ";
 cout << endl;
}

	21.	 Write code that will fill the array a (declared below) with numbers typed
in at the keyboard. The numbers will be input five per line, on four lines
(although your solution need not depend on how the input numbers are
divided into lines).

 int a[4][5];

	22.	 Write a function definition for a void function called echo such that the
following function call will echo the input described in Self-Test Exercise
21 and will echo it in the same format as we specified for the input (that
is, four lines of five numbers per line):

 echo(a, 4);

Chapter Summary

■	 An array can be used to store and manipulate a collection of data that is all
of the same type.

■	 The indexed variables of an array can be used just like any other variables of
the base type of the array.

■	 A for loop is a good way to step through the elements of an array and per-
form some program action on each indexed variable.

■	 The most common programming error made when using arrays is attempt-
ing to access a nonexistent array index. Always check the first and last itera-
tions of a loop that manipulates an array to make sure it does not use an
index that is illegally small or illegally large.

■	 An array formal parameter is neither a call-by-value parameter nor a call-
by-reference parameter, but a new kind of parameter. An array parameter is
similar to a call-by-reference parameter in that any change that is made to
the formal parameter in the body of the function will be made to the array
argument when the function is called.

	 Answers to Self-Test Exercises	 433

■	 The indexed variables for an array are stored next to each other in the
computer’s memory so that the array occupies a contiguous portion of
memory. When the array is passed as an argument to a function, only
the address of the first indexed variable (the one numbered 0) is given
to the calling function. Therefore, a function with an array parameter
usually needs another formal parameter of type int to give the size of
the array.

■	 When using a partially filled array, your program needs an additional vari-
able of type int to keep track of how much of the array is being used.

■	 To tell the compiler that an array argument should not be changed by your
function, you can insert the modifier const before the array parameter for
that argument position. An array parameter that is modified with a const is
called a constant array parameter.

■	 If you need an array with more than one index, you can use a multidimen-
sional array, which is actually an array of arrays.

Answers to Self-Test Exercises

	  1.	 The statement int a[5]; is a declaration, where 5 is the number of array
elements. The expression a[4] is an access into the array defined by the
previous statement. The access is to the element having index 4, which is
the fifth (and last) array element.

	  2.	 a.  score

b.  double

c.  5

d.  0 through 4

e.  Any of score[0], score[1], score[2], score[3], score[4]

	  3.	 a. O ne too many initializers

b.  Correct. The array size is 4.

c.  Correct. The array size is 4.

	  4.	 abc

	  5.	 1.1 2.2 3.3
1.1 3.3 3.3

(Remember that the indexes start with 0, not 1.)

	  6.	 2 4 6 8 10 12 14 16 18 0 4 8 12 16

434	 Chapter 7 /  Arrays

	  7.	 The indexed variables of sample_array are sample_array[0] through sample
_array[9], but this piece of code tries to fill sample_array[1] through
sample_array[10]. The index 10 in sample_array[10] is out of range.

	  8.	 There is an index out of range. When index is equal to 9, index + 1 is equal to
10, so a[index + 1], which is the same as a[10], has an illegal index. The
loop should stop with one less iteration. To correct the code, change the
first line of the for loop to

for (int index = 0; index < 9; index++)

	  9.	 int i, a[20];

cout << "Enter 20 numbers:\n";

for (i = 0; i < 20; i++)
 cin >> a[i];

	10.	 The array will consume 14 bytes of memory. The address of the indexed
variable your_array[3] is1006.

	11.	 The following function calls are acceptable:

tripler(number);
tripler(a[2]);
tripler(a[number]);

The following function calls are incorrect:

tripler(a[3]);
tripler(a);

The first one has an illegal index. The second has no indexed expression
at all. You cannot use an entire array as an argument to tripler, as in the
second call. The section “Entire Arrays as Function Arguments” discusses
a different situation in which you can use an entire array as an argument.

	12.	 The loop steps through indexed variables b[1] through b[5], but 5 is an
illegal index for the array b. The indexes are 0, 1, 2, 3, and 4. The correct
version of the code is:

int b[5] = {1, 2, 3, 4, 5};
 for (int i = 0; i < 5; i++)
 tripler(b[i]);

	13.	 void one_more(int a[], int size)
//Precondition: size is the declared size of the array a.
//a[0] through a[size - 1] have been given values.
//Postcondition: a[index] has been increased by 1
//for all indexed variables of a.
{

 for (int index = 0; index < size; index++)
 a[index] = a[index] + 1;
}

	14.	 The following function calls are all acceptable:

too2(my_array, 29);
too2(my_array, 10);
too2(your_array, 100);

The call

too2(my_array, 10);

is legal, but will fill only the first ten indexed variables of my_array. If that
is what is desired, the call is acceptable.

The following function calls are all incorrect:

too2(my_array, 55);
"Hey too2. Please, come over here."
too2(my_array[3], 29);

The first of these is incorrect because the second argument is too large. The
second is incorrect because it is missing a final semicolon (and for other
reasons). The third one is incorrect because it uses an indexed variable for
an argument where it should use the entire array.

	15.	Y ou can make the array parameter in output a constant parameter, since
there is no need to change the values of any indexed variables of the array
parameter. You cannot make the parameter in drop_odd a constant parameter
because it may have the values of some of its indexed variables changed.

void output(const double a[], int size);
//Precondition: a[0] through a[size - 1] have values.
//Postcondition: a[0] through a[size - 1] have been
//written out.

void drop_odd(int a[], int size);
//Precondition: a[0] through a[size - 1] have values.
//Postcondition: All odd numbers in a[0] through
//a[size - 1] have been changed to 0.

	16.	 int out_of_order(double array[], int size)
{
 for (int i = 0; i < size - 1; i++)
 if (array[i] > array[i+1]) //fetch a[i+1] for each i.
 return i+1;
 return -1;
}

	 Answers to Self-Test Exercises	 435

436	 Chapter 7 /  Arrays

	17.	 #include <iostream>
using namespace std;
const int DECLARED_SIZE = 10;

int main()
{
 cout << "Enter up to ten nonnegative integers.\n"
 << "Place a negative number at the end.\n";
 int number_array[DECLARED_SIZE], next, index = 0;
 cin >> next;
 while ((next >= 0) && (index < DECLARED_SIZE))
 {
 number_array[index] = next;
 index++;
 cin >> next;
 }

 int number_used = index;
 cout << "Here they are back at you:";
 for (index = 0; index < number_used; index++)
 cout << number_array[index] << " ";
 cout<< endl;
 return 0;
}

	18.	 #include <iostream>
using namespace std;
const int DECLARED_SIZE = 10;

int main()
{
 cout << "Enter up to ten letters"
 << " followed by a period:\n";
 char letter_box[DECLARED_SIZE], next;
 int index = 0;
 cin >> next;
 while ((next != '.') && (index < DECLARED_SIZE))
 {
 letter_box[index] = next;
 index++;
 cin >> next;
 }
 int number_used = index;
 cout << "Here they are backwards:\n";
 for(index = number_used - 1; index >= 0; index--)
 cout << letter_box[index];
 cout << endl;
 return 0;
}

	 Practice Programs	 437

	19.	 bool search(constint a[], int number_used,
 int target, int& where)
{
 int index = 0;
 bool found = false;
 while ((!found) && (index < number_used))
 if (target == a[index])
 found = true;
 else
 index++;
 //If target was found, then
 //found == true and a[index] == target.
 if (found)
 where = index;
 return found;
}

	20.	 0 1 2 3
0 1 2 3
0 1 2 3
0 1 2 3

	21.	 int a[4][5];
int index1, index2;
for (index1 = 0; index1 < 4; index1++)
 for (index2 = 0; index2 < 5; index2++)
 cin >> a[index1][index2];

	22.	 void echo(const int a[][5], int size_of_a)
//Outputs the values in the array a on size_of_a lines
//with 5 numbers per line.
{
 for (int index1 = 0; index1 < size_of_a; index1++)
 {
 for (int index2 = 0; index2 < 5; index2++)
 cout << a[index1][index2] << " ";
 cout << endl;
 }
}

Practice Programs

Practice Programs can generally be solved with a short program that directly applies
the programming principles presented in this chapter.

	1.	 Write a function named firstLast2 that takes as input an array of integers
and an integer that specifies how many entries are in the array. The function
should return true if the array starts or ends with the digit 2. Otherwise it
should return false. Test your function with arrays of different length and

438	 Chapter 7 /  Arrays

with the digit 2 at the beginning of the array, end of the array, middle of
the array, and missing from the array.

	2.	 Write a function named countNum2s that takes as input an array of integers
and an integer that specifies how many entries are in the array. The func-
tion should return the number of 2’s in the array. Test your function with
arrays of different length and with varying number of 2’s.

	3.	 Write a function named swapFrontBack that takes as input an array of in-
tegers and an integer that specifies how many entries are in the array. The
function should swap the first element in the array with the last element in
the array. The function should check if the array is empty to prevent errors.
Test your function with arrays of different length and with varying front
and back numbers.

	4.	 The following code creates a small phone book. An array is used to store
a list of names and another array is used to store the phone numbers that
go with each name. For example, Michael Myers’ phone number is 333-
8000 and Ash Williams’ phone number is 333-2323. Write the function
lookupName so the code properly looks up and returns the phone number
for the input target name.

int main()
{
  using namespace std;
  string names[] = {"Michael Myers",
   "Ash Williams",
   "Jack Torrance",
   "Freddy Krueger"};
  string phoneNumbers[] = {"333-8000","333-2323",
   "333-6150","339-7970"};
  string targetName, targetPhone;
  char c;
  do
  {
   cout << "Enter a name to find the "
	      << "corresponding phone number."
   << endl;
  getline(cin, targetName);
  targetPhone = lookupName(targetName,
   names, phoneNumbers,4);
  if (targetPhone.length() > 0)
   cout << "The number is: "
   << targetPhone << endl;
  else
   cout << "Name not found. "
   << endl;
   cout << "Look up another name? (y/n)"
   << endl;

 cin >> c;
 cin.ignore();
 } while (c == 'y');
 return 0;
}

Programming Projects

Programming Projects require more problem-solving than Practice Programs and
can usually be solved many different ways. Visit www.myprogramminglab.com to
complete many of these Programming Projects online and get instant feedback.

Projects 7 through 11 can be written more elegantly using structures or
classes. Projects 12 through 15 are meant to be written using multidimen-
sional arrays and do not require structures or classes. See Chapters 10
and 11 for information on defining classes and structures.

	  1.	 There are three versions of this project.

Version 1 (all interactive). Write a program that reads in the average
monthly rainfall for a city for each month of the year and then reads
in the actual monthly rainfall for each of the previous 12 months. The
program then prints out a nicely formatted table showing the rainfall
for each of the previous 12 months as well as how much above or below
average the rainfall was for each month. The average monthly rainfall is
given for the months January, February, and so forth, in order. To obtain
the actual rainfall for the previous 12 months, the program first asks what
the current month is and then asks for the rainfall figures for the previous
12 months. The output should correctly label the months.

There are a variety of ways to deal with the month names. One straight-
forward method is to code the months as integers and then do a con-
version before doing the output. A large switch statement is acceptable
in an output function. The month input can be handled in any manner
you wish, as long as it is relatively easy and pleasant for the user.

After you have completed this program, produce an enhanced version that
also outputs a graph showing the average rainfall and the actual rainfall
for each of the previous 12 months. The graph should be similar to the
one shown in Display 7.8, except that there should be two bar graphs
for each month and they should be labeled as the average rainfall and
the rainfall for the most recent month. Your program should ask the user
whether she or he wants to see the table or the bar graph and then should
display whichever format is requested. Include a loop that allows the user
to see either format as often as the user wishes until the user requests that
the program end.

	 Programming Projects	 439

www.myprogramminglab.com

440	 Chapter 7 /  Arrays

Version 2 (combines interactive and file output). For a more elaborate
version, also allow the user to request that the table and graph be output
to a file. The file name is entered by the user. This program does everything
that the Version 1 program does but has this added feature. To read a file
name, you must use material presented in the optional section of Chapter 5
entitled “File Names as Input.”

Version 3 (all I/O with files). This version is like Version 1 except that
input is taken from a file and the output is sent to a file. Since there is
no user to interact with, there is no loop to allow repeating the display;
both the table and the graph are output to the same file. If this is a class
assignment, ask your instructor for instructions on what file names to use.

	  2.	 Hexadecimal numerals are integers written in base 16. The 16 digits used
are ‘0’ through ‘9’ plus ‘a’ for the “digit 10”, ‘b’ for the “digit 11”, ‘c’ for
the “digit 12”, ‘d’ for the “digit 13”, ‘e’ for the “digit 14”, and ‘f ’ for the
“digit 15”. For example, the hexadecimal numeral d is the same as base 10
numeral 13 and the hexadecimal numeral 1d is the same as the base
10 numeral 29. Write a C++ program to perform addition of two hexadeci-
mal numerals each with up to 10 digits. If the result of the addition is more
than 10 digits long, then simply give the output message “Addition Over-
flow” and not the result of the addition. Use arrays to store hexadecimal
numerals as arrays of characters. Include a loop to repeat this calculation
for new numbers until the user says she or he wants to end the program.

	  3.	 Write a function called delete_repeats that has a partially filled array of
characters as a formal parameter and that deletes all repeated letters from the
array. Since a partially filled array requires two arguments, the function will
actually have two formal parameters: an array parameter and a formal param-
eter of type int that gives the number of array positions used. When a letter
is deleted, the remaining letters are moved forward to fill in the gap. This will
create empty positions at the end of the array so that less of the array is used.
Since the formal parameter is a partially filled array, a second formal parameter
of type int will tell how many array positions are filled. This second formal
parameter will be a call-by-reference parameter and will be changed to show
how much of the array is used after the repeated letters are deleted.

For example, consider the following code:

char a[10];
a[0] = 'a';
a[1] = 'b';
a[2] = 'a';
a[3] = 'c';
int size = 4;
delete_repeats(a, size);

After this code is executed, the value of a[0] is 'a', the value of a[1] is
'b', the value of a[2] is 'c', and the value of size is 3. (The value of a[3]

Solution to Programming
Project 7.3

VideoNote

is no longer of any concern, since the partially filled array no longer uses
this indexed variable.)

You may assume that the partially filled array contains only lowercase
letters. Embed your function in a suitable test program.

	  4.	 The standard deviation of a list of numbers is a measure of how much the
numbers deviate from the average. If the standard deviation is small, the
numbers are clustered close to the average. If the standard deviation is large,
the numbers are scattered far from the average. The standard deviation, S, of
a list of N numbers x is defined as follows:

	 Programming Projects	 441

√

N

∑ = (x
i
 − x)2

S = i =1
N

where x is the average of the N numbers x1, x2, Define a function
that takes a partially filled array of numbers as its arguments and returns
the standard deviation of the numbers in the partially filled array. Since
a partially filled array requires two arguments, the function will actually
have two formal parameters: an array parameter and a formal parameter
of type int that gives the number of array positions used. The numbers
in the array will be of type double. Embed your function in a suitable test
program.

	  5.	 Write a program that reads in a list of integers into an array with base
type int. Provide the facility to either read this array from the keyboard or
from a file, at the user’s option. If the user chooses file input, the program
should request a file name. You may assume that there are fewer than
50 entries in the array. Your program determines how many entries there
are. The output is to be a two-column list. The first column is a list of the
distinct array elements; the second column is the count of the number of
occurrences of each element. The list should be sorted on entries in the first
column, largest to smallest.

For example, for the input

-12 3 -12 4 1 1 -12 1 -1 1 2 3 4 2 3 -12

the output should be

 N Count
 4 2
 3 3
 2 2
 1 4
-1 1
-12 4

442	 Chapter 7 /  Arrays

	  6.	 The text discusses the selection sort. We propose a different “sort” routine,
the insertion sort. This routine is in a sense the opposite of the selection
sort in that it picks up successive elements from the array and inserts each
of these into the correct position in an already sorted subarray (at one end
of the array we are sorting).

The array to be sorted is divided into a sorted subarray and to-be-sorted
subarray. Initially, the sorted subarray is empty. Each element of the
to-be-sorted subarray is picked and inserted into its correct position in the
sorted subarray.

Write a function and a test program to implement the selection sort.
Thoroughly test your program.

Example and hints: The implementation involves an outside loop that se-
lects successive elements in the to-be-sorted subarray and a nested loop
that inserts each element in its proper position in the sorted subarray.

Initially, the sorted subarray is empty, and the to-be-sorted subarray
is all of the array:

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]

8 6 10 2 16 4 18 14 12 10

Pick the first element, a[0] (that is, 8), and place it in the first posi-
tion. The inside loop has nothing to do in this first case. The array and
subarrays look like this:

sorted to-be-sorted

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]

8 6 10 2 16 4 18 14 12 10

The first element from the to-be-sorted subarray is a[1], which has value 6.
Insert this into the sorted subarray in its proper position. These are
out of order, so the inside loop must swap values in position 0 and
position 1. The result is as follows:

sorted to-be-sorted

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]

6 8 10 2 16 4 18 14 10 12

Note that the sorted subarray has grown by one entry.

Repeat the process for the first to-be-sorted subarray entry, a[2], find-
ing a place where a[2] can be placed so that the subarray remains
sorted. Since a[2] is already in place—that is, it is larger than the larg-
est element in the sorted subarray—the inside loop has nothing to do.
The result is as follows:

sorted to-be-sorted

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]

6 8 10 2 16 4 18 14 10 12

Again, pick the first to-be-sorted array element, a[3]. This time the
inside loop has to swap values until the value of a[3] is in its proper
position. This involves some swapping:

sorted to-be-sorted

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]

6 8 10<-->2 16 4 18 14 10 12

sorted to-be-sorted

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]

6 8<--->2 10 16 4 18 14 10 12

sorted to-be-sorted

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]

6<--->2 8 10 16 4 18 14 10 12

The result of placing the 2 in the sorted subarray is

sorted to-be-sorted

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]

2 6 8 10 16 4 18 14 10 12

The algorithm continues in this fashion until the to-be-sorted array is
empty and the sorted array has all the original array’s elements.

	 Programming Projects	 443

444	 Chapter 7 /  Arrays

	  7.	 An array can be used to store large integers one digit at a time. For example,
the integer 1234 could be stored in the array a by setting a[0] to 1, a[1]
to 2, a[2] to 3, and a[3] to 4. However, for this exercise you might find it
more useful to store the digits backward, that is, place 4 in a[0], 3 in a[1],
2 in a[2], and 1 in a[3].

In this exercise you will write a program that reads in two positive integers
that are 20 or fewer digits in length and then outputs the sum of the two
numbers. Your program will read the digits as values of type char so that
the number 1234 is read as the four characters '1', '2', '3', and '4'.
After they are read into the program, the characters are changed to values
of type int. The digits will be read into a partially filled array, and you
might find it useful to reverse the order of the elements in the array after
the array is filled with data from the keyboard. (Whether or not you
reverse the order of the elements in the array is up to you. It can be done
either way, and each way has its advantages and disadvantages.)

Your program will perform the addition by implementing the usual
paper-and-pencil addition algorithm. The result of the addition is stored
in an array of size 20, and the result is then written to the screen. If the
result of the addition is an integer with more than the maximum number
of digits (that is, more than 20 digits), then your program should issue a
message saying that it has encountered “integer overflow.” You should be
able to change the maximum length of the integers by changing only one
globally defined constant. Include a loop that allows the user to continue
to do more additions until the user says the program should end.

	  8.	 Write a program that will read a line of text and output a list of all the
letters that occur in the text together with the number of times each letter
occurs in the line. End the line with a period that serves as a sentinel value.
The letters should be listed in the following order: the most frequently oc-
curring letter, the next most frequently occurring letter, and so forth. Use
two arrays, one to hold integers and one to hold letters. You may assume
that the input uses all lowercase letters. For example, the input

do be do bo.

should produce output similar to the following:

Letter Number of Occurrences

o 3

d 2

b 2

e 1

Your program will need to sort the arrays according to the values in the
integer array. This will require that you modify the function sort given
in Display 7.12. You cannot use sort to solve this problem without
changing the function. If this is a class assignment, ask your instructor if
input/output should be done with the keyboard and screen or if it should
be done with files. If it is to be done with files, ask your instructor for
instructions on file names.

	  9.	 Write a program to score five-card poker hands into one of the following
categories: nothing, one pair, two pairs, three of a kind, straight (in order,
with no gaps), flush (all the same suit, for example, all spades), full house
(one pair and three of a kind), four of a kind, straight flush (both a straight
and a flush). Use two arrays, one to hold the value of the card and one to
hold the suit. Include a loop that allows the user to continue to score more
hands until the user says the program should end.

	10.	 Write a program that will allow two users to play tic-tac-toe. The program
should ask for moves alternately from player X and player O. The program
displays the game positions as follows:

1 2 3
4 5 6
7 8 9

The players enter their moves by entering the position number they wish
to mark. After each move, the program displays the changed board. A
sample board configuration is as follows:

X X O
4 5 6
O 8 9

	11.	 Write a program to assign passengers seats in an airplane. Assume a small
airplane with seat numbering as follows:

1 A B C D
2 A B C D
3 A B C D
4 A B C D
5 A B C D
6 A B C D
7 A B C D

The program should display the seat pattern, with an X marking the seats
already assigned. For example, after seats 1A, 2B, and 4C are taken, the
display should look like this:

1 X B C D
2 A X C D
3 A B C D

	 Programming Projects	 445

446	 Chapter 7 /  Arrays

4 A B X D
5 A B C D
6 A B C D
7 A B C D

After displaying the seats available, the program prompts for the seat
desired, the user types in a seat, and then the display of available seats is
updated. This continues until all seats are filled or until the user signals
that the program should end. If the user types in a seat that is already
assigned, the program should say that that seat is occupied and ask for
another choice.

	12.	 Write a program that accepts input like the program in Display 7.8 and that
outputs a bar graph like the one in that display except that your program
will output the bars vertically rather than horizontally. A two-dimensional
array may be useful.

	13.	 The mathematician John Horton Conway invented the “Game of Life.”
Though not a “game” in any traditional sense, it provides interesting beha-
vior that is specified with only a few rules. This project asks you to write a
program that allows you to specify an initial configuration. The program fol-
lows the rules of LIFE to show the continuing behavior of the configuration.

LIFE is an organism that lives in a discrete, two-dimensional world. While
this world is actually unlimited, we don’t have that luxury, so we restrict
the array to 80 characters wide by 22 character positions high. If you have
access to a larger screen, by all means use it.

This world is an array with each cell capable of holding one LIFE cell.
Generations mark the passing of time. Each generation brings births and deaths
to the LIFE community. The births and deaths follow the following set of rules.

■	 We define each cell to have eight neighbor cells. The neighbors of a cell
are the cells directly above, below, to the right, to the left, diagonally
above to the right and left, and diagonally below to the right and left.

■	 If an occupied cell has zero or one neighbors, it dies of loneliness. If an
occupied cell has more than three neighbors, it dies of overcrowding.

■	 If an empty cell has exactly three occupied neighbor cells, there is a birth
of a new cell to replace the empty cell.

■	 Births and deaths are instantaneous and occur at the changes of gen-
eration. A cell dying for whatever reason may help cause birth, but a
newborn cell cannot resurrect a cell that is dying, nor will a cell’s death
prevent the death of another, say, by reducing the local population.

Notes: Some configurations grow from relatively small starting configura-
tions. Others move across the region. It is recommended that for text output

you use a rectangular array of char with 80 columns and 22 rows to store
the LIFE world’s successive generations. Use an asterisk * to indicate a living
cell, and use a blank to indicate an empty (or dead) cell. If you have a screen
with more rows than that, by all means make use of the whole screen.

Examples:

becomes

*

*

*

then becomes

again, and so on.

Suggestions: Look for stable configurations. That is, look for communities
that repeat patterns continually. The number of configurations in the rep-
etition is called the period. There are configurations that are fixed, which
continue without change. A possible project is to find such configurations.

Hints: Define a void function named generation that takes the array
we call world, an 80-column by 22-row array of char, which contains
the initial configuration. The function scans the array and modifies the
cells, marking the cells with births and deaths in accord with the rules
listed earlier. This involves examining each cell in turn, either killing
the cell, letting it live, or, if the cell is empty, deciding whether a cell
should be born. There should be a function display that accepts the
array world and displays the array on the screen. Some sort of time
delay is appropriate between calls to generation and display. To do
this, your program should generate and display the next generation
when you press Return. You are at liberty to automate this, but auto-
mation is not necessary for the program.

	14.	R edo (or do for the first time) Programming Project 10 from Chapter 6. Your
program should first load all boy names and girl names from the file into sepa-
rate arrays. Search for the target name from the arrays, not directly from the file.

	15.	R edo (or do for the first time) Programming Project 11 from Chapter 6.
Your program should not be hard-coded to create a bar chart of exactly four
integers, but should be able to graph an array of up to 100 integers. Scale
the graph appropriately in the horizontal and vertical dimensions so the
bar chart fits within a 400 by 400 pixel area. You can impose the constraint
that all integers in the array are nonnegative. Use the sentinel value of −1
to indicate the end of the values to draw in the bar chart. For example, to

	 Programming Projects	 447

448	 Chapter 7 /  Arrays

create the bar chart with values 20, 40, 60, and 120, your program would
operate on the array:

a[0] = 20
a[1] = 40
a[2] = 60
a[3] = 120
a[4] = -1

Test your program by creating several bar charts with different values and
up to 100 entries and view the resulting SVG files to ensure that they are
drawn correctly.

	16.	 A common memory matching game played by young children is to start
with a deck of cards that contains identical pairs. For example, given six
cards in the deck, two might be labeled “1,” two might be labeled “2,” and
two might be labeled “3.” The cards are shuffled and placed face down on
the table. The player then selects two cards that are face down, turns them
face up, and if they match they are left face up. If the two cards do not
match, they are returned to their original position face down. The game
continues in this fashion until all cards are face up.

Write a program that plays the memory matching game. Use 16 cards that
are laid out in a 4 X 4 square and are labeled with pairs of numbers from
1 to 8. Your program should allow the player to specify the cards that she
would like to select through a coordinate system.

For example, suppose the cards are in the following layout:

1 2 3 4

1 | 8 * * *
2 | * * * *
3 | * 8 * *
4 | * * * *

All of the cards are face down except for the pair 8, which has been
located at coordinates (1, 1) and (2, 3). To hide the cards that have been
temporarily placed face up, output a large number of newlines to force
the old board off the screen.

(Hint: Use a two-dimensional array for the arrangement of cards and
another two-dimensional array that indicates if a card is face up or
face down. Write a function that “shuffles” the cards in the array by
repeatedly selecting two cards at random and swapping them. Random
number generation is described in Chapter 4.)

	17.	Y our swim school has two swimming instructors, Jeff and Anna. Their cur-
rent schedules are shown below. An “X” denotes a 1-hour time slot that is
occupied with a lesson.

Write a program with array(s) capable of storing the schedules. Create
a main menu that allows the user to mark a time slot as busy or free
for either instructor. Also, add an option to output the schedules to
the screen. Next, add an option to output all time slots available for
individual lessons (slots when at least one instructor is free). Finally, add
an option to output all time slots available for group lessons (when both
instructors are free).

	18.	 Modify Programming Project 17 by adding menu options to load and save
the schedules from a file.

	19.	 Traditional password entry schemes are susceptible to “shoulder surfing”
in which an attacker watches an unsuspecting user enter their password
or PIN number and uses it later to gain access to the account. One way to
combat this problem is with a randomized challenge-response system. In
these systems, the user enters different information every time based on
a secret in response to a randomly generated challenge. Consider the fol-
lowing scheme in which the password consists of a five-digit PIN number
(00000 to 99999). Each digit is assigned a random number that is 1, 2,
or 3. The user enters the random numbers that correspond to their PIN
instead of their actual PIN numbers.

For example, consider an actual PIN number of 12345. To authenticate
the user would be presented with a screen such as:

Jeff

Monday Wednesday ThursdayTuesday

Monday Wednesday Thursday

11-12

X X X

X X

XX12-1 X

1-2 X X

2-3

Anna

11-12 X X X

X12-1 X

1-2 X X

XX2-3 X

Tuesday

	 Programming Projects	 449

450	 Chapter 7 /  Arrays

PIN: 0 1 2 3 4 5 6 7 8 9
NUM: 3 2 3 1 1 3 2 2 1 3

The user would enter 23113 instead of 12345. This doesn’t divulge the
password even if an attacker intercepts the entry because 23113 could
correspond to other PIN numbers, such as 69440 or 70439. The next
time the user logs in, a different sequence of random numbers would be
generated, such as:

PIN: 0 1 2 3 4 5 6 7 8 9
NUM: 1 1 2 3 1 2 2 3 3 3

Your program should simulate the authentication process. Store an actual
PIN number in your program. The program should use an array to assign
random numbers to the digits from 0 to 9. Output the random digits to
the screen, input the response from the user, and output whether or not
the user’s response correctly matches the PIN number.

	20.	 The Social Security Administration maintains an actuarial life table that
contains the probability that a person in the United States will die (http://
www.ssa.gov/OACT/STATS/table4c6.html). The death probabilities from
this table for 2009 are stored in the file LifeDeathProbability.txt and
it is included on the website for the book. There are three values for each
row, the age, death probability for a male, and death probability for a
female. For example, the first five lines are:

0 0.006990 0.005728
1 0.000447 0.000373
2 0.000301 0.000241
3 0.000233 0.000186
4 0.000177 0.000150

This says that a 3 year old female has a 0.000186 chance of dying.

Write a program that reads the data into arrays from the file. Next, let the
user enter his or her sex and age. The program should simulate to what
age the user will live by starting with the death probability for the user’s
current age and sex. Generate a random number between 0-1; if this
number is less than or equal to the death probability then predict that
the user will live to the current age. If the random number is greater
than the death probability then increase the age by one and repeat the
calculation with a new random number for the next probability value.

If the simulation reaches age 120 then stop and predict that the user will
live to 120. This program is merely a simulation and will give different
results each time it is run, assuming you change the seed for the random
number generator.

http://www.ssa.gov/oACT/STATS/table4c6.html
http://www.ssa.gov/oACT/STATS/table4c6.html

Strings and Vectors

8.1  An Array Type for Strings   453
C-String Values and C-String Variables   453
Pitfall: Using = and == with C Strings   456
Other Functions in <cstring>   458
Pitfall: Copying past the end of a C-string using

strcpy   461
C-String Input and Output   464
C-String-to-Number Conversions and Robust

Input   466

8.2  The Standard string Class   472
Introduction to the Standard Class string   472
I/O with the Class string   475
Programming Tip: More Versions of getline   478
Pitfall: Mixing cin >> variable; and

getline   479

String Processing with the Class string   480
Programming Example: Palindrome Testing   484
Converting between string Objects and

C Strings   487
Converting Between Strings and Numbers   488

8.3  Vectors   489
Vector Basics   489
Pitfall: Using Square Brackets Beyond the

Vector Size   492
Programming Tip: Vector Assignment Is Well

Behaved   493
Efficiency Issues   493

8

Chapter Summary   495
Answers to Self-Test Exercises   495

Practice Programs   497
Programming Projects   498

Introduction

This chapter discusses two topics that use arrays or are related to arrays:
strings and vectors. Although strings and vectors are very closely related,
this relationship is not always obvious, and no one of these topics depends
on the other. The topics of strings and vectors can be covered in either
order.

Sections 8.1 and 8.2 present two types whose values represent strings
of characters, such as "Hello". One type, discussed in Section 8.1, is just an
array with base type char that stores strings of characters in the array and
marks the end of the string with the null character '\0'. This is the older
way of representing strings, which C++ inherited from the C programming
language. These sorts of strings are called C strings. Although C strings are
an older way of representing strings, it is difficult to do any sort of string
processing in C++ without at least passing contact with C strings. For
example, quoted strings, such as "Hello", are implemented as C strings
in C++.

The ANSI/ISO C++ standard includes a more modern string-
handling facility in the form of the class string. The class string is the
second string type that we will discuss in this chapter and is covered in
Section 8.2.

Vectors can be thought of as arrays that can grow (and shrink) in
length while your program is running. In C++, once your program creates
an array, it cannot change the length of the array. Vectors serve the same
purpose as arrays except that they can change length while the program is
running.

Prerequisites

Sections 8.1 and 8.2, which cover strings, and Section 8.3 which covers vectors,
are independent of each other. If you wish to cover vectors before strings, that
is fine.

Section 8.1 on C strings uses material from Chapters 2 through 6, and
Sections 7.1, 7.2, and 7.3 of Chapter 7. Section 8.2 on the string class uses
Section 8.1 and material from Chapters 2 through 6 and Sections 7.1, 7.2,
and 7.3 of Chapter 7. Section 8.3 on vectors uses material from Chapters 2
through 6 and Sections 7.1, 7.2, and 7.3 of Chapter 7.

452

Polonius: What do you read my lord?

Hamlet: Words, words, words.

William Shakespeare, Hamlet

8.1  An Array Type for Strings

In everything one must consider the end.

Jean de La Fontaine, Fables, Book III (1668)

In this section we describe one way to represent strings of characters, which
C++ has inherited from the C language. In Section 8.2 we describe a string
class that is a more modern way to represent strings. Although the string type
described here may be a bit “old-fashioned,” it is still widely used and is an
integral part of the C++ language.

C-String Values and C-String Variables

One way to represent a string is as an array with base type char. If the string is
"Hello", it is handy to represent it as an array of characters with six indexed
variables: five for the five letters in “Hello” plus one for the character '\0', which
serves as an end marker. The character '\0' is called the null character and is
used as an end marker because it is distinct from all the “real” characters. The end
marker allows your program to read the array one character at a time and know
that it should stop reading when it reads the end marker '\0'. A string stored in
this way (as an array of characters terminated with '\0') is called a C string.

We write '\0' with two symbols when we write it in a program, but just
like the new-line character '\n', the character '\0' is really only a single
character value. Like any other character value, '\0' can be stored in one
variable of type char or one indexed variable of an array of characters.

	 8.1  An Array Type for Strings	 453

The Null Character, '\0'

The null character, '\0', is used to mark the end of a C string that is stored
in an array of characters. When an array of characters is used in this way, the
array is often called a C-string variable. Although the null character '\0' is
written using two symbols, it is a single character that fits in one variable of
type char or one indexed variable of an array of characters.

You have already been using C strings. In C++, a literal string, such as "Hello",
is stored as a C string, although you seldom need to be aware of this detail.

A C-string variable is just an array of characters. Thus, the following array
declaration provides us with a C-string variable capable of storing a C-string
value with nine or fewer characters:

char s[10];

The 10 is for the nine letters in the string plus the null character '\0' to mark
the end of the string.

A C-string variable is a partially filled array of characters. Like any other
partially filled array, a C-string variable uses positions starting at indexed
variable 0 through as many as are needed. However, a C-string variable does
not use an int variable to keep track of how much of the array is currently
being used. Instead, a string variable places the special symbol '\0' in the array
immediately after the last character of the C string. Thus, if s contains the string
"Hi Mom"!, then the array elements are filled as shown here:

H

s[0⋅]

I

s[1]

M

s[3]

o

s[4]

m

s[5]

!

s[6]

\0⋅

s[7]

?

s[8]

?

s[9]s[2]

The character '\0' is used as a sentinel value to mark the end of the C string.
If you read the characters in the C string starting at indexed variable s[0],
proceed to s[1], and then to s[2], and so forth, you know that when you
encounter the symbol '\0', you have reached the end of the C string. Since
the symbol '\0' always occupies one element of the array, the length of the
longest string that the array can hold is 1 less than the size of the array.

The thing that distinguishes a C-string variable from an ordinary array
of characters is that a C-string variable must contain the null character '\0'
at the end of the C-string value. This is a distinction in how the array is used
rather than a distinction about what the array is. A C-string variable is an array
of characters, but it is used in a different way.

454	 Chapter 8 /  Strings and Vectors

C-string variables
vs. arrays of
characters

C-String Variable Declaration

A C-string variable is the same thing as an array of characters, but it
is used differently. A C-string variable is declared to be an array of
characters in the usual way.

Syntax

char Array_Name[Maximum_C_string_Size + 1];

Example

char my_c_string[11];

The + 1 allows for the null character '\0', which terminates any C string
stored in the array. For example, the C-string variable my_c_string in the
example can hold a C string that is ten or fewer characters long.

You can initialize a C-string variable when you declare it, as illustrated by
the following example:

char my_message[20] = "Hi there.";

Initializing
C-string variables

Notice that the C string assigned to the C-string variable need not fill the
entire array.

When you initialize a C-string variable, you can omit the array size. C++
will automatically make the size of the C-string variable 1 more than the length
of the quoted string. (The one extra indexed variable is for '\0'.) For example,

char short_string[] = "abc";

is equivalent to

char short_string[4] = "abc";

Be sure you do not confuse the following initializations:

char short_string[] = "abc";

and

char short_string[] = {'a', 'b', 'c'};

They are not equivalent. The first of these two possible initializations places
the null character '\0' in the array after the characters 'a', 'b', and 'c'. The
second one does not put a '\0' anywhere in the array.

	 8.1  An Array Type for Strings	 455

Initializing a C-String Variable

A C-string variable can be initialized when it is declared, as illustrated by
the following example:

char your_string[11] = "Do Be Do";

Initializing in this way automatically places the null character, '\0', in
the array at the end of the C string specified.

If you omit the number inside the square brackets, [], then the C-string
variable will be given a size one character longer than the length of the
C string. For example, the following declares my_string to have nine
indexed variables (eight for the characters of the C string "Do Be Do"
and one for the null character '\0'):

char my_string[] = "Do Be Do";

A C-string variable is an array, so it has indexed variables that can be
used just like those of any other array. For example, suppose your program
contains the following C-string variable declaration:

char our_string[5] = "Hi";

With our_string declared as shown previously, your program has the fol-
lowing indexed variables: our_string[0], our_string[1], our_string[2],
our_string[3], and our_string[4]. For example, the following will change

the C-string value in our_string to a C string of the same length consisting of
all 'X' characters:

int index = 0;
while (our_string[index] != '\0')
{
 our_string[index] = 'X';
 index++;
}

When manipulating these indexed variables, you should be very careful
not to replace the null character '\0' with some other value. If the array loses
the value '\0', it will no longer behave like a C-string variable. For example,
the following will change the array happy_string so that it no longer contains
a C string:

char happy_string[7] = "DoBeDo";
happy_string[6] = 'Z';

After this code is executed, the array happy_string will still contain the six
letters in the C-string "DoBeDo", but happy_string will no longer contain the
null character '\0' to mark the end of the C string. Many string-manipulating
functions depend critically on the presence of '\0' to mark the end of the
C-string value.

As another example, consider the previous while loop that changed
characters in the C-string variable our_string. That while loop changes
characters until it encounters a '\0'. If the loop never encounters a '\0', then
it could change a large chunk of memory to some unwanted values, which
could make your program do strange things. As a safety feature, it would be
wise to rewrite that while loop as follows, so that if the null character '\0' is
lost, the loop will not inadvertently change memory locations beyond the end
of the array:

int index = 0;
while ((our_string[index] != '\0') && (index < SIZE))
{
 our_string[index] = 'X';
 index++;
}

SIZE is a defined constant equal to the declared size of the array our_string.

Pitfall   Using = and == with C Strings

C-string values and C-string variables are not like values and variables of other
data types, and many of the usual operations do not work for C strings. You
cannot use a C-string variable in an assignment statement using =. If you use ==
to test C strings for equality, you will not get the result you expect. The reason
for these problems is that C strings and C-string variables are arrays.

456	 Chapter 8 /  Strings and Vectors

Do not destroy
the '\0'

Assigning a value to a C-string variable is not as simple as it is for other
kinds of variables. The following is illegal:

char a_string[10];	 Illegal!
a_string = "Hello";

Although you can use the equal sign to assign a value to a C-string variable
when the variable is declared, you cannot do it anywhere else in your program.
Technically, a use of the equal sign in a declaration, as in

char happy_string[7] = "DoBeDo";

is an initialization, not an assignment. If you want to assign a value to a
C-string variable, you must do something else.

There are a number of different ways to assign a value to a C-string
variable. The easiest way is to use the predefined function strcpy as shown:

strcpy(a_string, "Hello");

This will set the value of a_string equal to "Hello". Unfortunately, this
version of the function strcpy does not check to make sure the copying does
not exceed the size of the string variable that is the first argument.

Many, but not all, versions of C++ also have a safer version of strcpy.
This safer version is spelled strncpy (with an n). The function strncpy takes
a third argument that gives the maximum number of characters to copy. For
example:

char another_string[10];
strncpy(another_string, a_string_variable, 9);

With this strncpy function, at most nine characters (leaving room for '\0')
will be copied from the C-string variable a_string_variable, no matter how
long the string in a_string_variable may be.

You also cannot use the operator == in an expression to test whether two C
strings are the same. (Things are actually much worse than that. You can use ==
with C strings, but it does not test for the C strings being equal. So if you use ==
to test two C strings for equality, you are likely to get incorrect results, but no
error message!) To test whether two C strings are the same, you can use the
predefined function strcmp. For example:

if (strcmp(c_string1, c_string2))
 cout << "The strings are NOT the same.";
else
 cout << "The strings are the same.";

Note that the function strcmp works differently than you might guess. The
comparison is true if the strings do not match. The function strcmp compares
the characters in the C-string arguments a character at a time. If at any point
the numeric encoding of the character from c_string1 is less than the numeric
encoding of the corresponding character from c_string2, the testing stops,

	 8.1  An Array Type for Strings	 457

Assigning a
C-string value

Testing C strings
for equality

and a negative number is returned. If the character from c_string1 is greater
than the character from c_string2, then a positive number is returned. (Some
implementations of strcmp return the difference of the character encodings, but
you should not depend on that.) If the C strings are the same, a 0 is returned.
The ordering relationship used for comparing characters is called lexicographic
order. The important point to note is that if both strings are all in uppercase or
all in lowercase, then lexicographic order is just alphabetic order.

We see that strcmp returns a negative value, a positive value, or zero,
depending on whether the C strings compare lexicographically as less, greater, or
equal. If you use strcmp as a Boolean expression in an if or a looping statement
to test C strings for equality, then the nonzero value will be converted to true if
the strings are different, and the zero will be converted to false. Be sure that you
remember this inverted logic in your testing for C-string equality. C++ compilers
that are compliant with the standard have a safer version of strcmp that has a
third argument that gives the maximum number of characters to compare.

The functions strcpy and strcmp are in the library with the header file
<cstring>, so to use them you would insert the following near the top of the file:

#include <cstring>

The functions strcpy and strcmp do not require the following or anything
similar (although other parts of your program are likely to require it):1

using namespace std;	 ■

458	 Chapter 8 /  Strings and Vectors

The <cstring> Library

You do not need any include directive or using directive in order to
declare and initialize C strings. However, when processing C strings, you
inevitably will use some of the predefined string functions in the library
<cstring>. So, when using C strings, you will normally give the following
include directive near the beginning of the file with your code:

#include <cstring>

Other Functions in <cstring>

Display 8.1 contains a few of the most commonly used functions from the
library with the header file <cstring>. To use them, you insert the following
near the top of the file:

#include <cstring>

1 As you will see in Chapter 12, the definitions of strcpy and strcmp, and all other
string functions in <cstring>, are placed in the global namespace, not in the std
namespace, and so no using directive is required.

	 8.1  An Array Type for Strings	 459

Display 8.1  S ome Predefined C-String Functions in <cstring>

Function Description Cautions

strcpy(Target_String_Var,
Src_String)

Copies the C-string value
Src_String into the C-string
variable Target_String_Var.

Does not check to make
sure Target_String_Var
is large enough to hold
the value Src_String.

strncpy(Target_String_Var,
Src_String, Limit)

The same as the two-argument
strcpy except that at most
Limit characters are copied.

If Limit is chosen carefully,
this is safer than the two-
argument version of strcpy.
Not implemented in all
versions of C++.

strcat(Target_String_Var,
Src_String)

Concatenates the C-string
value Src_String onto the end
of the C string in the C-string
variable Target_String_Var.

Does not check to see
that Target_String_Var
is large enough to hold the
result of the concatenation.

strncat(Target_String_Var,
Src_String, Limit)

The same as the two-argument
strcat except that at most
Limit characters are appended.

If Limit is chosen carefully,
this is safer than the two-
argument version of strcat.
Not implemented in all
versions of C++.

strlen(Src_String) Returns an integer equal to
the length of Src_String.
(The null character, '\0', is
not counted in the length.)

strcmp(String_1,
String_2)

Returns 0 if String_1 and
String_2 are the same.
Returns a value < 0 if
String_1 is less than
String_2. Returns a value >
0 if String_1 is greater
than String_2 (that is,
returns a nonzero value if
String_1 and String_2 are
different). The order is lexico-
graphic.

If String_1 equals String_2,
this function returns 0, which
converts to false. Note that
this is the reverse of what
you might expect it to return
when the strings are equal.

strncmp(String_1,
String_2, Limit)

The same as the two-argument
strcat except that at most
Limit characters are compared.

If Limit is chosen care-
fully, this is safer than
the two-argument version
of strcmp. Not imple-
mented in all versions
of C++.

Like the functions strcpy and strcmp, all the other functions in <cstring>
also do not require the following or anything similar (although other parts of
your program are likely to require it):1

using namespace std;

We have already discussed strcpy and strcmp. The function strlen
is easy to understand and use. For example, strlen("dobedo") returns 6
because there are six characters in "dobedo".

The function strcat is used to concatenate two C strings, that is, to
form a longer string by placing the two shorter C strings end-to-end. The first
argument must be a C-string variable. The second argument can be anything
that evaluates to a C-string value, such as a quoted string. The result is placed
in the C-string variable that is the first argument. For example, consider the
following:

char string_var[20] = "The rain";
strcat(string_var, "in Spain");

This code will change the value of string_var to "The rainin Spain". As
this example illustrates, you need to be careful to account for blanks when
concatenating C strings.

If you look at the table in Display 8.1, you will see that safer, three-
argument versions of the functions strcpy, strcat, and strcmp are
available in many, but not all, versions of C++. Also, note that these three-
argument versions are spelled with an added letter n: strncpy, strncat,
and strncmp.

460	 Chapter 8 /  Strings and Vectors

C-String Arguments and Parameters

A C-string variable is an array, so a C-string parameter to a function is
simply an array parameter.

As with any array parameter, whenever a function changes the value of
a C-string parameter, it is safest to include an additional int parameter
giving the declared size of the C-string variable.

On the other hand, if a function only uses the value in a C-string
argument but does not change that value, then there is no need to
include another parameter to give either the declared size of the C-string
variable or the amount of the C-string variable array that is filled. The
null character '\0' can be used to detect the end of the C-string value
that is stored in the C-string variable.

PITFALL  Copying Past the End of a CString Using strcpy

A common error in C and C++ is to copy a larger Cstring to a smaller Cstring
using strcpy. This is dangerous because the strcpy function doesn’t put any
bounds on how much data to copy. It will simply copy everything from the
source string to the target string until the null character is encountered. If
the source is larger than the target then data will be copied past the memory
allocated for the target string. Here is a simple example where we could have
problems:

void copyString(char source[])
{
   char target[5];
   strcpy(target, source);
   // If this was more than an example we would presumably
   // use the target string in some way here
}

Quite simply, if the source Cstring is larger than five characters then this code
will copy data into whatever happens to be stored past the target array, likely
causing your program to crash or do unpredictable things. It could even open
up your system to attack by malicious users. This has been such a serious
problem that some compilers will not compile code that uses strcpy unless
you override the warning. Assuming your compiler does allow you to use
strcpy, one way to fix the problem is to only copy the Cstring if it is less than
five characters long. Consider the following attempt to avoid exceeding the
size of the Cstring:

void copyString(char source[])
{
   char target[5];
   signed char length; // Can hold -128 to +127
   length = strlen(source);
   if (length < 5)
    strcpy(target, source);
}

In this version we might use a signed char to store the length of the
Cstring. This may seem reasonable since we are only creating an array of
size 5 and a signed char can store values up to +127. This version will
work fine for small source strings. But what if we input a source string
that is 145 characters long? strlen will return 145, but this number is
too large to store in a signed char. This causes overflow and results in a
negative value copied into length. As a result the program enters the if
statement and erroneously copies the source data to the target array. To
avoid this problem we should make length an int (the same size returned
by strlen), use strncpy to cap the maximum copy length, or use the
string class described in the next section.	 ■

Dangers of strcpy

VideoNote

	 8.1  An Array Type for Strings	 461

462	 Chapter 8 /  Strings and Vectors

Self-Test Exercises

	  1.	 Which of the following declarations are equivalent?

char string_var[10] = "Hello";
char string_var[10] = {'H', 'e', 'l', 'l', 'o', '\0'};
char string_var[10] = {'H', 'e', 'l', 'l', 'o'};
char string_var[6] = "Hello";
char string_var[] = "Hello";

	  2.	 What C string will be stored in singing_string after the following code is
run?

char singing_string[20] = "DoBeDo";
strcat(singing_string, " to you");

Assume that the code is embedded in a complete and correct program and
that an include directive for <cstring> is in the program file.

	  3.	 What (if anything) is wrong with the following code?

char string_var[] = "Hello";
strcat(string_var, " and Good-bye.");
cout << string_var;

Assume that the code is embedded in a complete program and that an
include directive for <cstring> is in the program file.

	  4.	 Suppose the function strlen (which returns the length of its string
argument) was not already defined for you. Give a function definition for
strlen. Note that strlen has only one argument, which is a C string. Do
not add additional arguments; they are not needed.

	  5.	 What is the maximum length of a string that can be placed in the string
variable declared by the following declaration? Explain.

char s[6];

	  6.	 How many characters are in each of the following character and string
constants?

a.	 '\n'
b.	 'n'
c.	 "Mary"
d.	 "M"
e.	 "Mary\n"

	  7.	 Since character strings are just arrays of char, why does the text caution
you not to confuse the following declaration and initialization?

	 8.1  An Array Type for Strings	 463

char short_string[] = "abc";
char short_string[] = {'a', 'b', 'c'};

	  8.	 Given the following declaration and initialization of the string variable,
write a loop to assign 'X' to all positions of this string variable, keeping
the length the same.

char our_string[15] = "Hi there!";

	  9.	 Given the declaration of a C-string variable, where SIZE is a defined
constant:

char our_string[SIZE];

The C-string variable our_string has been assigned in code not shown
here. For correct C-string variables, the following loop reassigns all
positions of our_string the value 'X', leaving the length the same as
before. Assume this code fragment is embedded in an otherwise complete
and correct program. Answer the questions following this code fragment:

int index = 0;
while (our_string[index] != '\0')
{
 our_string[index] = 'X';
 index++;
}

a.	� Explain how this code can destroy the contents of memory beyond
the end of the array.

b.	� Modify this loop to protect against inadvertently changing memory
beyond the end of the array.

	10.	 Write code using a library function to copy the string constant "Hello"
into the string variable declared below. Be sure to include the necessary
header file to get the declaration of the function you use.

char a_string[10];

	11.	 What string will be output when this code is run? (Assume, as always, that
this code is embedded in a complete, correct program.)

char song[10] = "I did it ";
char franks_song[20];
strcpy(franks_song, song);
strcat(franks_song, "my way!");
cout << franks_song << endl;

	12.	 What is the problem (if any) with this code?

char a_string[20] = "How are you? ";
strcat(a_string, "Good, I hope.");

C-String Input and Output

C strings can be output using the insertion operator <<. In fact, we have
already been doing so with quoted strings. You can use a C-string variable in
the same way; for example,

cout << news << "Wow.\n";

where news is a C-string variable.
It is possible to fill a C-string variable using the input operator >>, but

there is one thing to keep in mind. As for all other types of data, all whitespace
(blanks, tabs, and line breaks) are skipped when C strings are read this way.
Moreover, each reading of input stops at the next space or line break. For
example, consider the following code:

char a[80], b[80];
cout << "Enter some input:\n";
cin >> a >> b;
cout << a << b << "END OF OUTPUT\n";

When embedded in a complete program, this code produces a dialogue like
the following:

Enter some input:
Do bedo to you!
Dobedo END OF OUTPUT

The C-string variables a and b each receive only one word of the input: a
receives the C-string value "Do" because the input character following Do is a
blank; b receives "be" because the input character following be is a blank.

If you want your program to read an entire line of input, you can use the
extraction operator >> to read the line one word at a time. This can be tedious
and it still will not read the blanks in the line. There is an easy way to read an
entire line of input and place the resulting C string into a C-string variable: Just
use the predefined member function getline, which is a member function of
every input stream (such as cin or a file input stream). The function getline
has two arguments. The first argument is a C-string variable to receive the
input and the second is an integer that typically is the declared size of the
C-string variable. The second argument tells the maximum number of array
elements in the C-string variable that getline will be allowed to fill with
characters. For example, consider the following code:

char a[80];
cout << "Enter some input:\n";
cin.getline(a, 80);
cout << a << "END OF OUTPUT\n";

When embedded in a complete program, this code produces a dialogue like
the following:

464	 Chapter 8 /  Strings and Vectors

Enter some input:
Do be do to you!
Do be do to you!END OF OUTPUT

With the function cin.getline, the entire line is read. The reading ends when
the line ends, even though the resulting C string may be shorter than the
maximum number of characters specified by the second argument.

When getline is executed, the reading stops after the number of characters
given by the second argument have been filled in the C-string array, even if the
end of the line has not been reached. For example, consider the following code:

char short_string[5];
cout << "Enter some input:\n";
cin.getline(short_string, 5);
cout << short_string << "END OF OUTPUT\n";

When embedded in a complete program, this code produces a dialogue like
the following:

Enter some input:
dobedowap
dobeEND OF OUTPUT

Notice that four, not five, characters are read into the C-string variable short_
string, even though the second argument is 5. This is because the null
character '\0' fills one array position. Every C string is terminated with
the null character when it is stored in a C-string variable, and this always
consumes one array position.

The C-string input and output techniques we illustrated for cout and cin
work the same way for input and output with files. The input stream cin can
be replaced by an input stream that is connected to a file. The output stream
cout can be replaced by an output stream that is connected to a file. (File I/O
is discussed in Chapter 6.)

	 8.1  An Array Type for Strings	 465

getline

The member function getline can be used to read a line of input and
place the C string of characters on that line into a C-string variable.

Syntax

cin.getline(String_Var, Max_Characters + 1);

One line of input is read from the stream Input_Stream, and the
resulting C string is placed in String_Var. If the line is more than Max_
Characters long, then only the first Max_Characters on the line

(continued)

Self-Test Exercises

	13.	 Consider the following code (and assume it is embedded in a complete
and correct program and then run):

char a[80], b[80];
cout << "Enter some input:\n";
cin >> a >> b;
cout << a << '-' << b << "END OF OUTPUT\n";

If the dialogue begins as follows, what will be the next line of output?

Enter some input:

The
 time is now.

	14.	 Consider the following code (and assume it is embedded in a complete
and correct program and then run):

char my_string[80];
cout << "Enter a line of input:\n";
cin.getline(my_string, 6);
cout << my_string << "<END OF OUTPUT";

If the dialogue begins as follows, what will be the next line of output?

Enter a line of input:
May the hair on your toes grow long and curly.

C-String-to-Number Conversions and Robust Input

The C string "1234" and the number 1234 are not the same things. The first
is a sequence of characters; the second is a number. In everyday life, we

466	 Chapter 8 /  Strings and Vectors

are read. (The +1 is needed because every C string has the null character
'\0' added to the end of the C string and so the string stored in String_
Var is 1 longer than the number of characters read in.)

Example

char one_line[80];
cin.getline(one_line, 80);

(You can use an input stream connected to a text file in place of cin.)

	 8.1  An Array Type for Strings	 467

write them the same way and blur this distinction, but in a C++ program
this distinction cannot be ignored. If you want to do arithmetic, you need
1234, not "1234". If you want to add a comma to the numeral for one
thousand two hundred thirty four, then you want to change the C string
"1234" to the C string "1,234". When designing numeric input, it is often
useful to read the input as a string of characters, edit the string, and then
convert the string to a number. For example, if you want your program to
read an amount of money, the input may or may not begin with a dollar
sign. If your program is reading percentages, the input may or may not
have a percent sign at the end. If your program reads the input as a string
of characters, it can store the string in a C-string variable and remove any
unwanted characters, leaving only a C string of digits. Your program then
needs to convert this C string of digits to a number, which can easily be
done with the predefined function atoi.

The function atoi takes one argument that is a C string and returns the
int value that corresponds to that C string. For example, atoi ("1234")
returns the integer 1234. If the argument does not correspond to an int
value, then atoi returns 0. For example, atoi(“#37”) returns 0, because
the character ‘#’ is not a digit. You pronounce atoi as “A to I,” which is an

C-String-to-Number Functions

The functions atoi, atol, and atof can be used to convert a C string
of digits to the corresponding numeric value. The functions atoi
and atoll convert C strings to integers. The only difference between
atoi and atol is that atoi returns a value of type int whereas atol
returns a value of type long. The function atof converts a C string to
a value of type double. If the C-string argument (to either function)
is such that the conversion cannot be made, then the function returns
zero. For example

int x = atoi("657");

sets the value of x to 657, and

double y = atof("12.37");

sets the value of y to 12.37.

Any program that uses atoi or atof must contain the following
directive:

#include <cstdlib>

abbreviation of “alphabetic to integer.” The function atoi is in the library
with header file cstdlib, so any program that uses it must contain the
following directive:

#include <cstdlib>

If your numbers are too large to be values of type int, you can convert
them from C strings to values of type long. The function atol performs the
same conversion as the function atoi except that atol returns values of type
long and thus can accommodate larger integer values (on systems where this
is a concern).

Display 8.2 contains the definition of a function called read_and_clean
that reads a line of input and discards all characters other than the digits
'0' through '9'. The function then uses the function atoi to convert the
“cleaned-up” C string of digits to an integer value. As the demonstration
program indicates, you can use this function to read money amounts and it
will not matter whether the user included a dollar sign or not. Similarly, you
can read percentages and it will not matter whether the user types in a percent
sign or not. Although the output makes it look as if the function read_and_
clean simply removes some symbols, more than that is happening. The value
produced is a true int value that can be used in a program as a number; it is
not a C string of characters.

The function read_and_clean shown in Display 8.2 will delete any
nondigits from the string typed in, but it cannot check that the remaining digits
will yield the number the user has in mind. The user should be given a chance
to look at the final value and see whether it is correct. If the value is not correct,
the user should be given a chance to reenter the input. In Display 8.3 we
have used the function read_and_clean in another function called get_int,
which will accept anything the user types and will allow the user to reenter the
input until she or he is satisfied with the number that is computed from the
input string. It is a very robust input procedure. (The function get_int is an
improved version of the function of the same name given in Display 6.7.)

The functions read_and_clean in Display 8.2 and get_int in Display 8.3
are samples of the various input functions you can design by reading numeric
input as a string value. Programming Project 3 at the end of this chapter asks
you to define a function similar to get_int that reads in a number of type
double, as opposed to a number of type int. To write that function, it would
be nice to have a predefined function that converts a string value to a number
of type double. Fortunately, the predefined function atof, which is also in the
library with header file cstdlib, does just that. For example, atof ("9.99")
returns the value 9.99 of type double. If the argument does not correspond
to a number of type double, then atof returns 0.0. You pronounce atof as
“A to F,” which is an abbreviation of “alphabetic to floating point.” Recall
that numbers with a decimal point are often called floating-point numbers
because of the way the computer handles the decimal point when storing
these numbers in memory.

468	 Chapter 8 /  Strings and Vectors

	 8.1  An Array Type for Strings	 469

Display 8.2   C Strings to Integers (part 1 of 2)

 1 //Demonstrates the function read_and_clean.
 2 #include <iostream>
 3 #include <cstdlib>
 4 #include <cctype>
 5
 6 void read_and_clean(int& n);
 7 //Reads a line of input. Discards all symbols except the digits. Converts
 8 //the C string to an integer and sets n equal to the value of this integer.
 9
10 void new_line();
11 //Discards all the input remaining on the current input line.
12 //Also discards the '\n' at the end of the line.
13
14 int main()
15 {
16 using namespace std;
17 int n;
18 char ans;
19 do
20 {
21 cout << "Enter an integer and press Return: ";
22 read_and_clean(n);
23 cout << "That string converts to the integer " << n <<endl;
24 cout << "Again? (yes/no): ";
25 cin >> ans;
26 new_line();
27 } while ((ans != 'n') && (ans != 'N'));
28 return 0;
29 }
30 //Uses iostream, cstdlib, and cctype:
31 void read_and_clean(int& n)
32 {
33 using namespace std;
34 const int ARRAY_SIZE = 6;
35 char digit_string[ARRAY_SIZE];
36
37 char next;
38 cin.get(next);
39 int index = 0;
40 while (next != '\n')
41 {
42 if ((isdigit(next)) && (index < ARRAY_SIZE - 1))
43 {
44 digit_string[index] = next;
45 index++;
46 }

(continued)

470	 Chapter 8 /  Strings and Vectors

Display 8.2   C Strings to Integers (part 2 of 2)

47 cin.get(next);
48 }
49 digit_string[index] = '\0';
50 n = atoi(digit_string);
51 }
52 //Uses iostream:
53 void new_line()
54 {
55 using namespace std;
 <The rest of the definition of new_line is given in Display 6.7.>

Sample Dialogue

Enter an integer and press Return: $ 100

That string converts to the integer 100

Again? (yes/no): yes

Enter an integer and press Return: 100

That string converts to the integer 100

Again? (yes/no): yes

Enter an integer and press Return: 99%

That string converts to the integer 99

Again? (yes/no): yes

Enter an integer and press Return: 23% &&5 *12

That string converts to the integer 23512

Again? (yes/no): no

Display 8.3   Robust Input Function (part 1 of 2)

 1 //Demonstration program for improved version of get_int.
 2 #include <iostream>
 3 #include <cstdlib>
 4 #include <cctype>

 5 void read_and_clean(int& n);
 6 //Reads a line of input. Discards all symbols except the digits. Converts
 7 //the C string to an integer and sets n equal to the value of this integer.

 8 void new_line();
 9 //Discards all the input remaining on the current input line.
10 //Also discards the '\n' at the end of the line.

11 void get_int(int& input_number);
12 //Gives input_number a value that the user approves of.

(continued)

	 8.1  An Array Type for Strings	 471

Display 8.3   Robust Input Function (part 2 of 2)

13 int main()
14 {
15 using namespace std;
16 int input_number;
17 get_int(input_number);
18 cout << "Final value read in = " <<input_number<<endl;
19 return 0;
20 }

21 //Uses iostream and read_and_clean:
22 void get_int(int& input_number)
23 {
24 using namespace std;
25 char ans;
26 do
27 {
28 cout << "Enter input number: ";
29 read_and_clean(input_number);
30 cout << "You entered " <<input_number
31 << " Is that correct? (yes/no): ";
32 cin >> ans;
33 new_line();
34 } while ((ans != 'y') && (ans != 'Y'));
35 }

36 //Uses iostream, cstdlib, and cctype:
37 void read_and_clean(int& n)

 <The rest of the definition of read_and_clean is given in Display 8.2.>

38 //Uses iostream:
39 void new_line()

	 <The rest of the definition of new_line is given in Display 8.2.>

Sample Dialogue

Enter input number: $57

You entered 57 Is that correct? (yes/no): no

Enter input number: $77*5xa

You entered 775 Is that correct? (yes/no): no

Enter input number: 77

You entered 77 Is that correct? (yes/no): no

Enter input number: $75

You entered 75 Is that correct? (yes/no): yes

Final value read in = 75

8.2 T he Standard string Class

I try to catch every sentence, every word you and I say, and quickly lock all
these sentences and words away in my literary storehouse because they might
come in handy.

Anton Chekhov, The Seagull

In Section 8.1, we introduced C strings. These C strings were simply arrays of
characters terminated with the null character '\0'. In order to manipulate
these C strings, you needed to worry about all the details of handling arrays.
For example, when you want to add characters to a C string and there is not
enough room in the array, you must create another array to hold this longer
string of characters. In short, C strings require the programmer to keep track of
all the low-level details of how the C strings are stored in memory. This is a lot
of extra work and a source of programmer errors. The latest ANSI/ISO standard
for C++ specified that C++ must now also have a class string that allows the
programmer to treat strings as a basic data type without needing to worry about
implementation details. In this section we introduce you to this string type.

Introduction to the Standard Class string

The class string is defined in the library whose name is also <string>, and the
definitions are placed in the std namespace. So, in order to use the class string,
your code must contain the following (or something more or less equivalent):

#include <string>
using namespace std;

The class string allows you to treat string values and string expressions very
much like values of a simple type. You can use the = operator to assign a value
to a string variable, and you can use the + sign to concatenate two strings. For
example, suppose s1, s2, and s3 are objects of type string and both s1 and
s2 have string values. Then s3 can be set equal to the concatenation of the
string value in s1 followed by the string value in s2 as follows:

s3 = s1 + s2;

There is no danger of s3 being too small for its new string value. If the sum
of the lengths of s1 and s2 exceeds the capacity of s3, then more space is
automatically allocated for s3.

As we noted earlier in this chapter, quoted strings are really C strings and
so they are not literally of type string. However, C++ provides automatic type
casting of quoted strings to values of type string. So, you can use quoted strings
as if they were literal values of type string, and we (and most others) will often
refer to quoted strings as if they were values of type string. For example,

s3 = "Hello Mom!";

sets the value of the string variable s3 to a string object with the same
characters as in the C string "Hello Mom!".

472	 Chapter 8 /  Strings and Vectors

+ operator does
concatenation

	 8.2  The Standard string Class	 473

The class string has a default constructor that initializes a string object
to the empty string. The class string also has a second constructor that takes
one argument that is a standard C string and so can be a quoted string. This
second constructor initializes the string object to a value that represents the
same string as its C-string argument. For example,

string phrase;
string noun("ants");

The first line declares the string variable phrase and initializes it to the empty
string. The second line declares noun to be of type string and initializes it
to a string value equivalent to the C string "ants". Most programmers when
talking loosely would say that “noun is initialized to "ants"," but there really
is a type conversion here. The quoted string "ants" is a C string, not a value
of type string. The variable noun receives a string value that has the same
characters as "ants" in the same order as "ants", but the string value is not
terminated with the null character '\0'. In fact, in theory at least, you do not
know or care whether the string value of noun is even stored in an array, as
opposed to some other data structure.

There is an alternate notation for declaring a string variable and invoking
a constructor. The following two lines are exactly equivalent:

string noun("ants");
string noun = "ants";

These basic details about the class string are illustrated in Display 8.4. Note
that, as illustrated there, you can output string values using the operator <<.

Consider the following line from Display 8.4:

phrase = "I love " + adjective + " " + noun + "!";

C++ must do a lot of work to allow you to concatenate strings in this simple
and natural fashion. The string constant "I love" is not an object of type
string. A string constant like "I love" is stored as a C string (in other words,
as a null-terminated array of characters). When C++ sees "I love" as an
argument to +, it finds the definition (or overloading) of + that applies to a
value such as "I love". There are overloadings of the + operator that have
a C string on the left and a string on the right, as well as the reverse of this
positioning. There is even a version that has a C string on both sides of the +
and produces a string object as the value returned. Of course, there is also
the overloading you expect, with the type string for both operands.

C++ did not really need to provide all those overloading cases for +. If these
overloadings were not provided, C++ would look for a constructor that could
perform a type conversion to convert the C string "I love" to a value for which +
did apply. In this case, the constructor with the one C-string parameter
would perform just such a conversion. However, the extra overloadings are
presumably more efficient.

The class string is often thought of as a modern replacement for C
strings. However, in C++ you cannot easily avoid also using C strings when
you program with the class string.

Converting
C-string constants
to the type
string

474	 Chapter 8 /  Strings and Vectors

Display 8.4   Program Using the Class string

 1 //Demonstrates the standard class string.
 2 #include <iostream>
 3 #include <string>
 4 using namespace std;

 5 int main()
 6 {
 7 string phrase;
 8 string adjective("fried"), noun("ants");
 9 string wish = "Bon appetit!";

10 phrase = "I love " + adjective + " " + noun + "!";
11 cout << phrase << endl
12 << wish << endl;

13 return 0;
14 }

Sample Dialogue

I love fried ants!

Bon appetit!

Initialized to the empty string

Two ways of initializing
a string variable

The Class string

The class string can be used to represent values that are strings of
characters. The class string provides more versatile string representation
than the C strings discussed in Section 8.1.

The class string is defined in the library that is also named <string>,
and its definition is placed in the std namespace. So, programs that use
the class string should contain the following (or something more or less
equivalent):

#include <string>
using namespace std;

The class string has a default constructor that initializes the string
object to the empty string and a constructor that takes a C string as an
argument and initializes the string object to a value that represents the
string given as the argument. For example:

string s1, s2("Hello");

	 8.2  The Standard string Class	 475

I/O with the Class string

You can use the insertion operator << and cout to output string objects just
as you do for data of other types. This is illustrated in Display 8.4. Input with
the class string is a bit more subtle.

The extraction operator >> and cin work the same for string objects
as for other data, but remember that the extraction operator ignores initial
whitespace and stops reading when it encounters more whitespace. This is as
true for strings as it is for other data. For example, consider the following code;

string s1, s2;
cin >> s1;
cin >> s2;

If the user types in

May the hair on your toes grow long and curly!

then s1 will receive the value "May" with any leading (or trailing) whitespace
deleted. The variable s2 receives the string "the". Using the extraction
operator >> and cin, you can only read in words; you cannot read in a line or
other string that contains a blank. Sometimes this is exactly what you want,
but sometimes it is not at all what you want.

If you want your program to read an entire line of input into a variable of
type string, you can use the function getline. The syntax for using getline
with string objects is a bit different from what we described for C strings
in Section 8.1. You do not use cin.getline; instead, you make cin the
first argument to getline.2 (Thus, this version of getline is not a member
function.)

string line;
cout << "Enter a line of input:\n";
getline(cin, line);
cout << line << "END OF OUTPUT\n";

When embedded in a complete program, this code produces a dialogue like
the following:

Enter some input:
Do bedo to you!
Do bedo to you!END OF OUTPUT

If there were leading or trailing blanks on the line, then they too would be
part of the string value read by getline. This version of getline is in the

2 This is a bit ironic, since the class string was designed using more modern object-
oriented techniques, and the notation it uses for getline is the old fashioned, less
object-oriented notation. This is an accident of history. This getline function was
defined after the iostream library was already in use, so the designers had little choice
but to make this getline a stand-alone function.

library <string>. You can use a stream object connected to a text file in place
of cin to do input from a file using getline.

You cannot use cin and >> to read in a blank character. If you want to read
one character at a time, you can use cin.get, which we discussed in Chapter 6.
The function cin.get reads values of type char, not of type string, but it can
be helpful when handling string input. Display 8.5 contains a program that
illustrates both getline and cin.get used for string input. The significance
of the function new_line is explained in the Pitfall subsection entitled “??”

476	 Chapter 8 /  Strings and Vectors

Display 8.5   Program Using the Class string (part 1 of 2)

 1 //Demonstrates getline and cin.get.
 2 #include <iostream>
 3 #include <string>

 4 void new_line();

 5 int main()
 6 {
 7 using namespace std;
 8
 9 string first_name, last_name, record_name;
10 string motto = "Your records are our records.";

11 cout << "Enter your first and last name:\n";
12 cin >> first_name>>last_name;
13 new_line();

14 record_name = last_name + ", " + first_name;
15 cout << "Your name in our records is: ";
16 cout << record_name<<endl;

17 cout << "Our motto is\n"
18 << motto <<endl;
19 cout << "Please suggest a better (one-line) motto:\n";
20 getline(cin, motto);
21 cout << "Our new motto will be:\n";
22 cout << motto <<endl;

23 return 0;
24 }
25
26 //Uses iostream:
27 void new_line()
28 {
29 using namespace std;
30

(continued)

	 8.2  The Standard string Class	 477

Display 8.5   Program Using the Class string (part 2 of 2)

31 char next_char;
32 do
33 {
34 cin.get(next_char);
35 } while (next_char != '\n');
36 }

Sample Dialogue

Enter your first and last name:

B'Elanna Torres

Your name in our records is: Torres, B'Elanna

Our motto is

Your records are our records.

Please suggest a better (one-line) motto:

Our records go where no records dared to go before.

Our new motto will be:

Our records go where no records dared to go before.

I/O with string Objects

You can use the insertion operator << with cout to output string
objects. You can input a string with the extraction operator >> and
cin. When using >> for input, the code reads in a string delimited with
whitespace. You can use the function getline to input an entire line of
text into a string object.

Examples

string greeting("Hello"), response, next_word;
cout << greeting << endl;
getline(cin, response);
cin >> next_word;

Self-Test Exercises

	15.	 Consider the following code (and assume that it is embedded in a
complete and correct program and then run):

string s1, s2;

cout << "Enter a line of input:\n";
cin >> s1 >> s2;
cout << s1 << "*" << s2 << "<END OF OUTPUT";

If the dialogue begins as follows, what will be the next line of output?

Enter a line of input:
A string is a joy forever!

	16.	 Consider the following code (and assume that it is embedded in a
complete and correct program and then run):

string s;
cout << "Enter a line of input:\n";
getline(cin, s);
cout << s << "<END OF OUTPUT";

If the dialogue begins as follows, what will be the next line of output?

Enter a line of input:
A string is a joy forever!

■ P rogramming Tip  More Versions of getline

So far, we have described the following way of using getline:

string line;
cout << "Enter a line of input:\n";
getline(cin, line);

This version stops reading when it encounters the end-of-line marker '\n'.
There is a version that allows you to specify a different character to use as a
stopping signal. For example, the following will stop when the first question
mark is encountered:

string line;
cout << "Enter some input:\n";
getline(cin, line, '?');

It makes sense to use getline as if it were a void function, but it actually
returns a reference to its first argument, which is cin in the code above. Thus,
the following will read a line of text into s1 and a string of nonwhitespace
characters into s2:

string s1, s2;
getline(cin, s1) >> s2;

The invocation getline (cin,s1) returns a reference to cin, so that after the
invocation of getline, the next thing to happen is equivalent to

cin >> s2;

478	 Chapter 8 /  Strings and Vectors

	 8.2  The Standard string Class	 479

This kind of use of getline seems to have been designed for use in a C++ quiz
show rather than to meet any actual programming need, but it can come in
handy sometimes.	 ■

Pitfall  Mixing cin >> variable; and getline

Take care in mixing input using cin >> variable; with input using getline.
For example, consider the following code:

int n;
string line;
cin >> n;
getline(cin, line);

Example using cin and
getline with the string
class

VideoNote

getline for Objects of the Class string

The getline function for string objects has two versions:

istream& getline(istream& ins, string& str_var,
 char delimiter);

and

istream& getline(istream& ins, string& str_var);

The first version of this function reads characters from the istream
object given as the first argument (always cin in this chapter), inserting
the characters into the string variable str_var until an instance of the
delimiter character is encountered. The delimiter character is removed
from the input and discarded. The second version uses '\n' for the
default value of delimiter; otherwise, it works the same.

These getline functions return their first argument (always cin in this
chapter), but they are usually used as if they were void functions.

When this code reads the following input, you might expect the value of n
to be set to 42 and the value of line to be set to a string value representing
"Hello hitchhiker.":

42
Hello hitchhiker.

However, while n is indeed set to the value of 42, line is set equal to the
empty string. What happened?

Using cin >> n skips leading whitespace on the input, but leaves the rest
of the line, in this case just '\n', for the next input. A statement like

cin >> n;

always leaves something on the line for a following getline to read (even if
it is just the '\n'). In this case, the getline sees the '\n' and stops reading,
so getline reads an empty string. If you find your program appearing to
mysteriously ignore input data, see if you have mixed these two kinds of
input. You may need to use either the new_line function from Display 8.5 or
the function ignore from the library iostream. For example,

cin.ignore(1000, '\n');

With these arguments, a call to the ignore member function will read and
discard the entire rest of the line up to and including the '\n' (or until it
discards 1000 characters if it does not find the end of the line after 1000
characters).

There can be other baffling problems with programs that use cin with
both >> and getline. Moreover, these problems can come and go as you move
from one C++ compiler to another. When all else fails, or if you want to be certain
of portability, you can resort to character-by-character input using cin.get.

These problems can occur with any of the versions of getline that we
discuss in this chapter.	 ■

String Processing with the Class string

The class string allows you to perform the same operations that you can
perform with the C strings we discussed in Section 8.1 and more. You can
access the characters in a string object in the same way that you access array
elements, so string objects have all the advantages of arrays of characters
plus a number of advantages that arrays do not have, such as automatically
increasing their capacity. If last_name is the name of a string object, then
last_name[i] gives access to the ith character in the string represented by
last_name. This use of array square brackets is illustrated in Display 8.6.

Display 8.6 also illustrates the member function length. Every string
object has a member function named length that takes no arguments and
returns the length of the string represented by the string object. Thus, not
only can a string object be used like an array but the length member function
makes it behave like a partially filled array that automatically keeps track of
how many positions are occupied.

When used with an object of the class string, the array square brackets
do not check for illegal indexes. If you use an illegal index (that is, an index
that is greater than or equal to the length of the string in the object), then the
results are unpredictable but are bound to be bad. You may just get strange
behavior without any error message that tells you that the problem is an
illegal index value.

There is a member function named at that does check for illegal index
values. This member function behaves basically the same as the square
brackets, except for two points: You use function notation with at, so instead

480	 Chapter 8 /  Strings and Vectors

	 8.2  The Standard string Class	 481

Display 8.6   A string Object Can Behave Like an Array

 1 //Demonstrates using a string object as if it were an array.
 2 #include <iostream>
 3 #include <string>
 4 using namespace std;

 5 int main()
 6 {
 7 string first_name, last_name;

 8 cout << "Enter your first and last name:\n";
 9 cin >> first_name>>last_name;

10 cout << "Your last name is spelled:\n";
11 int i;
12 for (i = 0; i <last_name.length(); i++)
13 {
14 cout << last_name[i] << " ";
15 last_name[i] = '-';
16 }
17 cout << endl;
18 for (i = 0; i <last_name.length(); i++)
19 cout << last_name[i] << " "; //Places a "-" under each letter.
20 cout << endl;

21 cout << "Good day " << first_name << endl;
22 return 0;
23 }

Sample Dialogue

Enter your first and last name:

John Crichton

Your last name is spelled:

C r i c h t o n

- - - - - - - -

Good day John

of a[i], you use a.at(i); and the at member function checks to see if
i evaluates to an illegal index. If the value of i in a.at(i) is an illegal index,
then you should get a run-time error message telling you what is wrong. In the
following two example code fragments, the attempted access is out of range,
yet the first of these probably will not produce an error message, although it
will be accessing a nonexistent indexed variable:

string str("Mary");
cout << str[6] << endl;

The second example, however, will cause the program to terminate
abnormally, so you at least know that something is wrong:

string str("Mary");
cout << str.at(6) << endl;

But be warned that some systems give very poor error messages when str.at(i)
has an illegal index i.

You can change a single character in the string by assigning a char value
to the indexed variable, such as str[i]. This may also be done with the
member function at. For example, to change the third character in the string
object str to 'X', you can use either of the following code fragments:

str.at(2) = 'X';

or

str[2] = 'X';

As in an ordinary array of characters, character positions for objects of type
string are indexed starting with 0, so the third character in a string is in
index position 2.

Display 8.7 gives a partial list of the member functions of the class
string. In many ways, objects of the class string are better behaved than
the C strings we introduced in Section 8.1. In particular, the == operator on
objects of the string class returns a result that corresponds to our intuitive
notion of strings being equal—namely, it returns true if the two strings
contain the same characters in the same order, and returns false otherwise.
Similarly, the comparison operators <, >, < =, > = compare string objects
using lexicographic ordering. (Lexicographic ordering is alphabetic ordering
using the order of symbols given in the ASCII character set in Appendix 3.
If the strings consist of all letters and are both either all uppercase or all
lowercase letters, then for this case lexicographic ordering is the same as
everyday alphabetical ordering.)

482	 Chapter 8 /  Strings and Vectors

Display 8.7   Member Functions of the Standard Class string (part 1 of 2)

Example Remarks

Constructors

string str; Default constructor creates empty string object str.

string str("sample"); Creates a string object with data “sample”.

string str (a_string); Creates a string object str that is a copy of a_string;
a_string is an object of the class string.

(continued)

	 8.2  The Standard string Class	 483

Display 8.7   Member Functions of the Standard Class string (part 2 of 2)

Accessors

str[i] Returns read/write reference to character in str at index i.
Does not check for illegal index.

str.at(i) Returns read/write reference to character in str at index i.
Same as str[i], but this version checks for illegal
index.

str.substr(position, length) Returns the substring of the calling object starting at
position and having length characters.

str.length() Returns the length of str.

Assignment/Modifiers

str1 = str2; Initializes str1 to str2's data.

str1 += str2; Character data of str2 is concatenated to the end of
str1.

str.empty() Returns true if str is an empty string; false otherwise.

str1 + str2 Returns a string that has str2's data concatenated to
the end of str1's data.

str.insert(pos, str2); Inserts str2 into str beginning at position pos.

str.erase(pos, length); Removes substring of size length, starting at position
pos.

Comparison

str1 == str2 str1 != str2 Compare for equality or inequality; returns a Boolean
value.

str1 < str2 str1 > str2 Four comparisons. All are lexicographical comparisons.

str1 <= str2 str1 >= str2

Finds

str.find(str1) Returns index of the first occurrence of str1 in str. If
str1 is not found, then the special value string::npos
is returned.

str.find(str1, pos) Returns index of the first occurrence of string str1 in
str; the search starts at position pos.

str.find_first_of(str1, pos) Returns the index of the first instance in str of any
character in str1, starting the search at position pos.

str.find_first_not_of
(str1, pos)

Returns the index of the first instance in str of any char-
acter not in str1, starting the search at position pos.

 P rogramming Example  Palindrome Testing

A palindrome is a string that reads the same front to back as it does back to front.
The program in Display 8.8 tests an input string to see if it is a palindrome. Our
palindrome test will disregard all spaces and punctuations and will consider
upper- and lowercase versions of a letter to be the same when deciding if
something is a palindrome. Some palindrome examples are as follows:

Able was I ere I saw Elba.
I Love Me, Vol. I.
Madam, I'm Adam.
A man, a plan, a canal, Panama.
Rats live on no evil star.
radar
deed
mom
racecar

The remove_punct function is of interest in that it uses the string member
functions substr and find. The member function substr extracts a substring
of the calling object, given the position and length of the desired substring.

484	 Chapter 8 /  Strings and Vectors

Display 8.8   Palindrome Testing Program (part 1 of 3)

 1 //Test for palindrome property.
 2 #include <iostream>
 3 #include <string>
 4 #include <cctype>
 5 using namespace std;

 6 void swap (char& v1, char& v2);
 7 //Interchanges the values of v1 and v2.

 8 string reverse(const string& s);
 9 //Returns a copy of s but with characters in reverse order.

10 string remove_punct(const string& s, const string& punct);
11 //Returns a copy of s with any occurrences of characters
12 //in the string punct removed.

13 string make_lower(const string& s);
14 //Returns a copy of s that has all uppercase
15 //characters changed to lowercase, other characters unchanged.

16 bool is_pal(const string& s);
17 //Returns true if s is a palindrome, false otherwise.

18 int main()
19 {
20 string str;

(continued)

	 8.2  The Standard string Class	 485

Display 8.8   Palindrome Testing Program (part 2 of 3)

21 cout << "Enter a candidate for palindrome test\n"
22 << "followed by pressing Return.\n";
23 getline(cin, str);

24 if (is_pal(str))
25 cout << "\"" <<str + "\" is a palindrome.";
26 else
27 cout << "\"" <<str + "\" is not a palindrome.";
28 cout << endl;

29 return 0;
30 }
31
32 void swap(char& v1, char& v2)
33 {
34 char temp = v1;
35 v1 = v2;
36 v2 = temp;
37 }
38
39 string reverse(const string& s)
40 {
41 int start = 0;
42 int end = s.length();
43 string temp(s);
44
45 while (start < end)
46 {
47 end--;
48 swap(temp[start], temp[end]);
49 start++;
50 }

51 return temp;
52 }

53 //Uses <cctype> and <string>
54 string make_lower(const string& s)
55 {
56 string temp(s);
57 for (int i = 0; i < s.length(); i++)
58 temp[i] = tolower(s[i]);

59 return temp;
60 }

61 string remove_punct(const string& s, const string& punct)
62 {
63 string no_punct; //initialized to empty string
64 int s_length = s.length();
65 int punct_length = punct.length();

(continued)

486	 Chapter 8 /  Strings and Vectors

Display 8.8   Palindrome Testing Program (part 3 of 3)

66 for (int i = 0; i < s_length; i++)
67 {
68 string a_char = s.substr(i,1); //A one-character string
69 int location = punct.find(a_char, 0);
70 //Find location of successive characters
71 //of src in punct.

72 if (location < 0 || location >= punct_length)
73 no_punct = no_punct + a_char; //a_char not in punct, so keep it
74 }

75 return no_punct;
76 }
77
78 //uses functions make_lower, remove_punct
79 bool is_pal(const string& s)
80 {
81 stringpunct (",;:.?!'\" "); //includes a blank
82 string str(s);
83 str = make_lower(str);
84 string lower_str = remove_punct(str, punct);

85 return (lower_str == reverse(lower_str));
86 }

Sample Dialogue

Enter a candidate for palindrome test

followed by pressing Return.

Madam, I'm Adam.

"Madam, I'm Adam." is a palindrome.

Sample Dialogue

Enter a candidate for palindrome test

followed by pressing Return.

Radar

"Radar" is a palindrome.

Sample Dialogue

Enter a candidate for palindrome test

followed by pressing Return.

Am I a palindrome?

"Am I a palindrome?" is not a palindrome.

	 8.2  The Standard string Class	 487

The first three lines of remove_punct declare variables for use in the function.
The for loop runs through the characters of the parameters one at a time
and tries to find them in the punct string. To do this, a string that is the
substring of s, of length 1 at each character position, is extracted. The position
of this substring in the punct string is determined using the find member
function. If this one-character string is not in the punct string, then the one-
character string is concatenated to the no_punct string that is to be returned.

= and == Are Different for strings and C Strings

The operators =, ==, !=, <, >, <=, >=, when used with the standard
C++ type string, produce results that correspond to our intuitive notion
of how strings compare. They do not misbehave as they do with the C
strings, as we discussed in Section 8.1

Self-Test Exercises

	17.	 Consider the following code:

string s1, s2("Hello");
cout << "Enter a line of input:\n";
cin >> s1;
if (s1 == s2)
 cout << "Equal\n";
else
 cout << "Not equal\n";

If the dialogue begins as follows, what will be the next line of output?

Enter a line of input:
Hello friend!

	18.	 What is the output produced by the following code?

string s1, s2("Hello");
s1 = s2;
s2[0] = 'J';
cout << s1 << " " << s2;

Converting Between string Objects and C Strings

You have already seen that C++ will perform an automatic type conversion
to allow you to store a C string in a variable of type string. For example, the
following will work fine:

488	 Chapter 8 /  Strings and Vectors

char a_c_string[] = "This is my C string.";
string string_variable;
string_variable = a_c_string;

However, the following will produce a compiler error message:

a_c_string = string_variable; //ILLEGAL

The following is also illegal:

strcpy(a_c_string, string_variable); //ILLEGAL

strcpy cannot take a string object as its second argument, and there is no
automatic conversion of string objects to C strings, which is the problem we
cannot seem to get away from.

To obtain the C string corresponding to a string object, you must
perform an explicit conversion. This can be done with the string member
function c_str(). The correct version of the copying we have been trying to
do is the following:

strcpy(a_c_string, string_variable.c_str()); //Legal;

Note that you need to use the strcpy function to do the copying. The
member function c_str() returns the C string corresponding to the string
calling object. As we noted earlier in this chapter, the assignment operator
does not work with C strings. So, just in case you thought the following might
work, we should point out that it too is illegal.

a_c_string = string_variable.c_str(); //ILLEGAL

Converting Between Strings and Numbers

Prior to C++11 it was a bit complicated to convert between strings and numbers,
but in C++11 it is simply a matter of calling a function. Use stof, stod, stoi,
or stol to convert a string to a float, double, int, or long, respectively. Use
to_string to convert a numeric type to a string. These functions are illustrated
in the following example:

int i;
double d;
string s;
i = stoi("35"); // Converts the string "35" to an integer 35
d = stod("2.5"); // Converts the string "2.5" to the double 2.5
s = �to_string(d*2); // Converts the double 5.0 to a string

"5.0000"
cout << i << " " << d << " " << s << endl;

The output is 35 2.5 5.0000

8.3  Vectors

“Well, I’ll eat it,” said Alice, “and if it makes me grow larger, I can reach the
key; and if it makes me grow smaller, I can creep under the door; so either
way I’ll get into the garden....”

Lewis Carroll, Alice’s Adventures in Wonderland

Vectors can be thought of as arrays that can grow (and shrink) in length
while your program is running. In C++, once your program creates an array, it
cannot change the length of the array. Vectors serve the same purpose as arrays
except that they can change length while the program is running. Vectors are
part of a standard C++ library known as the STL (Standard Template Library),
which we cover in more detail in Chapter 18.

You need not read the previous sections of this chapter before covering
this section.

Vector Basics

Like an array, a vector has a base type, and like an array, a vector stores a
collection of values of its base type. However, the syntax for a vector type and
a vector variable declaration are different from the syntax for arrays.

You declare a variable v for a vector with base type int as follows:

vector<int> v;

The notation vector <Base_Type> is a template class, which means you can
plug in any type for Base_Type and that will produce a class for vectors with
that base type. You can think of this as specifying the base type for a vector in
the same sense as you specify a base type for an array. You can use any type,
including class types, as the base type for a vector. The notation vector <int>
is a class name, and so the previous declaration of v as a vector of type vector
<int> includes a call to the default constructor for the class vector <int>,
which creates a vector object that is empty (has no elements).

Vector elements are indexed starting with 0, the same as arrays. The array
square brackets notation can be used to read or change these elements, just as
with an array. For example, the following changes the value of the ith element
of the vector v and then outputs that changed value. (i is an int variable.)

v[i] = 42;
cout << "The answer is " << v[i];

There is, however, a restriction on this use of the square brackets notation
with vectors that is unlike the same notation used with arrays. You can use
v[i] to change the value of the ith element. However, you cannot initialize
the ith element using v[i]; you can only change an element that has already
been given some value. To add an element to an index position of a vector for
the first time, you would normally use the member function push_back.

	 8.3  Vectors	 489

Declaring a vector
variable

You add elements to a vector in order of positions, first at position 0, then
position 1, then 2, and so forth. The member function push_back adds an
element in the next available position. For example, the following gives initial
values to elements 0, 1, and 2 of the vector sample:

vector<double> sample;
sample.push_back(0.0);
sample.push_back(1.1);
sample.push_back(2.2);

In C++11 we can initialize a vector the same way we initialize an array:

vector <double> sample = {0.0, 1.1, 2.2};

The number of elements in a vector is called the size of the vector. The member
function size can be used to determine how many elements are in a vector. For
example, after the previously shown code is executed, sample.size() returns 3.
You can write out all the elements currently in the vector sample as follows:

for (int i = 0; i < sample.size(); i++)
 cout << sample[i] << endl;

The function size returns a value of type unsigned int, not a value of
type int. (The type unsigned int allows only nonnegative integer values.) This
returned value should be automatically converted to type int when it needs to be
of type int, but some compilers may warn you that you are using an unsigned
int where an int is required. If you want to be very safe, you can always apply a
type cast to convert the returned unsigned int to an int or, in cases like this for
loop, use a loop control variable of type unsigned int as follows:

for (unsigned int i = 0; i < sample.size(); i++)
 cout << sample[i] << endl;

Equivalently, we could use the ranged for loop:

for (auto i : sample)
cout << i << end1;

A simple demonstration illustrating some basic vector techniques is given
in Display 8.9.

There is a vector constructor that takes one integer argument and will
initialize the number of positions given as the argument. For example, if you
declare v as follows:

vector<int> v(10);

then the first ten elements are initialized to 0, and v.size() would return
10. You can then set the value of the ith element using v[i] for values of i
equal to 0 through 9. In particular, the following could immediately follow
the declaration:

for (unsigned int i = 0; i < 10; i++)
 v[i] = i;

490	 Chapter 8 /  Strings and Vectors

	 8.3  Vectors	 491

Display 8.9   Using a Vector

 1 #include <iostream>
 2 #include <vector>
 3 using namespace std;

 4 int main()
 5 {
 6 vector<int> v;
 7 cout << "Enter a list of positive numbers.\n"
 8 << "Place a negative number at the end.\n";

 9 int next;
10 cin >> next;
11 while (next > 0)
12 {
13 v.push_back(next);
14 cout << next << " added. ";
15 cout << "v.size() = " <<v.size() <<endl;
16 cin >> next;
17 }

18 cout << "You entered:\n";
19 for (unsigned int i = 0; i <v.size(); i++)
20 cout << v[i] << " ";
21 cout << endl;

22 return 0;
23 }

Sample Dialogue

Enter a list of positive numbers.

Place a negative number at the end.

2 4 6 8 -1

2 added. v.size() = 1

4 added. v.size() = 2

6 added. v.size() = 3

8 added. v.size() = 4

You entered:

2 4 6 8

To set the ith element, for i greater than or equal to 10, you would use
push_back.

When you use the constructor with an integer argument, vectors of
numbers are initialized to the zero of the number type. If the vector base type
is a class type, the default constructor is used for initialization.

The vector definition is given in the library vector, which places it in the
std namespace. Thus, a file that uses vectors would include the following (or
something similar):

#include <vector>
using namespace std;

Pitfall  Using Square Brackets Beyond the Vector Size

If v is a vector and i is greater than or equal to v.size(), then the element
v[i] does not yet exist and needs to be created by using push_back to add
elements up to and including position i. If you try to set v[i] for i greater
than or equal to v.size(), as in

v[i] = n;

then you may or may not get an error message, but your program will
undoubtedly misbehave at some point.	 ■

492	 Chapter 8 /  Strings and Vectors

Vectors

Vectors are used very much like arrays are used, but a vector does not
have a fixed size. If it needs more capacity to store another element, its
capacity is automatically increased. Vectors are defined in the library
<vector>, which places them in the std namespace. Thus, a file that uses
vectors would include the following (or something similar):

#include <vector>
using namespace std;

The vector class for a given Base_Type is written vector <Base_Type>.
Two sample vector declarations are

vector<int> v; //default constructor
 //producing an empty vector.
vector<AClass> record(20); //vector constructor
 //�for AClass to initialize 20

elements.

Elements are added to a vector using the member function push_back, as
illustrated below:

v.push_back(42);

Once an element position has received its first element, either with
push_back or with a constructor initialization, that element position can
then be accessed using square bracket notation, just like an array element.

■ P rogramming Tip  Vector Assignment Is Well Behaved

The assignment operator with vectors does an element-by-element assignment
to the vector on the left-hand side of the assignment operator (increasing
capacity if needed and resetting the size of the vector on the left-hand side of
the assignment operator). Thus, provided the assignment operator on the base
type makes an independent copy of the element of the base type, then the
assignment operator on the vector will make an independent copy.

Note that for the assignment operator to produce a totally independent
copy of the vector on the right-hand side of the assignment operator requires
that the assignment operator on the base type make completely independent
copies. The assignment operator on a vector is only as good (or bad)
as the assignment operator on its base type. (Details on overloading the
assignment operator for classes that need it are given in Chapter 11.)	 ■

Efficiency Issues

At any point in time a vector has a capacity, which is the number of elements for
which it currently has memory allocated. The member function capacity()
can be used to find out the capacity of a vector. Do not confuse the capacity
of a vector with the size of a vector. The size is the number of elements
in a vector, while the capacity is the number of elements for which there
is memory allocated. Typically, the capacity is larger than the size, and the
capacity is always greater than or equal to the size.

Whenever a vector runs out of capacity and needs room for an additional
member, the capacity is automatically increased. The exact amount of the
increase is implementation-dependent but always allows for more capacity
than is immediately needed. A commonly used implementation scheme is for
the capacity to double whenever it needs to increase. Since increasing capacity
is a complex task, this approach of reallocating capacity in large chunks is
more efficient than allocating numerous small chunks.

	 8.3  Vectors	 493

Size and Capacity

The size of a vector is the number of elements in the vector. The capacity
of a vector is the number of elements for which it currently has memory
allocated. For a vector v, the size and capacity can be recovered with the
member functions v.size() and v.capacity().

You can completely ignore the capacity of a vector and that will have no
effect on what your program does. However, if efficiency is an issue, you might
want to manage capacity yourself and not simply accept the default behavior of
doubling capacity whenever more is needed. You can use the member function
reserve to explicitly increase the capacity of a vector. For example,

v.reserve(32);

sets the capacity to at least 32 elements, and

v.reserve(v.size() + 10);

sets the capacity to at least 10 more than the number of elements currently
in the vector. Note that you can rely on v.reserve to increase the capacity
of a vector, but it does not necessarily decrease the capacity of a vector if the
argument is smaller than the current capacity.

You can change the size of a vector using the member function resize.
For example, the following resizes a vector to 24 elements:

v.resize(24);

If the previous size was less than 24, then the new elements are initialized as
we described for the constructor with an integer argument. If the previous size
was greater than 24, then all but the first 24 elements are lost. The capacity is
automatically increased if need be. Using resize and reserve, you can shrink
the size and capacity of a vector when there is no longer any need for some
elements or some capacity.

Self-Test Exercises

	19.	 Is the following program legal? If so, what is the output?

#include <iostream>
#include <vector>
using namespace std;

int main()
{
 vector<int> v(10);
 int i;

 for (i = 0; i < v.size(); i++)
 v[i] = i;

 vector<int> copy;
 copy = v;
 v[0] = 42;

 for (i = 0; i < copy.size(); i++)
 cout << copy[i] << " ";
 cout << endl;

 return 0;
}

	20.	 What is the difference between the size and the capacity of a vector?

494	 Chapter 8 /  Strings and Vectors

Chapter Summary

■	 A C-string variable is the same thing as an array of characters, but it is used
in a slightly different way. A string variable uses the null character '\0' to
mark the end of the string stored in the array.

■	 C-string variables usually must be treated like arrays, rather than simple
variables of the kind we used for numbers and single characters. In particu-
lar, you cannot assign a C-string value to a C-string variable using the equal
sign, =, and you cannot compare the values in two C-string variables using
the == operator. Instead, you must use special C-string functions to perform
these tasks.

■	 The ANSI/ISO standard <string> library provides a fully featured class
called string that can be used to represent strings of characters.

■	 Objects of the class string are better behaved than C strings. In particular,
the assignment and equal operators, = and ==, have their intuitive meaning
when used with objects of the class string.

■	 Vectors can be thought of as arrays that can grow (and shrink) in length
while your program is running.

Answers to Self-Test Exercises

	  1.	 The following two are equivalent to each other (but not equivalent to any
others):

char string_var[10] = "Hello";
char string_var[10] = {'H', 'e', 'l', 'l', 'o', '\0'};

The following two are equivalent to each other (but not equivalent to any
others):

char string_var[6] = "Hello";
char string_var[] = "Hello";

The following is not equivalent to any of the others:

char string_var[10] = {'H', 'e', 'l', 'l', 'o'};

	  2.	 "DoBeDo to you"

	  3.	 The declaration means that string_var has room for only six characters
(including the null character '\0'). The function strcat does not check
that there is room to add more characters to string_var, so strcat will
write all the characters in the string “and Good-bye.” into memory, even
though that requires more memory than has been assigned to string_var.
This means memory that should not be changed will be changed. The net
effect is unpredictable, but bad.

	 Answers to Self-Test Exercises	 495

	  4.	 If strlen were not already defined for you, you could use the following
definition:

int strlen(const char str[])
//Precondition: str contains a string value terminated
//with '\0'.
//Returns the number of characters in the string str (not
//counting '\0').
{
 int index = 0;
 while (str[index] != '\0')
 index++;
 return index;
}

	  5.	 The maximum number of characters is five because the sixth position is
needed for the null terminator ('\0').

	  6.	 a. 1
b. 1
c. 5 (including the '\0')
d. 2 (including the '\0')
e. 6 (including the '\0')

	  7.	 These are not equivalent. The first of these places the null character '\0' in
the array after the characters 'a', 'b', and 'c'. The second only assigns the
successive positions 'a', 'b', and 'c' but does not put a '\0' anywhere.

	  8.	 int index = 0;
while (our_string[index] != '\0')
{
 our_string[index] = 'X';
 index++;
}

	  9.	 a. � If the C-string variable does not have a null terminator, '\0', the loop
can run beyond memory allocated for the C string, destroying the con-
tents of memory there. To protect memory beyond the end of the array,
change the while condition as shown in (b).

b.  while (our_string[index] != '\0' && index < SIZE)

	10.	 #include <cstring>
//needed to get the declaration of strcpy
...
strcpy(a_string, "Hello");

	11.	 I did it my way!

	12.	 The string “good, I hope.” is too long for a_string. A chunk of memory
that doesn’t belong to the array a_string will be overwritten.

496	 Chapter 8 /  Strings and Vectors

	13.	 Enter some input:
The
 time is now.
The-timeEND OF OUTPUT

	14.	 The complete dialogue is as follows:

Enter a line of input:
May the hair on your toes grow long and curly.
May t<END OF OUTPUT

	15.	 A*string<END OF OUTPUT

	16.	 A string is a joy forever!<END OF OUTPUT

	17.	 The complete dialogue is

Enter a line of input:
Hello friend!
Equal

Remember, cin stops reading when it reaches a whitespace character such
as a blank.

	18.	 Hello Jello

	19.	 The program is legal. The output is

0 1 2 3 4 5 6 7 8 9

Note that changing v does not change copy. A true independent copy is
made with the assignment

copy = v;

	20.	 The size is the number of elements in a vector, whereas the capacity is the
number of elements for which there is memory allocated. Typically, the
capacity is larger than the size.

Practice Programs

Practice Programs can generally be solved with a short program that directly applies
the programming principles presented in this chapter.

	  1.	 Create a Cstring variable that contains a name, age, and title. Each field
is separated by a space. For example, the string might contain “Bob 45
Programmer” or any other name/age/title in the same format. Assume the
name, age, and title have no spaces themselves. Write a program using only
functions from cstring (not the class string) that can extract the name,
age, and title into separate variables. Test your program with a variety of
names, ages, and titles.

	 Practice Programs	 497

	  2.	 Repeat Practice Program 1 except use the class string to extract the fields,
not the cstring functions.

	  3.	 Write a program that inputs a first and last name, separated by a space, into a
string variable. Use the string functions to output the first and last initial.
Embed your code into a do-while loop. At the end of the loop ask the user
if he or she would like to repeat the program. Input the user’s choice into a
char using cin. If the character is ‘y’ then repeat the program, otherwise exit.
Beware of the pitfall with newlines when cin is mixed with getline.

	  4.	 Write a function named firstLast2 that takes as input a vector of integers.
The function should return true if the vector starts or ends with the digit
2. Otherwise it should return false. Test your function with vectors of dif-
ferent length and with the digit 2 at the beginning of the vector, end of the
vector, middle of the vector, and missing from the vector.

	  5.	 Write a function named swapFrontBack that takes as input a vector of inte-
gers. The function should swap the first element in the vector with the last
element in the vector. The function should check if the vector is empty to
prevent errors. Test your function with vectors of different length and with
varying front and back numbers.

	  6.	 Do Practice Program 7.4 except change the program to use vectors of strings
instead of arrays of strings.

	  7.	 Write a program that inputs two string variables, first and last, each of
which the user should enter with his or her name. First, convert both strings
to all lowercase. Your program should then create a new string that contains
the full name in Pig Latin with the first letter capitalized for the first and last
name. The rules to convert a word into Pig Latin are as follows:

If the first letter is a consonant, move it to the end and add “ay” to the end.

If the first letter is a vowel, add “way” to the end.

		 For example, if the user inputs “Erin” for the first name and “Jones” for
the last name, then the program should create a new string with the text
“Erinway Onesjay” and print it.

Programming Projects

Programming Projects require more problem-solving than Practice Programs and
can usually be solved many different ways. Visit www.myprogramminglab.com to
complete many of these Programming Projects online and get instant feedback.

	  1.	 Write a program that reads in a sentence of up to 100 characters and
outputs the sentence with spacing corrected and with letters corrected for

498	 Chapter 8 /  Strings and Vectors

Solution to Programming
Project 8.1

VideoNote

www.myprogramminglab.com

capitalization. In other words, in the output sentence, all strings of two or
more blanks should be compressed to a single blank. The sentence should
start with an uppercase letter but should contain no other uppercase
letters. Do not worry about proper names; if their first letters are changed
to lowercase, that is acceptable. Treat a line break as if it were a blank, in
the sense that a line break and any number of blanks are compressed to a
single blank. Assume that the sentence ends with a period and contains no
other periods. For example, the input

the Answer to life, the Universe, and everything
IS 42.

should produce the following output:

The answer to life, the universe, and everything is 42.

	  2.	 Write a program that will read in a line of text and output the number of
words in the line and the number of occurrences of each letter. Define
a word to be any string of letters that is delimited at each end by either
whitespace, a period, a comma, or the beginning or end of the line. You
can assume that the input consists entirely of letters, whitespace, commas,
and periods. When outputting the number of letters that occur in a line, be
sure to count upper- and lowercase versions of a letter as the same letter.
Output the letters in alphabetical order and list only those letters that do
occur in the input line. For example, the input line

I say Hi.

should produce output similar to the following:

3 words
1 a
1 h
2 i
1 s
1 y

	  3.	 Give the function definition for the function with the following function
declaration. Embed your definition in a suitable test program.

void get_double(double& input_number);
//Postcondition: input_number is given a value
//that the user approves of.

You can assume that the user types in the input in normal everyday
notation, such as 23.789, and does not use e-notation to type in the
number. Model your definition after the definition of the function
get_int given in Display 8.3 so that your function reads the input as
characters, edits the string of characters, and converts the resulting string
to a number of type double. You will need to define a function like

	 Programming Projects	 499

read_and_clean that is more sophisticated than the one in Display 8.2,
since it must cope with the decimal point. This is a fairly easy project.
For a more difficult project, allow the user to enter the number in either
the normal everyday notation, as discussed above, or in e-notation.
Your function should decide whether or not the input is in e-notation
by reading the input, not by asking the user whether she or he will use
e-notation.

	  4.	 Write a program that reads a person’s name in the following format: first
name, then middle name or initial, and then last name. The program then
outputs the name in the following format:

Last_Name, First_Name Middle_Initial.

For example, the input

Mary Average User

should produce the output:

User, Mary A.

The input

Mary A. User

should also produce the output:

User, Mary A.

Your program should work the same and place a period after the middle
initial even if the input did not contain a period. Your program should
allow for users who give no middle name or middle initial. In that case,
the output, of course, contains no middle name or initial. For example,
the input

Mary User

should produce the output

User, Mary

If you are using C strings, assume that each name is at most 20 characters
long. Alternatively, use the class string.

(Hint: You may want to use three string variables rather than one large
string variable for the input. You may find it easier to not use getline.)

	  5.	 Write a program that reads in a line of text and replaces all four-letter words
with the word “love”. For example, the input string

I hate you, you dodo!

500	 Chapter 8 /  Strings and Vectors

should produce the output

I love you, you love!

Of course, the output will not always make sense. For example, the input
string

John will run home.

should produce the output

Love love run love.

If the four-letter word starts with a capital letter, it should be replaced by
"Love", not by "love". You need not check capitalization, except for the
first letter of a word. A word is any string consisting of the letters of the
alphabet and delimited at each end by a blank, the end of the line, or any
other character that is not a letter. Your program should repeat this action
until the user says to quit.

	  6.	 Write a program that reads in a line of text and outputs the line with all the
digits in all integer numbers replaced with 'x'. For example,

Input:

My userID is john17 and my 4 digit pin is 1234 which is secret.

Output:

My userID is john17 and my x digit pin is xxxx which is secret.

Note that if a digit is part of a word, then the digit is not changed to an
'x'. For example, note that john17 is NOT changed to johnxx. Include
a loop that allows the user to repeat this calculation again until the user
says she or he wants to end the program.

	  7.	 Write a program that can be used to train the user to use less sexist lan-
guage by suggesting alternative versions of sentences given by the user. The
program will ask for a sentence, read the sentence into a string variable,
and replace all occurrences of masculine pronouns with gender-neutral
pronouns. For example, it will replace "he" with "she or he". Thus, the
input sentence

See an adviser, talk to him, and listen to him.

should produce the following suggested changed version of the sentence:

See an adviser, talk to her or him, and listen to her or him.

Be sure to preserve uppercase letters for the first word of the sentence.
The pronoun "his" can be replaced by "her (s)"; your program need

	 Programming Projects	 501

not decide between "her" and "hers". Allow the user to repeat this for
more sentences until the user says she or he is done.

This will be a long program that requires a good deal of patience. Your
program should not replace the string "he" when it occurs inside another
word, such as "here". A word is any string consisting of the letters of the
alphabet and delimited at each end by a blank, the end of the line, or any
other character that is not a letter. Allow your sentences to be up to 100
characters long.

	  8.	 Write a sorting function that is similar to Display 7.12 in Chapter 7 except
that it has an argument for a vector of ints rather than an array. This func-
tion will not need a parameter like number_used as in Display 7.12, since a
vector can determine the number used with the member function size().
This sort function will have only this one parameter, which will be of a vec-
tor type. Use the selection sort algorithm (which was used in Display 7.12).

	  9.	 Redo Programming Project 6 from Chapter 7, but this time use vectors in-
stead of arrays. (It may help to do the previous Programming Project first.)

	10.	 Redo Programming Project 5 from Chapter 7, but this time use vectors
instead of arrays. You should do either Programming Project 8 or 9 before
doing this one. However, you will need to write your own (similar) sorting
code for this project rather than using the sorting function from Program-
ming Project 7 or 8 with no changes.

	11.	 Your country is at war and your enemies are using a secret code to com-
municate with each other. You have managed to intercept a message that
reads as follows:

:mmZ\dxZmx]Zpgy

The message is obviously encrypted using the enemy’s secret code. You
have just learned that their encryption method is based upon the ASCII
code. Appendix 3 shows the ASCII character set. Individual characters
in a string are encoded using this system. For example, the letter “A” is
encoded using the number 65 and “B” is encoded using the number 66.

Your enemy’s secret code takes each letter of the message and encrypts it
as follows:

If (OriginalChar + Key > 126) then
 EncryptedChar = 32 + ((OriginalChar + Key) – 127)
Else
 EncryptedChar = (OriginalChar + Key)

For example, if the enemy uses Key = 10 then the message “Hey” would
be encrypted as:

502	 Chapter 8 /  Strings and Vectors

Character ASCII code

H 72

e 101

y 121

Encrypted H = (72 + 10) = 82 = R in ASCII
Encrypted e = (101 + 10) = 111 = o in ASCII
Encrypted y = 32 + ((121 + 10) – 127) = 36 = $ in ASCII

Consequently, “Hey” would be transmitted as “Ro$.”

Write a program that decrypts the intercepted message. The ASCII codes
for the unencrypted message are limited to the visible ASCII characters.
You only know that the key used is a number between 1 and 100. Your
program should try to decode the message using all possible keys between
1 and 100. When you try the valid key, the message will make sense. For
all other keys, the message will appear as gibberish.

	12.	 Write a program that inputs a time from the console. The time should be in
the format "HH:MM AM" or "HH:MM PM". Hours may be one or two digits, for
example, "1:10 AM" or "11:30 PM". Your program should include a func-
tion that takes a string parameter containing the time. This function should
convert the time into a four-digit military time based on a 24-hour clock.
For example, "1:10 AM" would output "0110 hours", "11:30 PM" would
output "2330 hours", and "12:15 AM" would output "0015 hours". The
function may either write the time to the console or return a string to be
written to the console by the main function.

	13.	 The XML (eXtensible Markup Language) is a common format used to struc-
ture and store data on the Web. The following is a small sample XML file
that could be used to store names in an address book. Type it in using
a text editor and save it to a file named address.xml (or find it at the
accompanying website).

<?xml version="1.0"?>
<address_book>
 <contact>
 <name>George Clooney</name>
 <street>1042 El Camino Real</street>
 <city>Beverly Hills</city>
 <state>CA</state>
 <zip>90214</zip>
 </contact>
 <contact>
 <name>Cathy Pearl</name>
 <street>405 A St.</street>

	 Programming Projects	 503

 <city>Palmdale</city>
 <state>CA</state>
 <zip>93352</zip>
 </contact>
 <contact>
 <name>Paris Hilton</name>
 <street>200 S. Elm St.</street>
 <city>Beverly Hills</city>
 <state>CA</state>
 <zip>90212</zip>
 </contact>
 <contact>
 <name>Wendy Jones</name>
 <street>982 Boundary Ave.</street>
 <city>Palmdale</city>
 <state>CA</state>
 <zip>93354</zip>
 </contact>
</address_book>

The sample file contains four contacts. The <> tag denotes the start of a
field and the </> tag denotes the end of the field.

a.	� You are hosting a party in Palmdale, CA. Write a program that reads
in the address.xml file and outputs the names and addresses of
everyone in Palmdale. Your program shouldn’t output any of the tag
information, just the address content.

b.	� You would like to send an advertising flyer to everyone in zip codes
90210 through 90214. Write a program that reads in the address.
xml file and outputs the names and addresses of everyone whose zip
code falls within the specified range.

You may assume that each contact in the address file has the same
structure and the same fields. However, your solution should be able
to handle an input file with any number of contacts and should not
assume that the fields within each contact are in the same order.

	14.	 Given the following header:

vector<string> split(string target, string delimiter);

implement the function split so that it returns a vector of the strings in
target that are separated by the string delimiter. For example:

split("10,20,30", ",")

should return a vector with the strings "10", "20", and "30". Similarly,

split("do re mi fa so la ti do", " ")

504	 Chapter 8 /  Strings and Vectors

Solution to Programming
Project 8.14

VideoNote

should return a vector with the strings "do", "re", "mi", "fa", "so", "la",
"ti", and "do".

	15.	 Write a function that determines if two strings are anagrams. The func-
tion should not be case sensitive and should disregard any punctuation or
spaces. Two strings are anagrams if the letters can be rearranged to form
each other. For example, “Eleven plus two” is an anagram of “Twelve plus
one.”Each string contains one “v”, three “e’s”, two “l’s”, etc. Test your func-
tion with several strings that are anagrams and non-anagrams. You may use
either the string class or a C-style string.

	16.	 In many races competitors wear an RFID tag on their shoe or bib. When the
racer crosses a sensor a computer logs the racer’s number along with the
current time. Sensors can be placed along the course to accurately calculate
the racer’s finish time or pace and also to verify that the racer crossed key
checkpoints. Consider such a system in use for a half marathon running
race, which is 13.1 miles. In this problem there are only three sensors: at
the start, at the 7 mile point, and at the finish line.

		 Here is sample data for three racers. The first line is the gun time in the
24 hour time format (HH MM SS). The gun time is when the race be-
gins. Subsequent lines are recorded by sensors and contain the sensor ID
(0=start, 1=midpoint, 2=finish) followed by the racer’s number followed
by the time stamp. The start time may be different than the gun time
because sometimes it takes a racer a little while to get to the starting line
when there is a large pack.

08 00 00
0,100,08 00 00
0,132,08 00 03
0,182,08 00 15
1,100,08 50 46
1,182,08 51 15
1,132,08 51 18
2,132,09 34 16
2,100,09 35 10
2,182,09 45 15

		 Create a text file with a sample race log. Write a program that reads the log
data into array(s) or vector(s). The program should then allow a user to
enter a racer’s number and it should output the racer’s overall finish place,
race split times in minutes/mile for each split (i.e. the time between sen-
sors), and the overall race time and overall race pace.

		 For a more challenging version modify your program so that it works with
an arbitrary number of sensors placed at different locations along the
course instead of just 3 locations. You will need to specify the mile marker
for each sensor.

	 Programming Projects	 505

506	 Chapter 8 /  Strings and Vectors

	17.	 Based on the log file described in Programming Project 16 write a program
to detect cheating. This could occur if:

•  A racer misses a sensor, which is a sign that the racer may have taken a
shortcut.

•  A race split is suspiciously fast, which is a sign that the racer may have
hopped in a vehicle. In this case, a race split faster than 4:30 per mile
can be considered suspicious.

The output should be a list of suspected cheaters along with the reason
for suspicion.

Pointers and
Dynamic Arrays

9.1  Pointers  508
Pointer Variables  509
Basic Memory Management  516
Pitfall: Dangling Pointers  517
Static Variables and Automatic Variables  518
Programming Tip: Define Pointer Types  518

9.2  Dynamic Arrays  521
Array Variables and Pointer Variables  521
Creating and Using Dynamic Arrays  522
Pointer Arithmetic (Optional)  528
Multidimensional Dynamic Arrays (Optional)  530

9

Chapter Summary  532
Answers to Self-Test Exercises  532

Practice Programs  533
Programming Projects  534

Introduction

A pointer is a construct that gives you more control of the computer’s memory.
This chapter shows how pointers are used with arrays and introduces a new
form of array called a dynamic array. Dynamic arrays are arrays whose size is
determined while the program is running, rather than being fixed when the
program is written.

Prerequisites

Section 9.1, which covers the basics of pointers, uses material from Chapters 2
through 6. It does not require any of the material from Chapters 7 or 8.
Section 9.2, which covers dynamic arrays, uses material from Section 9.1, and
Chapters 2 through 7. It does not require any of the material from Chapter 8.

9.1  Pointers

Do not mistake the pointing finger for the moon.

Zen saying

A pointer is the memory address of a variable. Recall that the computer’s
memory is divided into numbered memory locations (called bytes) and that
variables are implemented as a sequence of adjacent memory locations. Recall
also that sometimes the C++ system uses these memory addresses as names
for the variables. If a variable is implemented as, say, three memory locations,
then the address of the first of these memory locations is sometimes used as
a name for that variable. For example, when the variable is used as a call-by-
reference argument, it is this address, not the identifier name of the variable,
that is passed to the calling function.

An address that is used to name a variable in this way (by giving the
address in memory where the variable starts) is called a pointer because the
address can be thought of as “pointing” to the variable. The address “points”
to the variable because it identifies the variable by telling where the variable
is, rather than telling what the variable’s name is. A variable that is, say, at
location number 1007 can be pointed out by saying “it’s the variable over
there at location 1007.”

508

Memory is necessary for all the operations of reason.

Blaise Pascal, Pensées

You have already been using pointers in a number of situations. As we
noted in the previous paragraph, when a variable is a call-by-reference argument
in a function call, the function is given this argument variable in the form of a
pointer to the variable. This is an important and powerful use for pointers, but
it is done automatically for you by the C++ system. In this chapter, we show you
how to write programs that manipulate pointers in any way you want, rather
than relying on the system to manipulate the pointers for you.

Pointer Variables

A pointer can be stored in a variable. However, even though a pointer is a
memory address and a memory address is a number, you cannot store a
pointer in a variable of type int or double without type casting. A variable
to hold a pointer must be declared to have a pointer type. For example, the
following declares p to be a pointer variable that can hold one pointer that
points to a variable of type double:

double *p;

The variable p can hold pointers to variables of type double, but it cannot
normally contain a pointer to a variable of some other type, such as int or
char. Each variable type requires a different pointer type.

In general, to declare a variable that can hold pointers to other variables
of a specific type, you declare the pointer variable just as you would declare an
ordinary variable of that type, but you place an asterisk in front of the variable
name. For example, the following declares the variables p1 and p2 so that
they can hold pointers to variables of type int; it also declares two ordinary
variables, v1 and v2, of type int:

int *p1, *p2, v1, v2;

There must be an asterisk before each of the pointer variables. If you omit
the second asterisk in the previous declaration, then p2 will not be a pointer
variable; it will instead be an ordinary variable of type int. The asterisk is the
same symbol you have been using for multiplication, but in this context it has
a totally different meaning.

When discussing pointers and pointer variables, we usually speak of
pointing rather than of addresses. When a pointer variable, such as p1, contains
the address of a variable, such as v1, the pointer variable is said to point to the
variable v1 or to be a pointer to the variable v1.

Pointer variables, like p1 and p2 declared earlier, can contain pointers to
variables like v1 and v2. You can use the operator & to determine the address
of a variable, and you can then assign that address to a pointer variable. For
example, the following will set the variable p1 equal to a pointer that points
to the variable v1:

p1 = &v1;

	 9.1  Pointers	 509

Declaring pointer
variables

You now have two ways to refer to v1: You can call it v1 or you can call it “the
variable pointed to by p1.” In C++, the way that you say “the variable pointed to
by p1” is *p1. This is the same asterisk that we used when we declared p1, but now
it has yet another meaning. When the asterisk is used in this way, it is often called
the dereferencing operator, and the pointer variable is said to be dereferenced.

Putting these pieces together can produce some surprising results.
Consider the following code:

v1 = 0;
p1 = &v1;
*p1 = 42;
cout << v1 << endl;
cout << *p1 << endl;

This code outputs the following to the screen:

42
42

510	 Chapter 9 /  Pointers and Dynamic Arrays

Pointer Variable Declarations

A variable that can hold pointers to other variables of type Type_Name is
declared similarly to the way you declare a variable of type Type_Name,
except that you place an asterisk at the beginning of the variable name.

Syntax

Type_Name *Variable_Name1, *Variable_Name2, . . .;

Example

double *pointer1, *pointer2;

Addresses and Numbers

A pointer is an address, and an address is an integer, but a pointer is not
an integer. That is not crazy. That is abstraction! C++ insists that you use
a pointer as an address and that you not use it as a number. A pointer
is not a value of type int or of any other numeric type. You normally
cannot store a pointer in a variable of type int. If you try, most C++
compilers will give you an error message or a warning message. Also, you
cannot perform the normal arithmetic operations on pointers. (You can
perform a kind of addition and a kind of subtraction on pointers, but
they are not the usual integer addition and subtraction.)

As long as p1 contains a pointer that points to v1, then v1 and *p1 refer to
the same variable. So when you set *p1 equal to 42, you are also setting v1
equal to 42.

The symbol & that is used to obtain the address of a variable is the
same symbol that you use in function declarations to specify a call-by-
reference parameter. This use is not a coincidence. Recall that a call-
by-reference argument is implemented by giving the address of the
argument to the calling function. So, these two uses of the symbol & are
very much the same. However, the usages are slightly different and we will
consider them to be two different (although very closely related) usages of
the symbol &.

	 9.1  Pointers	 511

The * and & Operators

The *operator in front of a pointer variable produces the variable it
points to. When used this way, the *operator is called the dereferencing
operator.

The operator & in front of an ordinary variable produces the address of
that variable; that is, produces a pointer that points to the variable. The &
operator is called the address-of operator.

For example, consider the declarations

double *p, v;

The following sets the value of p so that p points to the variable v:

p = &v;

*p produces the variable pointed to by p, so after the assignment above,
*p and v refer to the same variable. For example, the following sets the
value of v to 9.99, even though the name v is never explicitly used:

*p = 9.99;

You can assign the value of one pointer variable to another pointer
variable. This copies an address from one pointer variable to another pointer
variable. For example, if p1 is still pointing to v1, then the following will set
p2 so that it also points to v1:

p2 = p1;

Provided we have not changed v1’s value, the following also outputs a 42 to
the screen:

cout << *p2;

Pointers in
assignment
statements

Be sure that you do not confuse

p1 = p2;

and

*p1 = *p2;

When you add the asterisk, you are not dealing with the pointers p1 and p2,
but with the variables that the pointers are pointing to. This is illustrated in
Display 9.1.

Since a pointer can be used to refer to a variable, your program can
manipulate variables even if the variables have no identifiers to name them.
The operator new can be used to create variables that have no identifiers to
serve as their names. These nameless variables are referred to via pointers. For
example, the following creates a new variable of type int and sets the pointer
variable p1 equal to the address of this new variable (that is, p1 points to this
new, nameless variable):

p1 = new int;

This new, nameless variable can be referred to as *p1 (that is, as the variable
pointed to by p1). You can do anything with this nameless variable that you
can do with any other variable of type int. For example, the following reads a
value of type int from the keyboard into this nameless variable, adds 7 to the
value, then outputs this new value:

cin >> *p1;
*p1 = *p1 + 7;
cout << *p1;

512	 Chapter 9 /  Pointers and Dynamic Arrays

Display 9.1   Uses of the Assignment Operator

p1 = p2;

*p1 = *p2;

Before: After:

p1

p2

p1

p2

p1

p2

p1

p2

84

99

84

99

84

Before:

99

99

After:

99

The new operator produces a new, nameless variable and returns a pointer
that points to this new variable. You specify the type for this new variable
by writing the type name after the new operator. Variables that are created
using the new operator are called dynamic variables because they are created
and destroyed while the program is running. The program in Display 9.2
demonstrates some simple operations on pointers and dynamic variables.
Display 9.3 illustrates the working of the program in Display 9.2. In Display
9.3, variables are represented as boxes and the value of the variable is written
inside the box. We have not shown the actual numeric addresses in the
pointer variables. The actual numbers are not important. What is important
is that the number is the address of some particular variable. So, rather than
use the actual number of the address, we have merely indicated the address
with an arrow that points to the variable with that address. For example, in
illustration (b) in Display 9.3, p1 contains the address of a variable that has a
question mark written in it.

	 9.1  Pointers	 513

Display 9.2   Basic Pointer Manipulations (part 1 of 2)

 1 //Program to demonstrate pointers and dynamic variables.
 2 #include <iostream>
 3 using namespace std;
 4
 5 int main()
 6 {
 7 int *p1, *p2;
 8
 9 p1 = new int;
10 *p1 = 42;
11 p2 = p1;
12 cout<< "*p1 == " << *p1 << endl;
13 cout<< "*p2 == " << *p2 << endl;

14 *p2 = 53;
15 cout<< "*p1 == " << *p1 << endl;
16 cout<< "*p2 == " << *p2 << endl;

17 p1 = new int;
18 *p1 = 88;
19 cout<< "*p1 == " << *p1 << endl;
20 cout<< "*p2 == " << *p2 << endl;
21 cout<< "Hope you got the point of this example!\n";
22 return 0;
23 }

(continued)

514	 Chapter 9 /  Pointers and Dynamic Arrays

Pointer Variables Used with =

If p1 and p2 are pointer variables, then the statement

p1 = p2;

changes p1 so that it points to the same thing that p2 is currently pointing to.

Display 9.2   Basic Pointer Manipulations (part 2 of 2)

Sample Dialogue

*p1 == 42

*p2 == 42

*p1 == 53

*p2 == 53

*p1 == 88

*p2 == 53

Hope you got the point of this example!

1 Technically, the new operator throws an exception, which, if not caught, terminates
the program. It is possible to “catch” the exception or install a new handler, but these
topics are not covered until Chapter 16.

The new Operator

The new operator creates a new dynamic variable of a specified type
and returns a pointer that points to this new variable. For example, the
following creates a new dynamic variable of type MyType and leaves the
pointer variable p pointing to this new variable:

MyType *p;
p = new MyType;

The C++ standard specifies that if there is not sufficient memory available
to create the new variable, then the new operator, by default, terminates
the program.1

	 9.1  Pointers	 515

Display 9.3   Explanation of Display 9.2

p1

p2

(c)

*p1 = 42;

42

?

p1

p2

(b)

p1 = new int;

?

?

p1

p2

(a)

int *p1, *p2;

?

p1

p2

(d)

p2 = p1;

42

?

p1

p2

(g)

*p1 = 88;
88

53

p1

p2

(e)

*p2 = 53;

53

p1

p2

?

53

(f)

p1 = new int;

Self-Test Exercises

	  1.	E xplain the concept of a pointer in C++.

	  2.	 What unfortunate misinterpretation can occur with the following
declaration?

int* int_ptr1, int_ptr2;

	  3.	 Give at least two uses of the * operator. State what the * is doing, and
name the use of the * that you present.

516	 Chapter 9 /  Pointers and Dynamic Arrays

	  4.	 What is the output produced by the following code?

int *p1, *p2;
p1 = new int;
p2 = new int;
*p1 = 10;
*p2 = 20;
cout << *p1 << " " << *p2 << endl;
p1 = p2;
cout << *p1 << " " << *p2 << endl;
*p1 = 30;
cout << *p1 << " " << *p2 << endl;

How would the output change if you were to replace

*p1 = 30;

with the following?

*p2 = 30;

	  5.	 What is the output produced by the following code?

int *p1, *p2;
p1 = new int;
p2 = new int;
*p1 = 10;
*p2 = 20;
cout << *p1 << " " << *p2 << endl;
*p1 = *p2; //This is different from Exercise 4
cout << *p1 << " " << *p2 << endl;
*p1 = 30;
cout << *p1 << " " << *p2 << endl;

Basic Memory Management

A special area of memory, called the freestore, is reserved for dynamic
variables. Any new dynamic variable created by a program consumes some
of the memory in the freestore.2 If your program creates too many dynamic
variables, it will consume all of the memory in the freestore. If this happens,
any additional calls to new will fail.

The size of the freestore varies by computer and implementation of C++.
It is typically large, and a modest program is not likely to use all the memory
in the freestore. However, even on modest programs it is a good practice to
recycle any freestore memory that is no longer needed. If your program no

2 The freestore is also sometimes called the heap.

	 9.1  Pointers	 517

Pitfall  Dangling Pointers

When you apply delete to a pointer variable, the dynamic variable it is
pointing to is destroyed. At that point, the value of the pointer variable is
undefined, which means that you do not know where it is pointing, nor what
the value is where it is pointing. Moreover, if some other pointer variable
was pointing to the dynamic variable that was destroyed, then this other
pointer variable is also undefined. These undefined pointer variables are
called dangling pointers. If p is a dangling pointer and your program applies
the dereferencing operator * to p (to produce the expression *p), the result
is unpredictable and usually disastrous. Before you apply the dereferencing
operator *to a pointer variable, you should be certain that the pointer variable
points to some variable.	 ■

longer needs a dynamic variable, the memory used by that dynamic variable
can be recycled. The delete operator eliminates a dynamic variable and
returns the memory that the dynamic variable occupied to the freestore so
that the memory can be reused. Suppose that p is a pointer variable that
is pointing to a dynamic variable. The following will destroy the dynamic
variable pointed to by p and return the memory used by the dynamic variable
to the freestore:

delete p;

After this call to delete, the value of p is undefined and p should be treated
like an uninitialized variable.

The delete Operator

The delete operator eliminates a dynamic variable and returns the
memory that the dynamic variable occupied to the freestore. The
memory can then be reused to create new dynamic variables. For
example, the following eliminates the dynamic variable pointed to by the
pointer variable p:

delete p;

After a call to delete, the value of the pointer variable, like p above, is
undefined. (A slightly different version of delete, discussed later in this
chapter, is used when the dynamic variable is an array.)

518	 Chapter 9 /  Pointers and Dynamic Arrays

Static Variables and Automatic Variables

Variables created with the new operator are called dynamic variables,
because they are created and destroyed while the program is running. When
compared with these dynamic variables, ordinary variables seem static, but
the terminology used by C++ programmers is a bit more involved than that,
and ordinary variables are not called static variables.

The ordinary variables we have been using in previous chapters are not
really static. If a variable is local to a function, then the variable is created
by the C++ system when the function is called and is destroyed when the
function call is completed. Since the main part of a program is really just a
function called main, this is even true of the variables declared in the main
part of your program. (Since the call to main does not end until the program
ends, the variables declared in main are not destroyed until the program ends,
but the mechanism for handling local variables is the same for main as it is for
any other function.) The ordinary variables that we have been using (that is,
the variables declared within main or within some other function definition)
are called automatic variables (not to be confused with variables defined of
type auto), because their dynamic properties are controlled automatically
for you; they are automatically created when the function in which they are
declared is called and automatically destroyed when the function call ends.
We will usually call these variables ordinary variables, but other books call
them automatic variables.

There is one other category of variables, namely, global variables. Global
variables are variables that are declared outside of any function definition
(including being outside of main). We discussed global variables briefly in
Chapter 4. As it turns out, we have no need for global variables and have not
used them.

■  Programming Tip  Define Pointer Types

You can define a pointer type name so that pointer variables can be
declared like other variables without the need to place an asterisk in front
of each pointer variable. For example, the following defines a type called
IntPtr, which is the type for pointer variables that contain pointers to int
variables:

typedef int* IntPtr;

Thus, the following two pointer variable declarations are equivalent:

IntPtr p;

and

int *p;

	 9.1  Pointers	 519

You can use typedef to define an alias for any type name or definition.
For example, the following defines the type name Kilometers to mean the
same thing as the type name double:

typedef double Kilometers;

Once you have given this type definition, you can define a variable of type
double as follows:

Kilometers distance;

Renaming existing types this way can occasionally be useful. However, our
main use of typedef will be to define types for pointer variables.

There are two advantages to using defined pointer type names, such as
IntPtr defined earlier. First, it avoids the mistake of omitting an asterisk.
Remember, if you intend p1 and p2 to be pointers, then the following is a
mistake:

int *p1, p2;

Since the * was omitted from the p2, the variable p2 is just an ordinary int
variable, not a pointer variable. If you get confused and place the * on the
int, the problem is the same but is more difficult to notice. C++ allows you to
place the * on the type name, such as int, so that the following is legal:

int* p1, p2;

Although this line is legal, it is misleading. It looks like both p1 and p2 are
pointer variables, but in fact only p1 is a pointer variable; p2 is an ordinary
int variable. As far as the C++ compiler is concerned, the *that is attached to
the identifier int may as well be attached to the identifier p1. One correct way
to declare both p1 and p2 to be pointer variables is

int *p1, *p2;

An easier and less error-prone way to declare both p1 and p2 to be pointer
variables is to use the defined type name IntPtr as follows:

IntPtr p1, p2;

The second advantage of using a defined pointer type, such as IntPtr,
is seen when you define a function with a call-by-reference parameter for a
pointer variable. Without the defined pointer type name, you would need to
include both an * and an & in the function declaration for the function, and
the details can get confusing. If you use a type name for the pointer type, then
a call-by-reference parameter for a pointer type involves no complications.
You define a call-by-reference parameter for a defined pointer type just like
you define any other call-by-reference parameter. Here’s a sample:

void sample_function(IntPtr& pointer_variable);	 ■

520	 Chapter 9 /  Pointers and Dynamic Arrays

Type Definitions

You can assign a name to a type definition and then use the type
name to declare variables. This is done with the keyword typedef.
These type definitions are normally placed outside of the body of the
main part of your program (and outside the body of other functions) .
We will use type definitions to define names for pointer types, as
shown in the example below.

syntax

typedef Known_Type_Definition New_Type_Name;

Example

typedef int* IntPtr;

The type name IntPtr can then be used to declare pointers to dynamic
variables of type int, as in the following:

IntPtr pointer1, pointer2;

Self-Test Exercises

	  6.	 Suppose a dynamic variable were created as follows:

char *p;
p = new char;

Assuming that the value of the pointer variable p has not changed
(so it still points to the same dynamic variable), how can you
destroy this new dynamic variable and return the memory it uses
to the freestore so that the memory can be reused to create new
dynamic variables?

	  7.	 Write a definition for a type called NumberPtr that will be the type for
pointer variables that hold pointers to dynamic variables of type int.
Also, write a declaration for a pointer variable called my_point that is of
type NumberPtr.

	  8.	 Describe the action of the new operator. What does the operator new
return?

	 9.2  Dynamic Arrays	 521

9.2  Dynamic Arrays

In this section you will see that array variables are actually pointer variables.
You will also find out how to write programs with dynamic arrays. A dynamic
array is an array whose size is not specified when you write the program, but
is determined while the program is running.

Array Variables and Pointer Variables

In Chapter 7 we described how arrays are kept in memory. At that point we
had not learned about pointers, so we discussed arrays in terms of memory
addresses. But, a memory address is a pointer. So, in C++ an array variable is
actually a pointer variable that points to the first indexed variable of the array.
Given the following two variable declarations, p and a are the same kind of
variable:

int a[10];
typedef int* IntPtr;
IntPtr p;

The fact that a and p are the same kind of variable is illustrated in
Display 9.4. Since a is a pointer that points to a variable of type int
(namely the variable a[0]), the value of a can be assigned to the pointer
variable p as follows:

p = a;

After this assignment, p points to the same memory location that a points to.
So, p[0], p[1], … p[9] refer to the indexed variables a[0], a[1], … a[9].
The square bracket notation you have been using for arrays applies to pointer
variables as long as the pointer variable points to an array in memory. After
this assignment, you can treat the identifier p as if it were an array identifier.
You can also treat the identifier a as if it were a pointer variable, but there
is one important reservation. You cannot change the pointer value in an array
variable, such as a. You might be tempted to think the following is legal, but it
is not:

IntPtr p2;
...//p2 is given some pointer value.
a = p2;//ILLEGAL. You cannot assign a different address to a.

Display 9.5 illustrates the working of the program in Display 9.4. As
in Display 9.3, variables are represented as boxes and the value of
the variable is written inside the box. An arrow indicates a pointer or
reference to another memory location, in this case, the first element of
the array.

522	 Chapter 9 /  Pointers and Dynamic Arrays

Display 9.4   Arrays and Pointer Variables

 1 //Program to demonstrate that an array variable is a kind of pointer variable.
 2 #include <iostream>
 3 using namespace std;
 4
 5 typedef int* IntPtr;
 6
 7 int main()
 8 {
 9 IntPtr p;
10 int a[10];
11 int index;
12
13 for (index = 0; index < 10; index++)
14 a[index] = index;
15
16 p = a;
17
18 for (index = 0; index < 10; index++)
19 cout << p[index] << " ";
20 cout << endl;
21
22 for (index = 0; index < 10; index++)
23 p[index] = p[index] + 1;
24
25 for (index = 0; index < 10; index++)
26 cout << a[index] << " ";
27 cout << endl;
28
29 return 0;
30 }

Output

0 1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9 10

Note that changes to the array p
are also changes to the array a.

Creating and Using Dynamic Arrays

One problem with the kinds of arrays you have used thus far is that you must
specify the size of the array when you write the program—but you may not
know what size array you need until the program is run. For example, an array
might hold a list of student identification numbers, but the size of the class
may be different each time the program is run. With the kinds of arrays you
have used thus far, you must estimate the largest possible size you may need

	 9.2  Dynamic Arrays	 523

Display 9.5   Explanation of Display 9.4

1098765432a

p

1

for (index=0; index < 10; index++)
 cout << a[index] << " ";

Output 1 2 3 4 5 6 7 8 9 1 0

Iterating through a is the

same as iterating through p

987654321a

p

0

(c)

p = a;

987654321

?

a

p

0

?????????

for (index=0; index < 10; index++)
 cout << p[index] << " ";

Output 0 1 2 3 4 5 6 7 8 9

(d)

for (index = 0; index < 10; index++)
 p[index] = p[index] + 1;

(b)

for (index = 0; index < 10; index++)
 a[index] = index;

?

a

p

(a)

IntPtr p;
int a[10];

?

Iterating through p is the

same as iterating through a

524	 Chapter 9 /  Pointers and Dynamic Arrays

for the array and hope that size is large enough. There are two problems with
this. First, you may estimate too low, and then your program will not work in
all situations. Second, since the array might have many unused positions, this
can waste computer memory. Dynamic arrays avoid these problems. If your
program uses a dynamic array for student identification numbers, then the
size of the class can be entered as input to the program and the dynamic array
can be created to be exactly that size.

Dynamic arrays are created using the new operator. The creation and use
of dynamic arrays is surprisingly simple. Since array variables are pointer
variables, you can use the new operator to create dynamic variables that are
arrays and treat these dynamic array variables as if they were ordinary arrays.
For example, the following creates a dynamic array variable with ten array
elements of type double:

typedef double* DoublePtr;
DoublePtr p;
p = new double [10];

To obtain a dynamic array of elements of any other type, simply replace
double with the desired type. To obtain a dynamic array variable of any other
size, simply replace 10 with the desired size.

There are also a number of less obvious things to notice about this example.
First, the pointer type that you use for a pointer to a dynamic array is the same as
the pointer type you would use for a single element of the array. For instance, the
pointer type for an array of elements of type double is the same as the pointer
type you would use for a simple variable of type double. The pointer to the array
is actually a pointer to the first indexed variable of the array. In the previous
example, an entire array with ten indexed variables is created and the pointer p is
left pointing to the first of these ten indexed variables.

Also notice that when you call new, the size of the dynamic array is given
in square brackets after the type, which in this example is the type double.
This tells the computer how much storage to reserve for the dynamic array. If
you omit the square brackets and the 10, the computer will allocate enough
storage for only one variable of type double, rather than for an array of ten
indexed variables of type double. As illustrated in Display 9.6, you can use an
int variable in place of the constant 10 so that the size of the dynamic array
can be read into the program.

The program in Display 9.6 sorts a list of numbers. This program works
for lists of any size because it uses a dynamic array to hold the numbers. The
size of the array is determined when the program is run. The user is asked how
many numbers there will be, and then the new operator creates a dynamic
array of that size. The size of the dynamic array is given by the variable array_
size.

Notice the delete statement, which destroys the dynamic array variable
a in Display 9.6. Since the program is about to end anyway, we did not really
need this delete statement; however, if the program went on to do other

Creating a
dynamic array

	 9.2  Dynamic Arrays	 525

Display 9.6   A Dynamic Array (part 1of 2)

 1 //Sorts a list of numbers entered at the keyboard.
 2 #include <iostream>
 3 #include <cstdlib>
 4 #include <cstddef>
 5
 6 typedef int* IntArrayPtr;
 7
 8 void fill_array(int a[], int size);
 9 //Precondition: size is the size of the array a.
10 //Postcondition: a[0] through a[size− 1] have been
11 //filled with values read from the keyboard.
12
13 void sort(int a[], int size);
14 //Precondition: size is the size of the array a.
15 //The array elements a[0] through a[size—1] have values.
16 //Postcondition: The values of a[0] through a[size—1] have been rearranged
17 //so that a[0] <= a[1] <= ... <= a[size—1].
18
19 int main()
20 {
21 using namespace std;
22 cout << "This program sorts numbers from lowest to highest.\n";
23
24 int array_size;
25 cout << "How many numbers will be sorted? ";
26 cin >> array_size;
27
28 IntArrayPtr a;
29 a = new int[array_size];
30
31 fill_array(a, array_size);
32 sort(a, array_size);
33
34 cout << "In sorted order the numbers are:\n";
35 for (int index = 0; index < array_size; index++)
36 cout << a[index] << " ";
37 cout << endl;
38
39 delete [] a;
40
41 return 0;
42 }
43
44 //Uses the library iostream:
45 void fill_array(int a[], int size)
46 {

(continued)

Ordinary array
parameters

The dynamic array a is
used like an ordinary array.

526	 Chapter 9 /  Pointers and Dynamic Arrays

things with dynamic variables, you would want such a delete statement so
that the memory used by this dynamic array is returned to the freestore. The
delete statement for a dynamic array is similar to the delete statement you
saw earlier, except that with a dynamic array you must include an empty pair
of square brackets, like so:

delete [] a;

The square brackets tell C++ that a dynamic array variable is being eliminated,
so the system checks the size of the array and removes that many indexed
variables. If you omit the square brackets, you would be telling the computer
to eliminate only one variable of type int. For example,

delete a;

is not legal, but the error is not detected by most compilers. The ANSI C++
standard says that what happens when you do this is “undefined.” That means
the author of the compiler can have this do anything that is convenient—
convenient for the compiler writer, not for you. Even if it does something
useful, you have no guarantee that either the next version of that compiler or
any other compiler you compile this code with will do the same thing. The
moral is simple: Always use the

delete [] array_ptr;

syntax when you are deleting memory that was allocated with something like

array_ptr = new MyType[37];

You create a dynamic array with a call to new using a pointer, such as the
pointer a in Display 9.6. After the call to new, you should not assign any other
pointer value to this pointer variable, because that can confuse the system
when the memory for the dynamic array is returned to the freestore with a call
to delete.

DISPLAY 9.6  A Dynamic Array (part 2 of 2)

47 using namespace std;
48 cout << "Enter " << size << " integers.\n";
49 for (int index = 0; index < size; index++)
50 cin >> a[index];
51 }
52
53 void sort(int a[], int size)

 �<Any implementation of sort may be used. This may or may not require some additional
function definitions. The implementation need not even know that sort will be called
with a dynamic array. For example, you can use the implementation in Display 7.12
(with suitable adjustments to parameter names).>

	 9.2  Dynamic Arrays	 527

Dynamic arrays are created using new and a pointer variable. When
your program is finished using a dynamic array, you should return the array
memory to the freestore with a call to delete. Other than that, a dynamic
array can be used just like any other array.

Self-Test Exercises

	  9.	 Write a type definition for pointer variables that will be used to point to
dynamic arrays. The array elements are to be of type char. Call the type
CharArray.

How to Use a Dynamic Array

■	 Define a pointer type: Define a type for pointers to variables of the same
type as the elements of the array. For example, if the dynamic array is an
array of double, you might use the following:

typedef double* DoubleArrayPtr;

■	 Declare a pointer variable: Declare a pointer variable of this defined type.
The pointer variable will point to the dynamic array in memory and will serve
as the name of the dynamic array.

DoubleArrayPtr a;

■	 Call new: Create a dynamic array using the new operator:

a = new double[array_size];

	 The size of the dynamic array is given in square brackets as in the example
above. The size can be given using an int variable or other int expression.
In the example above, array_size can be a variable of type int whose
value is determined while the program is running.

■	 Use like an ordinary array: The pointer variable, such as a, is used just like
an ordinary array. For example, the indexed variables are written in the usual
way: a[0], a[1], and so forth. The pointer variable should not have any
other pointer value assigned to it, but should be used like an array variable.

■	 Call delete[]: When your program is finished with the dynamic variable,
use delete and empty square brackets along with the pointer variable to
eliminate the dynamic array and return the storage that it occupies to the
freestore for reuse. For example:

delete [] a;

528	 Chapter 9 /  Pointers and Dynamic Arrays

	10.	 Suppose your program contains code to create a dynamic array as follows:

int *entry;
entry = new int[10];

so that the pointer variable entry is pointing to this dynamic array. Write
code to fill this array with ten numbers typed in at the keyboard.

	11.	 Suppose your program contains code to create a dynamic array as in Self-
Test Exercise 10, and suppose the pointer variable entry has not had its
(pointer) value changed. Write code to destroy this new dynamic array
and return the memory it uses to the freestore.

	12.	 What is the output of the following code fragment? The code is assumed
to be embedded in a correct and complete program.

int a[10];
int *p = a;
int i;
for (i = 0; i < 10; i++)
 a[i] = i;

for (i = 0; i < 10; i++)
 cout << p[i] << " ";
cout << endl;

	13.	 What is the output of the following code fragment? The code is assumed
to be embedded in a correct and complete program.

int array_size = 10;
int *a;
a = new int [array_size];
int *p = a;
int i;
for (i = 0; i < array_size; i++)
 a[i] = i;
p[0] = 10;

for (i = 0; i < array_size; i++)
 cout << a[i] << " ";
cout << endl;

Pointer Arithmetic (Optional)

There is a kind of arithmetic you can perform on pointers, but it is an
arithmetic of addresses, not an arithmetic of numbers. For example, suppose
your program contains the following code:

typedef double* DoublePtr;
DoublePtr d;
d = new double[10];

	 9.2  Dynamic Arrays	 529

After these statements, d contains the address of the indexed variable
d[0]. The expression d + 1 evaluates to the address of d[1], d + 2 is the
address of d[2], and so forth. Notice that although the value of d is an address
and an address is a number, d+1 does not simply add 1 to the number in d.
If a variable of type double requires 8 bytes (eight memory locations) and d
contains the address 2001, then d+1 evaluates to the memory address 2009.
Of course, the type double can be replaced by any other type and then pointer
addition moves in units of variables for that type.

This pointer arithmetic gives you an alternative way to manipulate arrays.
For example, if array_size is the size of the dynamic array pointed to by d,
then the following will output the contents of the dynamic array:

for (int i = 0; i < array_size; i++)
 cout << *(d + i)<< " ";

This code is equivalent to the following:

for(int i = 0; i < array_size; i++)
 cout << d[i] << " ";

You may not perform multiplication or division of pointers. All you can
do is add an integer to a pointer, subtract an integer from a pointer, or subtract
two pointers of the same type. When you subtract two pointers, the result is
the number of indexed variables between the two addresses. Remember, for
subtraction of two pointer values, these values must point into the same
array! It makes little sense to subtract a pointer that points into one array from
another pointer that points into a different array. You can use the increment
and decrement operators ++ and −−. For example, d++ will advance the value
of d so that it contains the address of the next indexed variable, and d−− will
change d so that it contains the address of the previous indexed variable.

Self-Test Exercises

These exercises apply to the optional section on pointer arithmetic.

	14.	 What is the output of the following code fragment? The code is assumed
to be embedded in a correct and complete program.

int array_size = 10;
int *a;
a = new int[array_size];
int i;
for (i = 0; i < array_size; i++)
 *(a + i) = i;

for (i = 0; i < array_size; i++)
 cout << a[i] << " ";
cout << endl;

Dynamic Arrays and Pointer
Arithmetic

VideoNote

530	 Chapter 9 /  Pointers and Dynamic Arrays

	15.	 What is the output of the following code fragment? The code is assumed
to be embedded in a correct and complete program.

int array_size = 10;
int *a;
a = new int[array_size];
int i;
for (i = 0; i < array_size; i++)
 a[i] = i;
while (*a < 9)
{
 a++;
 cout << *a << " ";
}
cout << endl;

Multidimensional Dynamic Arrays (Optional)

You can have multidimensional dynamic arrays. You just need to remember
that multidimensional arrays are arrays of arrays, or arrays of arrays of
arrays, or so forth. For example, to create a two-dimensional dynamic
array, you must remember that it is an array of arrays. To create a two-
dimensional array of integers, you first create a one-dimensional dynamic
array of pointers of type int*, which is the type for a one-dimensional
array of ints. Then you create a dynamic array of ints for each indexed
variable of the array of pointers.

A type definition may help to keep things straight. The following is the
variable type for an ordinary one-dimensional dynamic array of ints:

typedef int* IntArrayPtr;

To obtain a 3-by-4 array of ints, you want an array whose base type is
IntArrayPtr. For example:

IntArrayPtr *m = new IntArrayPtr[3];

This is an array of three pointers, each of which can name a dynamic array of
ints, as follows:

for (int i = 0; i < 3; i++)
 m[i] = new int[4];

The resulting array m is a 3-by-4 dynamic array. A simple program to illustrate
this is given in Display 9.7.

Be sure to notice the use of delete in Display 9.7. Since the dynamic
array m is an array of arrays, each of the arrays created with new in the for
loop must be returned to the freestore manager with a call to delete[];

	 9.2  Dynamic Arrays	 531

Display 9.7   A Two-Dimensional Dynamic Array (part 1 of 2)

 1 #include <iostream>
 2 using namespace std;
 3
 4 typedef int* IntArrayPtr;
 5
 6 int main()
 7 {
 8 int d1, d2;
 9 cout << "Enter the row and column dimensions of the array:\n";
10 cin >> d1 >> d2;
11
12 IntArrayPtr *m = new IntArrayPtr[d1];
13 int i, j;
14 for (i = 0; i < d1; i++)
15 m[i] = new int[d2];
16 //m is now a d1 by d2 array.
17
18 cout << "Enter " << d1 << " rows of "
19 << d2 << " integers each:\n";
20 for (i = 0; i < d1; i++)
21 for (j = 0; j < d2; j++)
22 cin >> m[i][j];
23
24 cout << "Echoing the two-dimensional array:\n";
25 for (i = 0; i < d1; i++)
26 {
27 for (j = 0; j < d2; j++)
28 cout << m[i][j] << " ";
29 cout << endl;
30 }
31 for (i = 0; i < d1; i++)
32 delete[] m[i];
33 delete[] m;
34
35 return 0;
36 }

(continued)

then, the array m itself must be returned to the freestore with another
call to delete[]. There must be one call to delete[] for each call to
new that created an array. (Since the program ends right after the calls to
delete[], we could safely omit these calls, but we wanted to illustrate
their usage.)

Note that there must be one call to delete[]
for each call to new that created an array.
(These calls to delete[] are not really
needed, since the program is ending, but in
another context it could be important to
include them.)

532	 Chapter 9 /  Pointers and Dynamic Arrays

Chapter Summary

■	 A pointer is a memory address, so a pointer provides a way to indirectly
name a variable by naming the address of the variable in the computer’s
memory.

■	 Dynamic variables are variables that are created (and destroyed) while a
program is running.

■	 Memory for dynamic variables is in a special portion of the computer’s
memory called the freestore. When a program is finished with a dynamic
variable, the memory used by the dynamic variable can be returned to the
freestore for reuse; this is done with a delete statement.

■	 A dynamic array is an array whose size is determined when the program is
running. A dynamic array is implemented as a dynamic variable of an array
type.

Answers to Self-Test Exercises

	  1.	 A pointer is the memory address of a variable.

	  2.	 To the unwary, or to the neophyte, this looks like two objects of type
pointer to int, that is, int*. Unfortunately, the * binds to the identifier,
not to the type (that is, not to the int). The result is that this declaration
declares int_ptr1 to be an int pointer, while int_ptr2 is just an ordinary
int variable.

Display 9.7   A Two-Dimensional Dynamic Array (part2 of 2)

Sample Dialogue

Enter the row and column dimensions of the array:

3 4

Enter 3 rows of 4 integers each:

1 2 3 4

5 6 7 8

9 0 1 2

Echoing the two-dimensional array:

1 2 3 4

5 6 7 8

9 0 1 2

	 Practice Programs	 533

	  3.	 int *p; //This declares a pointer variable that can
 //hold a pointer to an int variable.
*p = 17; //Here, * is the dereference operator.
//This assigns 17 to the memory location pointed to by p.

	  4.		 10 20
	 20 20
	 30 30

If you replace *p1 = 30; with *p2 = 30;, the output would be the same.

	  5.		 10  20
	 20 20
	 30 20

	  6.	 delete p;

	  7.	 typedef int* NumberPtr;
NumberPtr my_point;

	  8.	 The new operator takes a type for its argument. new allocates space on the
freestore of an appropriate size for a variable of the type of the argument.
It returns a pointer to that memory (that is, a pointer to that new dynamic
variable), provided there is enough available memory in the freestore. If
there is not enough memory available in the freestore, your program ends.

	  9.	 typedef char* CharArray;

	10.	 cout << "Enter 10 integers:\n";
		 for (int i = 0; i < 10; i++)
		 cin >> entry[i];

	11.	 delete [] entry;

	12.	 0 1 2 3 4 5 6 7 8 9

	13.	 10 1 2 3 4 5 6 7 8 9

	14.	 0 1 2 3 4 5 6 7 8 9

	15.	 1 2 3 4 5 6 7 8 9

Practice Programs

Practice Programs can generally be solved with a short program that directly applies
the programming principles presented in this chapter.

	  1.	 In the C programming language there is no pass-by-reference syntax to pass
a variable by reference to a function. Instead a variable is passed by pointer
(just to be confusing, sometimes passing by pointer is referred to as pass by
reference). This Practice Program asks you to do the same thing as C, which in

534	 Chapter 9 /  Pointers and Dynamic Arrays

practice would be simpler to implement using C++’s reference parameter syn-
tax. Here is the header for a function that takes as input a pointer to an integer:

void addOne(int *ptrNum)

	 	 Complete the function so it adds one to the integer referenced by
ptrNum. Write a main function where an integer variable is defined, give
it an initial value, call addOne, and output the variable. It should be
incremented by 1.

	  2.	 Write a program that asks the user to input an integer named numDoubles.
Create a dynamic array that can store numDoubles doubles and make a loop
that allows the user to enter a double into each array entry. Loop through the
array, calculate the average, and output it. Delete the memory allocated to
your dynamic array before exiting.

	  3.	 This Practice Program requires that you read the optional section about
pointer arithmetic. Complete the function isPalindrome so that it returns
true if the string cstr is a palindrome (the same backwards as forwards)
and false if it is not. The function uses the cstring library.

bool isPalindrome(char* cstr)
{
   char* front = cstr;
   char* back = cstr + strlen(cstr)-1;

   while (front < back)
   {
    // Complete code here
   }
   return true;
}

		 Here is a sample main function for quick and dirty testing:

int main()
{
 char s1[50] = "neveroddoreven";
 char s2[50] = "not a palindrome";
 cout << isPalindrome(s1) << endl; // true
 cout << isPalindrome(s2) << endl; // false
 return 0;
}

Programming Projects

Programming Projects require more problem-solving than Practice Programs and
can usually be solved many different ways. Visit www.myprogramminglab.com to
complete many of these Programming Projects online and get instant feedback.

	  1.	 Do Programming Project 7 in Chapter 7 using a dynamic array. In this
version of the problem, use dynamic arrays to store the digits in each large

www.myprogramminglab.com

	 Programming Projects	 535

integer. Allow an arbitrary number of digits instead of capping the number
of digits at 20.

	  2.	 Do Programming Project 3 in Chapter 7. In this version of the problem,
return a new dynamic array where all repeated letters are deleted instead of
modifying the partially filled array. Don’t forget to free the memory allo-
cated for these returned dynamic arrays when the data is no longer needed.

	  3.	 Do Programming Project 11 in Chapter 7 using a dynamic array (or arrays).
In this version, your program will ask the user how many rows the plane
has and will handle that many rows (and so not always assume the plane
has 7 rows as it did in Programming Project 11 of Chapter 7).

	  4.	 Write a function that takes a C string as an input parameter and reverses the
string. The function should use two pointers, front and rear. The front pointer
should initially reference the first character in the string, and the rear pointer
should initially reference the last character in the string. Reverse the string
by swapping the characters referenced by front and rear, then increment front
to point to the next character and decrement rear to point to the preceding
character, and so on, until the entire string is reversed. Write a main program
to test your function on various strings of both even and odd length.

	  5.	 You run four computer labs. Each lab contains computer stations that are
numbered as shown in the table below:

Lab Number Computer Station Numbers

1 1–5

2 1–6

3 1–4

4 1–3

Each user has a unique five-digit ID number. Whenever a user logs on, the
user’s ID, lab number, and the computer station number are transmitted
to your system. For example, if user 49193 logs onto station 2 in lab 3,
then your system receives (49193, 2, 3) as input data. Similarly, when
a user logs off a station, then your system receives the lab number and
computer station number.

Write a computer program that could be used to track, by lab, which user
is logged onto which computer. For example, if user 49193 is logged into
station 2 in lab 3 and user 99577 is logged into station 1 of lab 4, then
your system might display the following:

Lab Number	Computer Stations
1	 1: empty 2: empty 3: empty 4: empty 5: empty
2	 1: empty 2: empty 3: empty 4: empty 5: empty 6: empty
3	 1: empty 2: 49193 3: empty 4: empty
4	 1: 99577 2: empty 3: empty

536	 Chapter 9 /  Pointers and Dynamic Arrays

Create a menu that allows the administrator to simulate the transmission
of information by manually typing in the login or logoff data. Whenever
someone logs in or out, the display should be updated. Also write a search
option so that the administrator can type in a user ID and the system will
output what lab and station number that user is logged into, or “None” if
the user ID is not logged into any computer station.

You should use a fixed array of length 4 for the labs. Each array entry
points to a dynamic array that stores the user login information for each
respective computer station.

The structure is shown in the figure below. This structure is sometimes
called a ragged array since the columns are of unequal length.

	6.	 One problem with dynamic arrays is that once the array is created using the
new operator, the size cannot be changed. For example, you might want to
add or delete entries from the array as you can with a vector. This project
asks you to create functions that use dynamic arrays to emulate the behav-
ior of a vector.

First, write a program that creates a dynamic array of five strings. Store
five names of your choice into the dynamic array. Next, complete the
following two functions:

string* addEntry(�string *dynamicArray, int &size, string
newEntry);

This function should create a new dynamic array one element larger
than dynamicArray, copy all elements from dynamicArray into the
new array, add the new entry onto the end of the new array, increment
size, delete dynamicArray, and return the new dynamic array.

string* deleteEntry(string *dynamicArray, int &size, string
 entryToDelete);

This function should search dynamicArray for entryToDelete. If not
found, the request should be ignored and the unmodified dynamicArray

Lab Array Dynamic Arrays for Computer Stations

Solution to Programming
Project 9.6

VideoNote

	 Programming Projects	 537

returned. If found, create a new dynamic array one element smaller than
dynamicArray. Copy all elements except entryToDelete into the new
array, delete dynamicArray, decrement size, and return the new dynamic
array.

Test your functions by adding and deleting several names to the array
while outputting the contents of the array. You will have to assign the
array returned by addEntry or deleteEntry back to the dynamic array
variable in your main function.

	7.	 What if C++ had no built-in facility for two-dimensional arrays? It is pos-
sible to emulate them yourself with wrapper functions around a one-
dimensional array. The basic idea is shown below. Consider the following
two-dimensional array:

int matrix[2][3];

It can be visualized as a table:

matrix[0][0] matrix[0][1] matrix[0][2]

matrix[1][0] matrix[1][1] matrix[1][2]

The two-dimensional array can be mapped to storage in a one-dimensional
array where each row is stored in consecutive memory locations (your
compiler actually does something very similar to map two-dimensional
arrays to memory).

int matrix1D[6];

matrix[0][0] matrix1D[0][1] matrix1D[0][2] matrix1D[1][0] matrix1D[1][1] matrix1D[1][2]

Here, the mapping is as follows:

matrix[0][0] would be stored in matrix1D[0]
matrix[0][1] would be stored in matrix1D[1]
matrix[0][2] would be stored in matrix1D[2]
matrix[1][0] would be stored in matrix1D[3]
matrix[1][1] would be stored in matrix1D[4]
matrix[1][2] would be stored in matrix1D[5]

Based on this idea, complete the definitions for the following functions:

int* create2DArray(int rows, int columns);

This creates a one-dimensional dynamic array to emulate a two-
dimensional array and returns a pointer to the one-dimensional dynamic
array.

538	 Chapter 9 /  Pointers and Dynamic Arrays

rows is the number of rows desired in the two-dimensional array.
columns is the number of columns desired in the two-dimensional

array.
Return value: a pointer to a one-dimensional dynamic array large

enough to hold a two-dimensional array of size rows * columns.

Note that int ptr = create2DArray(2,3); would create an array
analogous to that created by int ptr[2][3];

void set(int *arr, int rows, int columns,
 int desired_row, int desired_column, int val);

This stores val into the emulated two-dimensional array at position
desired_row, desired_column. The function should print an error
message and exit if the desired indices are invalid.

arr is the one-dimensional array used to emulate a two-dimensional
array.

rows is the total number of rows in the two-dimensional array.
columns is the total number of columns in the two-dimensional

array.
desired_row is the zero-based index of the row the caller would like

to access.
desired_column is the zero-based index of the column the caller would

like to access.
val is the value to store at desired_row and desired_column.

int get(int *arr, int rows, int columns,
 int desired_row, int desired_column);

This returns the value in the emulated two-dimensional array at position
desired_row, desired_column. The function should print an error
message and exit if the desired indices are invalid.

arr is the one-dimensional array used to emulate a two-dimensional
array.

rows is the total number of rows in the two-dimensional array.
columns is the total number of columns in the two-dimensional

array.
desired_row is the zero-based index of the row the caller would like

to access.
desired_column is the zero-based index of the column the caller would

like to access.

Create a suitable test program that invokes all three functions.

	8.	 Write a program that outputs a histogram of student grades for an
assignment. The program should input each student’s grade as an integer

and store the grade in a vector (covered in Chapter 8). Grades should be
entered until the user enters -1 for a grade. The program should then
scan through the vector and compute the histogram. In computing the
histogram, the minimum value of a grade is 0 but your program should
determine the maximum value entered by the user. Use a dynamic array
to store the histogram. Output the histogram to the console. For example,
if the input is:

20
30
4
20
30
30
-1

Then the output should be:

Number of 4's: 1
Number of 20's: 2
Number of 30's: 3

	 Programming Projects	 539

This page intentionally left blank

Defining Classes

10.1  Structures  542
Structures for Diverse Data  542
Pitfall: Forgetting a Semicolon in a Structure

Definition  547
Structures as Function Arguments  548
Programming Tip: Use Hierarchical Structures  549
Initializing Structures  551

10.2 C lasses  554
Defining Classes and Member Functions  554
Public and Private Members  559
Programming Tip: Make All Member Variables

Private  567
Programming Tip: Define Accessor and Mutator

Functions  567
Programming Tip: Use the Assignment Operator with

Objects  569

Programming Example: BankAccount
Class—Version 1  570

Summary of Some Properties of Classes  574
Constructors for Initialization  576
Programming Tip: Always Include a Default

Constructor  584
Pitfall: Constructors with No Arguments  585
Member Initializers and Constructor Delegation

in C++11  587

10.3 A bstract Data Types  588
Classes to Produce Abstract Data Types  589
Programming Example: Alternative Implementation

of a Class  593

10.4  Introduction to Inheritance  598
Derived Classes  599
Defining Derived Classes  600

10

Chapter Summary  604
Answers to Self-Test Exercises  605

Practice Programs  611
Programming Projects  612

Introduction

In Chapter 6 you learned how to use classes and objects, but not how to define
classes. In this chapter we will show you how to define your own classes. A
class is a data type. You can use the classes you define in the same way you
use the predefined data types, such as int, char, and ifstream. However,
unless you define your classes the right way, they will not be as well behaved
as the predefined data types. Thus, we spend a good deal of time explaining
what makes for a good class definition and give you some techniques to help
you define your classes in a way that is consistent with modern programming
practices.

Before we introduce classes, we will first present structures (also known
as structs). When used in the way we present them here, a structure is a
kind of simplified class and structures will prove to be a stepping-stone to
understanding classes.

Prerequisites

This chapter uses material from Chapters 2 through 6.

10.1  Structures

As we said in Chapter 6, an object is a variable that has member functions,
and a class is a data type whose variables are objects. Thus, the definition of a
class should be a data type definition that describes two things: (1) what kinds
of values the variables can hold and (2) what the member functions are. We
will approach class definitions in two steps. We will first tell you how to give
a type definition for a structure. A structure (of the kind discussed here) can be
thought of as an object without any member functions. After you learn about
structures, it will be a natural extension to define classes.

Structures for Diverse Data

Sometimes it is useful to have a collection of values of different types and to
treat the collection as a single item. For example, consider a bank certificate
of deposit, which is often called a CD. A CD is a bank account that does not
allow withdrawals for a specified number of months. A CD naturally has

542

“The time has come,” the Walrus said,
“To talk of many things:
Of shoes—and ships—and sealing wax—
Of cabbages—and kings—”

Lewis Carroll, Through the Looking-Glass

three pieces of data associated with it: the account balance, the interest rate
for the account, and the term, which is the number of months until maturity.
The first two items can be represented as values of type double, and the
number of months can be represented as a value of type int. Display 10.1
shows the definition of a structure called CDAccount that can be used for this
kind of account. The definition is embedded in a complete program that
demonstrates this structure type definition. As you can see from the sample
dialogue, this particular bank specializes in short-term CDs, so the term will
always be 12 or fewer months. Let’s look at how this sample structure is
defined and used.

The structure definition is as follows:

struct CDAccount
{
 double balance;
 double interest_rate;
 int term; //months until maturity
};

The keyword struct announces that this is a structure type definition. The
identifier CDAccount is the name of the structure type. The name of a structure
type is called the structure tag. The tag can be any legal identifier (but not
a keyword). Although this convention is not required by the C++ language,
structure tags are usually spelled with a mix of uppercase and lowercase letters,
beginning with an uppercase letter. The identifiers declared inside the braces,
{}, are called member names. As illustrated in this example, a structure type
definition ends with both a brace, }, and a semicolon.

A structure definition is usually placed outside of any function definition
(in the same way that globally defined constant declarations are placed
outside of all function definitions). The structure type is then available to all
the code that follows the structure definition.

Once a structure type definition has been given, the structure type can be
used just like the predefined types int, char, and so forth. For example, the
following will declare two variables, named my_account and your_account,
both of type CDAccount:

CDAccount my_account, your_account;

A structure variable can hold values just like any other variable can hold
values. A structure value is a collection of smaller values called member
values. There is one member value for each member name declared in the
structure definition. For example, a value of the type CDAccount is a collection
of three member values: two of type double and one of type int. The member
values that together make up the structure value are stored in member variables,
which we discuss next.

Each structure type specifies a list of member names. In Display 10.1 the
structure CDAccount has the three member names balance, interest_rate,

	 10.1  Structures	 543

Where to place
a structure
definition

544	 Chapter 10 /  Defining Classes

Display 10.1   A Structure Definition (part 1 of 2)

 1 //Program to demonstrate the CDAccount structure type.
 2 #include <iostream>
 3 using namespace std;
 4 //Structure for a bank certificate of deposit:
 5 struct CDAccount
 6 {
 7 double balance;
 8 double interest_rate;
 9 int term; //months until maturity
10 };
11
12
13 void get_data(CDAccount& the_account);
14 //Postcondition: the_account.balance and the_account.interest_rate
15 //have been given values that the user entered at the keyboard.
16
17
18 int main()
19 {
20 CDAccount account;
21 get_data(account);
22
23 double rate_fraction, interest;
24 rate_fraction = account.interest_rate / 100.0;
25 interest = account.balance * rate_fraction * (account.term / 12.0);
26 account.balance = account.balance + interest;
27
28 cout.setf(ios::fixed);
29 cout.setf(ios::showpoint);
30 cout.precision(2);
31 cout << "When your CD matures in "
32 << account.term << " months,\n"
33 << "it will have a balance of $"
34 << account.balance << endl;
35 return 0;
36 }
37
38 //Uses iostream:
39 void get_data(CDAccount& the_account)
40 {
41 cout << "Enter account balance: $";
42 cin >> the_account.balance;
43 cout << "Enter account interest rate: ";
44 cin >> the_account.interest_rate;
45 cout << "Enter the number of months until maturity\n"
46 << "(must be 12 or fewer months): ";
47 cin >> the_account.term;
48 }

(continued)

and term. Each of these member names can be used to pick out one smaller
variable that is a part of the larger structure variable. These smaller variables
are called member variables. Member variables are specified by giving the
name of the structure variable followed by a dot (that is, followed by a
period) and then the member name. For example, if account is a structure
variable of type CDAccount (as declared in Display 10.1), then the structure
variable account has the following three member variables:

account.balance
account.interest_rate
account.term

The first two member variables are of type double, and the last is of type
int. These member variables can be used just like any other variables of those
types. For example, the member variables above can be given values with the
following three assignment statements:

account.balance = 1000.00;
account.interest_rate = 4.7;
account.term = 11;

The result of these three statements is diagrammed in Display 10.2. Member
variables can be used in all the ways that ordinary variables can be used.
For example, the following line from the program in Display 10.1 will add
the value contained in the member variable account.balance and the value
contained in the ordinary variable interest and will then place the result in
the member variable account.balance:

account.balance = account.balance + interest;

Notice that you specify a member variable for a structure variable by
using the dot operator in the same way you used it in Chapter 6, where the
dot operator was used to specify a member function of a class. The only
difference is that in the case of structures, the members are variables rather
than functions.

	 10.1  Structures	 545

Display 10.1   A Structure Definition (part 2 of 2)

Sample Dialogue

Enter account balance: $100.00

Enter account interest rate: 10.0

Enter the number of months until maturity

(must be 12 or fewer months): 6

When your CD matures in 6 months,

it will have a balance of $105.00

546	 Chapter 10 /  Defining Classes

Display 10.2   Member Values

 1 struct CDAccount
 2 {
 3 double balance;
 4 double interest_rate;
 5 int term; //months until maturity
 6 };
 7 int main()
 8 {
 9 CDAccount account;
10 ...
11
12

13 account.balance = 1000.00;
14
15

16 account.interest_rate = 4.7;
17
18

19 account.term = 11;
20
21
22

balance ? }interest_rate ? account

term ?

balance 1000.00 }interest_rate ? account

term ?

balance 1000.00 }interest_rate 4.7 account

term ?

balance 1000.00 }interest_rate 4.7 account

term 11

Two or more structure types may use the same member names. For
example, it is perfectly legal to have the following two type definitions in the
same program:

struct FertilizerStock
{
 double quantity;
 double nitrogen_content;
};

and

struct CropYield
{
 int quantity;
 double size;
};

This coincidence of names will produce no problems. For example, if you
declare the following two structure variables:

Reusing member
names

FertilizerStock super_grow;
CropYield apples;

then the quantity of super_grow fertilizer is stored in the member variable
super_grow.quantity and the quantity of apples produced is stored in
the member variable apples.quantity. The dot operator and the structure
variable specify which quantity is meant in each instance.

A structure value can be viewed as a collection of member values. Viewed
this way, a structure value is many different values. A structure value can also
be viewed as a single (complex) value (which just happens to be made up
of member values). Since a structure value can be viewed as a single value,
structure values and structure variables can be used in the same ways that you
use simple values and simple variables of the predefined types such as int. In
particular, you can assign structure values using the equal sign. For example,
if apples and oranges are structure variables of the type CropYield defined
earlier, then the following is perfectly legal:

apples = oranges;

This assignment statement is equivalent to:

apples.quantity = oranges.quantity;
apples.size = oranges.size;

Pitfall  Forgetting a Semicolon in a Structure Definition

When you add the final brace, }, to a structure definition, it feels like the
structure definition is finished, but it is not. You must also place a semicolon
after that final brace. There is a reason for this, even though the reason is a
feature that we will have no occasion to use. A structure definition is more
than a definition. It can also be used to declare structure variables. You are
allowed to list structure variable names between that final brace and that final
semicolon. For example, the following defines a structure called WeatherData
and declares two structure variables, data_point1 and data_point2, both of
type WeatherData:

struct WeatherData
{
 double temperature;
 double wind_velocity;
} data_point1, data_point2;

However, as we said, we will always separate a structure definition and the
declaration of variables of that structure type, so our structure definitions will
always have a semicolon immediately after the final brace.	 ■

	 10.1  Structures	 547

Structure
variables in
assignment
statements

548	 Chapter 10 /  Defining Classes

Structures as Function Arguments

A function can have call-by-value parameters of a structure type and/or call-
by-reference parameters of a structure type. The program in Display 10.1, for
example, includes a function named get_data that has a call-by-reference
parameter with the structure type CDAccount.

A structure type can also be the type for the value returned by a function.
For example, the following defines a function that takes three appropriate
arguments and returns a value of type CDAccount:

CDAccount shrink_wrap(double the_balance,
 double the_rate, int the_term)
{
 CDAccount temp;
 temp.balance = the_balance;
 temp.interest_rate = the_rate;
 temp.term = the_term;
 return temp;
}

Notice the local variable temp of type CDAccount; temp is used to build up a
complete structure value, which is then returned by the function. Once you

The Dot Operator

The dot operator is used to specify a member variable of a structure
variable.

Syntax

 Structure_Variable_Name.Member_Variable_Name

struct StudentRecord
{
 int student_number;
 char grade;
};

int main()
{
 StudentRecord your_record;
 your_record.student_number = 2001;
 your_record.grade = 'A';

Some writers call the dot operator the structure member access operator
although we will not use that term.

Dot operator

Functions can
return structures

	 10.1  Structures	 549

Structures within
structures

have defined the function shrink_wrap, you can give a value to a variable of
type CDAccount as illustrated by the following:

CDAccount new_account;
new_account = shrink_wrap(10000.00, 5.1, 11);

■ P rogramming Tip  Use Hierarchical Structures

Sometimes it makes sense to have structures whose members are themselves
smaller structures. For example, a structure type called PersonInfo, which can
be used to store a person’s height, weight, and birth date, can be defined as
follows:

struct Date
{
 int month;
 int day;
 int year;
};

struct PersonInfo
{
 double height; //in inches
 int weight; //in pounds
 Date birthday;
};

A structure variable of type PersonInfo is declared in the usual way:

PersonInfo person1;

If the structure variable person1 has had its value set to record a person’s
birth date, then the year the person was born can be output to the screen as
follows:

cout << person1.birthday.year;

The way to read such expressions is left to right, and very carefully. Starting
at the left end, person1 is a structure variable of type PersonInfo. To obtain
the member variable with the name birthday, use the dot operator as
follows:

person1.birthday

This member variable is itself a structure variable of type Date. Thus,
this member variable has member variables itself. A member variable
of the structure variable person1.birthday is obtained by adding a dot and
the member variable name, such as year, which produces the expression
person1.birthday.year shown previously.	 ■

550	 Chapter 10 /  Defining Classes

Simple Structure Types

You define a structure type as shown below. The Structure_Tag is the
name of the structure type.

Syntax

struct Structure_Tag
{
 Type_1 Member_Variable_Name_1;
 Type_2 Member_Variable_Name_2;
 .
 .
 .
 Type_Last Member_Variable_Name_Last;
}; Do not forget this semicolon.

Example

struct Automobile
{
 int year;
 int doors;
 double horse_power;
 char model;
};

Although we will not use this feature, you can combine member
names of the same type into a single list separated by commas.
For example, the following is equivalent to the previous structure
definition:

struct Automobile
{
 int year, doors;
 double horse_power;
 char model;
};

Variables of a structure type can be declared in the same way as
variables of other types. For example:

Automobile my_car, your_car;

The member variables are specified using the dot operator. For example,

my_car.year, my_car.doors, my_car.horse_power, and
my_car.model.

	 10.1  Structures	 551

Initializing Structures

You can initialize a structure at the time that it is declared. To give a structure
variable a value, you follow it by an equal sign and a list of the member values
enclosed in braces. For example, the following definition of a structure type
for a date was given in the previous subsection:

struct Date
{
 int month;
 int day;
 int year;
};

Once the type Date is defined, you can declare and initialize a structure
variable called due_date as follows:

Date due_date = {12, 31, 2004};

Be sure to notice that the initializing values must be given in the order that
corresponds to the order of member variables in the structure type definition.
In this example, due_date.month receives the first initializing value of 12,
due_date.day receives the second value of 31, and due_date.year receives
the third value of 2004.

It is an error if there are more initializers than struct members. If
there are fewer initializer values than struct members, the provided values
are used to initialize data members, in order. Each data member without
an initializer is initialized to a zero value of an appropriate type for the
variable.

Self-Test Exercises

	  1.	 Given the following structure and structure variable declaration:

struct TermAccount
{
 double balance;
 double interest_rate;
 int term;
 char initial1;
 char initial2;
};
TermAccount account;

what is the type of each of the following? Mark any that are not correct.

a.	 account.balance

b.	 account.interest_rate

552	 Chapter 10 /  Defining Classes

c.	 TermAccount.term

d.	 savings_account.initial1

e.	 account.initial2

f.	 account

	  2.	 Consider the following type definition:

struct ShoeType
{
 char style;
 double price;
};

Given this structure type definition, what will be the output produced by
the following code?

ShoeType shoe1, shoe2;
shoe1.style ='A';
shoe1.price = 9.99;
cout << shoe1.style << " $" << shoe1.price << endl;
shoe2 = shoe1;

shoe2.price = shoe2.price/9;
cout << shoe2.style << " $" << shoe2.price << endl;

	  3.	 What is the error in the following structure definition? What is the
message your compiler gives for this error? State what the error is, in your
own words.

struct Stuff
{
 int b;
 int c;
}
int main()
{
 Stuff x;
 //other code
}

	  4.	 Given the following struct definition:

struct A
{
 int member_b;
 int member_c;
};

	 10.1  Structures	 553

declare x to have this structure type. Initialize the members of x, member_b
and member_c, to the values 1 and 2, respectively.

(Note: This requests an initialization, not an assignment of the members.
This distinction is important and will be made in a later chapter.)

	  5.	 Here is an initialization of a structure type. Tell what happens with each
initialization. Note any problems with these initializations.

struct Date
{
 int month;
 int day;
 int year;
};

a.	 Date due_date = {12, 21};

b.	 Date due_date = {12, 21, 20, 22};

c.	 Date due_date = {12, 21, 20, 22};

d.	 Date due_date = {12, 21, 22};

	  6.	 Write a definition for a structure type for records consisting of a person’s
wage rate, accrued vacation (which is some whole number of days), and
status (which is either hourly or salaried). Represent the status as one of
the two char values 'H' and 'S'. Call the type EmployeeRecord.

	  7.	 Give a function definition corresponding to the following function
declaration. (The type ShoeType is given in Self-Test Exercise 2.)

void read_shoe_record(ShoeType& new_shoe);
//Fills new_shoe with values read from the keyboard.

	  8.	 Give a function definition corresponding to the following function
declaration. (The type ShoeType is given in Self-Test Exercise 2.)

ShoeType discount(ShoeType old_record);
//Returns a structure that is the same as its argument,
//but with the price reduced by 10%.

	  9.	 Give the structure definition for a type named StockRecord that has two
member variables, one named shoe_info of the type ShoeType given in
Self-Test Exercise 2 and one named arrival_date of type Date given in
Self-Test Exercise 5.

	10.	 Declare a variable of type StockRecord (given in the previous exercise)
and write a statement that will set the year of the arrival date to 2006.

554	 Chapter 10 /  Defining Classes

10.2  Classes

I don’t care to belong to any club that will accept me as a member.

Groucho Marx, The Groucho Letters

Defining Classes and Member Functions

A class is a data type whose variables are objects. In Chapter 6 we described
an object as a variable that has member functions as well as the ability to hold
data values.1 Thus, within a C++ program, the definition of a class should be
a data type definition that describes what kinds of values the variables can
hold and also what the member functions are. A structure definition describes
some of these things. A structure is a defined type that allows you to define
values of the structure type by defining member variables. To obtain a class
from a structure, all you need to do is add some member functions.

A sample class definition is given in the program shown in Display 10.3.
The type DayOfYear defined there is a class definition for objects whose
values are dates, such as January 1 or July 4. These values can be used to
record holidays, birthdays, and other special dates. In this definition of
DayOfYear, the month is recorded as an int value, with 1 standing for
January, 2 standing for February, and so forth. The day of the month is
recorded in a second int member variable. The class DayOfYear has one
member function called output, which has no arguments and outputs the
month and day values to the screen. Let’s look at the definition for the class
DayOfYear in detail.

The definition of the class DayOfYear is shown near the top of Display
10.3. For the moment, ignore the line that contains the keyword public.
This line simply says that the member variables and functions have no
restriction on them. We will explain this line later in this chapter. The rest of
the definition of the class DayOfYear is very much like a structure definition,
except that it uses the keyword class instead of struct and it lists the
member function output (as well as the member variables month and day).
Notice that the member function output is listed by giving only its function
declaration. The definitions for the member functions are given elsewhere.
(In a C++ class definition, you can intermix the ordering of the member
variables and member functions in any way you wish, but the style we will
follow has a tendency to list the member functions before the member
variables.) Objects (that is, variables) of a class type are declared in the same
way as variables of the predefined types and in the same way as structure
variables.

1 The object is actually the value of the variable rather than the variable itself, but since
we use the variable to name the value it holds, we can simplify our discussion by ignor-
ing this nicety and talking as if the variable and its value were the same thing.

A member
function

	 10.2  Classes	 555

Display 10.3   Class with a Member Function (part 1 of 2)

 1 //Program to demonstrate a very simple example of a class.
 2 //A better version of the class DayOfYear will be given in
 Display 10.4.
 3 #include <iostream>
 4 using namespace std;

 5 class DayOfYear
 6 {
 7 public:
 8 void output();
 9 int month;
10 int day;
11 };

12 int main()
13 {
14 DayOfYear today, birthday;

15 cout << "Enter today's date:\n";
16 cout << "Enter month as a number: ";
17 cin >> today.month;
18 cout << "Enter the day of the month: ";
19 cin >> today.day;
20 cout << "Enter your birthday:\n";
21 cout << "Enter month as a number: ";
22 cin >> birthday.month;
23 cout << "Enter the day of the month: ";
24 cin >> birthday.day;

25 cout << "Today's date is ";
26 today.output();
27 cout << "Your birthday is ";
28 birthday.output();

29 if (today.month == birthday.month
30 && today.day == birthday.day)
31 cout << "Happy Birthday!\n";
32 else
33 cout << "Happy Unbirthday!\n";

34 return 0;
35 }

36 //Uses iostream:
37 void DayOfYear::output()
38 {
39 cout << "month = " << month
40 << ", day = " << day << endl;
41 }

(continued)

Member function declaration

Member function
definition

Calls to the member
function output

556	 Chapter 10 /  Defining Classes

Member functions for classes that you define are called in the same way
as we described in Chapter 6 for predefined classes. For example, the program
in Display 10.3 declares two objects of type DayOfYear in the following way:

DayOfYear today, birthday;

The member function output is called with the object today as follows:

today.output();

and the member function output is called with the object birthday as follows:

birthday.output();

Display 10.3   Class with a Member Function (part 2 of 2)

Sample Dialogue

Enter today's date:

Enter month as a number: 10

Enter the day of the month: 15

Enter your birthday:

Enter month as a number: 2

Enter the day of the month: 21

Today's date is month = 10, day = 15

Your birthday is month = 2, day = 21

Happy Unbirthday!

Calling member
functions

Defining member
functions

Encapsulation

Combining a number of items, such as variables and functions, into a
single package, such as an object of some class, is called encapsulation.

When a member function is defined, the definition must include the class
name because there may be two or more classes that have member functions
with the same name. In Display 10.3 there is only one class definition, but in
other situations you may have many class definitions, and each class may have
a member function called output. The definition for the member function
output of the class DayOfYear is shown in Display 10.3. The definition is
similar to an ordinary function definition, but there are some differences.

The heading of the function definition for the member function output is
as follows:

void DayOfYear::output()

	 10.2  Classes	 557

The operator :: is called the scope resolution operator, and it serves a
purpose similar to that of the dot operator. Both the dot operator and the scope
resolution operator are used to tell what a member function is a member of.
However, the scope resolution operator :: is used with a class name, whereas
the dot operator is used with objects (that is, with class variables). The scope
resolution operator consists of two colons with no space between them.
The class name that precedes the scope resolution operator is often called a
type qualifier, because it specializes (“qualifies”) the function name to one
particular type.

Look at the definition of the member function DayOfYear::output given
in Display 10.3. Notice that in the function definition of DayOfYear::output,
we used the member names month and day by themselves without first
giving the object and dot operator. That is not as strange as it may at first
appear. At this point we are simply defining the member function output.
This definition of output will apply to all objects of type DayOfYear, but at
this point we do not know the names of the objects of type DayOfYear that
we will use, so we cannot give their names. When the member function is
called, as in

today.output();

all the member names in the function definition are specialized to the name
of the calling object. So the function call above is equivalent to the following:

{
 cout << "month = " << today.month
 << ", day = " << today.day << endl;
}

In the function definition for a member function, you can use the
names of all members of that class (both the data members and the function
members) without using the dot operator.

Member variables
in function
definitions

Member Function Definition

A member function is defined the same way as any other function except
that the Class_Name and the scope resolution operator :: are given in
the function heading.

Syntax

Returned_Type Class_Name::Function_Name(Parameter_List)
{
 Function_Body_Statements
}

(continued)

558	 Chapter 10 /  Defining Classes

The Dot Operator and the Scope Resolution Operator

Both the dot operator and the scope resolution operator are used with
member names to specify what thing they are members of. For example,
suppose you have declared a class called DayOfYear and you declare an
object called today as follows:

DayOfYear today;

You use the dot operator to specify a member of the object today. For
example, output is a member function for the class DayOfYear (defined
in Display 10.3), and the following function call will output the data
values stored in the object today:

today.output();

You use the scope resolution operator :: to specify the class name when
giving the function definition for a member function. For example, the
heading of the function definition for the member function output
would be as follows:

void DayOfYear::output()

Remember, the scope resolution operator :: is used with a class
name, whereas the dot operator is used with an object of that
class.

Example

//Uses iostream:
void DayOfYear::output()
{
 cout << "month = " << month
 << ", day = " << day << endl;
}

The class definition for the example class DayOfYear above is given in
Display 10.3, where month and day are defined as the names of member
variables for the class DayOfYear. Note that month and day are not
preceded by an object name and dot.

	 10.2  Classes	 559

Self-Test Exercises

	11.	 Below we have redefined the class DayOfYear from Display 10.3 so
that it now has one additional member function called input. Write an
appropriate definition for the member function input.

class DayOfYear
{
public:
 void input();
 void output();
 int month;
 int day;
};

	12.	 Given the following class definition, write an appropriate definition for
the member function set:

class Temperature
{
public:
 void set(double new_degrees, char new_scale);
 //Sets the member variables to the values given as
 //arguments.

 double degrees;
 char scale; //'F' for Fahrenheit or 'C' for Celsius.
};

	13.	 Carefully distinguish between the meaning and use of the dot operator
and the scope resolution operator ::.

Public and Private Members

The predefined types such as double are not implemented as C++ classes, but
the people who wrote your C++ compiler did design some way to represent
values of type double in your computer. It is possible to implement the type
double in many different ways. In fact, different versions of C++ do implement
the type double in slightly different ways, but if you move your C++ program
from one computer to another with a different implementation of the type
double, your program should still work correctly.2 Classes are types that you
define, and the types that you define should behave as well as the predefined
types. You can build a library of your own class type definitions and use your
types as if they were predefined types. For example, you could place each class
definition in a separate file and copy it into any program that uses the type.

2 Sometimes this ideal is not quite realized, but in the ideal world it should be realized,
and at least for simple programs, it is realized even in the imperfect world that we live in.

560	 Chapter 10 /  Defining Classes

Your class definitions should separate the rules for using the class and
the details of the class implementation in as strong a way as was done for the
predefined types. If you change the implementation of a class (for example,
by changing some details in the definition of a member function in order to
make function calls run faster), then you should not need to change any of the
other parts of your programs. In order to realize this ideal, we need to describe
one more feature of class definitions.

Look back at the definition of the type DayOfYear given in Display 10.3.
The type DayOfYear is designed to hold values that represent dates such as
birthdays and holidays. We chose to represent these dates as two integers, one
for the month and one for the day of the month. We might later decide to
change the representation of the month from one variable of type int to three
variables of type char. In this changed version, the three characters would be
an abbreviation of the month’s name. For example, the three char values 'J',
'a', and 'n' would represent the month January. However, whether you use
a single member variable of type int to record the month or three member
variables of type char is an implementation detail that need not concern
a programmer who uses the type DayOfYear. Of course, if you change the
way the class DayOfYear represents the month, then you must change the
implementation of the member function output—but that is all you should
need to change. You should not need to change any other part of a program
that uses your class definition for DayOfYear. Unfortunately, the program in
Display 10.3 does not meet this ideal. For example, if you replace the one
member variable named month with three member variables of type char,
then there will be no member variable named month, so you must change
those parts of the program that perform input and also change the if-else
statement.

With an ideal class definition, you should be able to change the details of
how the class is implemented and the only things you should need to change
in any program that uses the class are the definitions of the member functions.
In order to realize this ideal, you must have enough member functions so that
you never need to access the member variables directly, but access them only
through the member functions. Then, if you change the member variables,
you need change only the definitions of the member functions to match your
changes to the member variables, and nothing else in your programs need
change. In Display 10.4 we have redefined the class DayOfYear so that it has
enough member functions to do everything we want our programs to do, and
so the program does not need to directly reference any member variables. If
you look carefully at the program in Display 10.4, you will see that the only
place the member variable names month and day are used is in the definitions
of the member functions. There is no reference to today.month, today.day,
bach_birthday.month, nor bach_birthday.day anywhere outside of the
definitions of member functions.

The program in Display 10.4 has one new feature that is designed
to ensure that no programmer who uses the class DayOfYear will ever

	 10.2  Classes	 561

Display 10.4   Class with Private Members (part 1 of 2)

 1 //Program to demonstrate the class DayOfYear.
 2 #include <iostream>
 3 using namespace std;

 4 class DayOfYear
 5 {
 6 public:
 7 void input();
 8 void output();

 9 void set(int new_month, int new_day);
10 //Precondition: new_month and new_day form a possible date.
11 //Postcondition: The date is reset according to the arguments.

12 int get_month();
13 //Returns the month, 1 for January, 2 for February, etc.

14 int get_day();
15 //Returns the day of the month.
16 private:
17 void check_date();
18 int month;
19 int day;
20 };

21 int main()
22 {
23 DayOfYear today, bach_birthday;
24 cout << "Enter today's date:\n";
25 today.input();
26 cout << "Today's date is ";
27 today.output();

28 bach_birthday.set(3, 21);
29 cout << "J. S. Bach's birthday is ";
30 bach_birthday.output();

31 if (today.get_month() == bach_birthday.get_month() &&
32 today.get_day() == bach_birthday.get_day())
33 cout << "Happy Birthday Johann Sebastian!\n";
34 else
35 cout << "Happy Unbirthday Johann Sebastian!\n";
36 return 0;
37 }
38 //Uses iostream:
39 void DayOfYear::input()
40 {
41 cout << "Enter the month as a number: ";

(continued)

This is an improved version
of the class DayOfYear that
we gave in Display 10.3.

Private member function

Private member variables

562	 Chapter 10 /  Defining Classes

Display 10.4   Class with Private Members (part 2 of 2)

42 cin >> month;
43 cout << "Enter the day of the month: ";
44 cin >> day;
45 check_date();
46 }
47
48 void DayOfYear::output()
 <The rest of the definition of DayOfYear::output is
 given in Display 10.3.>

49
50 void DayOfYear::set(int new_month, int new_day)
51 {
52 month = new_month;
53 day = new_day;
54 check_date();
55 }
56
57 void DayOfYear::check_date()
58 {
59 if ((month < 1) || (month > 12) || (day < 1) || (day > 31))
60 {
61 cout << "Illegal date. Aborting program.\n";
62 exit(1);
63 }
64 }
65
66 int DayOfYear::get_month()
67 {
68 return month;
69 }
70
71 int DayOfYear::get_day()
72 {
73 return day;
74 }

Sample Dialogue

Enter today's date:

Enter the month as a number: 3

Enter the day of the month: 21

Today's date is month = 3, day = 21

J. S. Bach's birthday is month = 3, day = 21

Happy Birthday Johann Sebastian!

Private members may be
used in member function
definitions (but not
elsewhere).

A better definition of
the member function
input would ask the
user to reenter the
date if the user enters
an incorrect date.

The member function check_date does
not check for all illegal dates, but it
would be easy to make the check complete
by making it longer. See Self-Test
Exercise 14.

The function exit is discussed in Chapter 6.
It ends the program.

	 10.2  Classes	 563

directly reference any of its member variables. Notice the line in the
definition of the class DayOfYear that contains the keyword private.
All the member variable names that are listed after this line are private
members, which means that they cannot be directly accessed in the
program except within the definition of a member function. If you try to
access one of these member variables in the main part of your program or
in the definition of some function that is not a member function of this
particular class, the compiler will give you an error message. If you insert
the keyword private and a colon in the list of member variables and
member functions, all the members that follow the label private: will
be private members. The variables that follow the label private: will be
private member variables, and the functions that follow it will be private
member functions.

All the member variables for the class DayOfYear defined in Display 10.4
are private members. A private member variable may be used in the definition
of any of the member functions, but nowhere else. For example, with this
changed definition of the class DayOfYear, the following two assignments are
no longer permitted in the main part of the program:

DayOfYear today; //This line is OK.
today.month = 12; //ILLEGAL
today.day = 25; //ILLEGAL

Any reference to these private variables is illegal (except in the definition of
member functions). Since this new definition makes month and day private
member variables, the following are also illegal in the main part of any
program that declares today to be of type DayOfYear:

cout << today.month; //ILLEGAL
cout << today.day; //ILLEGAL
if (today.month == 1) //ILLEGAL
 cout << "January";

Once you make a member variable a private member variable, there is
then no way to change its value (or to reference the member variable in any
other way) except by using one of the member functions. This is a severe
restriction, but it is usually a wise restriction to impose. Programmers find
that it usually makes their code easier to understand and easier to update if
they make all member variables private.

It may seem that the program in Display 10.4 does not really disallow
direct access to the private member variables, since they can be changed using
the member function DayOfYear::set, and their values can be discovered
using the member functions DayOfYear::get_month and DayOfYear::get_
day. While that is almost true for the program in Display 10.4, it might not be
so true if we changed the implementation of how we represented the month
and/or day in our dates. For example, suppose we change the type definition
of DayOfYear to the following:

564	 Chapter 10 /  Defining Classes

class DayOfYear
{
public:
 void input();
 void output();

 void set(int new_month, int new_day);
 //Precondition: new_month and new_day form a possible date.
 //Postcondition: The date is reset according to the
 //arguments.

 int get_month();
 //Returns the month, 1 for January, 2 for February, etc.

 int get_day();
 //Returns the day of the month.
private:
 void DayOfYear::check_date();
 char first_letter; //of month
 char second_letter; //of month
 char third_letter; //of month
 int day;
};

It would then be slightly more difficult to define the member functions, but
they could be redefined so that they would behave exactly as they did before.
For example, the definition of the function get_month might start as follows:

int DayOfYear::get_month()
{
 if (first_letter == 'J' && second_letter == 'a'
 && third_letter == 'n')
 return 1;
 if (first_letter == 'F' && second_letter == 'e'
 && third_letter == 'b')
 return 2;
 . . .

This approach would be rather tedious, but not difficult.
Also notice that the member functions DayOfYear::set and

DayOfYear::input check to make sure the member variables month and day
are set to legal values. This is done with a call to the member function
DayOfYear::check_date. If the member variables month and day were
public instead of private, then these member variables could be set to any
values, including illegal values. By making the member variables private and
manipulating them only via member functions, we can ensure that the member
variables are never set to illegal or meaningless values. (In Self-Test Exercise 14
you are asked to redefine the member function DayOfYear::check_date so
that it does a complete check for illegal dates.)

	 10.2  Classes	 565

It is also possible to make a member function private. Like a private
member variable, a private member function can be used in the definition
of any other member function, but nowhere else, such as in the main part
of a program that uses the class type. For example, the member function
DayOfYear::check_date in Display 10.4 is a private member function. The
normal practice is to make a member function private if you only expect
to use that member function as a helping function in the definitions of the
member functions.

The keyword public is used to indicate public members the same way
that the keyword private is used to indicate private members. For example,
for the class DayOfYear defined in Display 10.4, all the member functions
except DayOfYear::check_date are public members (and all the member
variables are private members). A public member can be used in the main
body of your program or in the definition of any function, even a nonmember
function.

You can have any number of occurrences of public and private in a class
definition. Every time you insert the label

public:

the list of members changes from private to public. Every time you insert the
label

private:

the list of members changes back to being private members. For example, the
member function do_something_else and the member variable more_stuff
in the following structure definition are private members, while the other four
members are all public:

class SampleClass
{
public:
 void do_something();
 int stuff;
private:
 void do_something_else();
 char more_stuff;
public:
 double do_yet_another_thing();
 double even_more_stuff;
};

If you list members at the start of your class definition and do not insert
either public: or private: before these first members, then they will be
private members. However, it is a good idea to always explicitly label each
group of members as either public or private.

Class Scope, Public and
Private Members

VideoNote

566	 Chapter 10 /  Defining Classes

Classes and Objects

A class is a type whose variables are objects. These objects can have both
member variables and member functions. The syntax for a class definition
is as follows.

Syntax

class Class_Name
{
public:
 Member_Specification_1
 Member_Specification_2
 .
 .
 .
 Member_Specification_n
private:
 Member_Specification_n+1
 Member_Specification_n+2
 .
 .
 .
};

Each Member_Specification_i is either a member variable declaration
or a member function declaration. (Additional public and private
sections are permitted.)

Example

class Bicycle
{
public:
 char get_color();
 int number_of_speeds();
 void set(int the_speeds, char the_color);
private:
 int speeds;
 char color;
};

Once a class is defined, an object (which is just a variable of the class
type) can be declared in the same way as variables of any other type. For
example, the following declares two objects of type Bicycle:

Bicycle my_bike, your_bike;

	 10.2  Classes	 567

■ P rogramming Tip  Make All Member Variables Private

When defining a class, the normal practice is to make all member variables
private. This means that the member variables can only be accessed or changed
using the member functions. Much of this chapter is dedicated to explaining
how and why you should define classes in this way.	 ■

■ P rogramming Tip  Define Accessor and Mutator Functions

The operator == can be used to test two values of a simple type to see if they are
equal. Unfortunately, the predefined operator == does not automatically apply
to objects. In Chapter 11 we will show you how you can make the operator ==
apply to the objects of the classes you define. Until then, you will not be able
to use the equality operator == with objects (nor can you use it with structures).
This can produce some complications. When defining a class, the preferred style
is to make all member variables private. Thus, in order to test two objects to
see if they represent the same value, you need some way to access the values of
the member variables (or something equivalent to the values of the member
variables). This allows you to test for equality by testing the values of each pair
of corresponding member variables. To do this in Display 10.4, we used the
member functions get_month and get_day in the if-else statement.

Member functions, such as get_month and get_day, that allow you
to find out the values of the private member variables are called accessor
functions. Given the techniques you have learned to date, it is important to
always include a complete set of accessor functions with each class definition
so that you can test objects for equality. The accessor functions need not
literally return the values of each member variable, but they must return
something equivalent to those values. In Chapter 11 we will develop a more
elegant method to test two objects for equality, but even after you learn that
technique, it will still be handy to have accessor functions.

Member functions, such as set in Display 10.4, that allow you to change
the values of the private member variables are called mutator functions. It is
important to always include mutator functions with each class definition so
that you can change the data stored in an object.

Accessor and Mutator Functions

Member functions that allow you to find out the values of the private
member variables of a class are called accessor functions. The accessor
functions need not literally return the values of each member variable,
but they must return something equivalent to those values. Although
this is not required by the C++ language, the names of accessor functions
normally include the word get.

(continued)

568	 Chapter 10 /  Defining Classes

Self-Test Exercises

	14.	 The private member function DayOfYear::check_date in Display 10.4
allows some illegal dates to get through, such as February 30. Redefine the
member function DayOfYear::check_date so that it ends the program
whenever it finds any illegal date. Allow February to contain 29 days, so
you account for leap years. (Hint: This is a bit tedious and the function
definition is a bit long, but it is not very difficult.)

	15.	 Suppose your program contains the following class definition:

class Automobile
{
public:
 void set_price(double new_price);
 void set_profit(double new_profit);
 double get_price();
private:
 double price;
 double profit;
 double get_profit();
};

and suppose the main part of your program contains the following
declaration and that the program somehow sets the values of all the
member variables to some values:

Automobile hyundai, jaguar;

Which of the following statements are then allowed in the main part of
your program?

hyundai.price = 4999.99;
jaguar.set_price(30000.97);
double a_price, a_profit;
a_price = jaguar.get_price();
a_profit = jaguar.get_profit();
a_profit = hyundai.get_profit();

Member functions that allow you to change the values of the private
member variables of a class are called mutator functions. Although this
is not required by the C++ language, the names of mutator functions
normally include the word set.

It is important to always include accessor and mutator functions with
each class definition so that you can change the data stored in an object.

	 ■

	 10.2  Classes	 569

if (hyundai == jaguar)
 cout << "Want to swap cars?";
hyundai = jaguar;

	16.	 Suppose you change Self-Test Exercise 15 so that the definition of the
class Automobile omits the line that contains the keyword private. How
would this change your answer to the question in Self-Test Exercise 15?

	17.	E xplain what public: and private: do in a class definition. In particular,
explain why we do not just make everything public: and save difficulty
in access.

	18.	 a. � How many public: sections are required in a class for the class to be
useful?

b.  How many private: sections are required in a class?

c.  � What kind of section do you have between the opening { and the first
public: or private: section label of a class?

d. � What kind of section do you have between the opening { and the first
public: or private: section label of a structure?

■ P rogramming Tip  �Use the Assignment Operator with
Objects

It is perfectly legal to use the assignment operator = with objects or with
structures. For example, suppose the class DayOfYear is defined as shown in
Display 10.4 so that it has two private member variables named month and
day, and suppose that the objects due_date and tomorrow are declared as
follows:

DayOfYear due_date, tomorrow;

The following is then perfectly legal (provided the member variables of the
object tomorrow have already been given values):

due_date = tomorrow;

The previous assignment is equivalent to the following:

due_date.month = tomorrow.month;
due_date.day = tomorrow.day;

Moreover, this is true even though the member variables named month and
day are private members of the class DayOfYear.3	 ■

3 In Chapter 11 we see situations in which the assignment operator = should be rede-
fined (overloaded) for a class.

570	 Chapter 10 /  Defining Classes

 P rogramming Example   BankAccount Class—Version 1

Display 10.5 contains a class definition for a bank account that illustrates all
of the points about class definitions you have seen thus far. This type of bank
account allows you to withdraw your money at any time, so it has no term as did
the type CDAccount that you saw earlier. A more important difference is that the
class BankAccount has member functions for all the operations you would expect
to use in a program. Objects of the class BankAccount have two private member
variables: one to record the account balance and one to record the interest rate.
Let’s discuss some of features of the class BankAccount.

First, notice that the class BankAccount has a private member function
called fraction. Since fraction is a private member function, it cannot be
called in the body of main or in the body of any function that is not a member
function of the class BankAccount. The function fraction can only be called in
the definitions of other member functions of the class BankAccount. The only
reason we have this (or any) private member function is to aid us in defining
other member functions for the same class. In our definition of the class
BankAccount, we included the member function fraction so that we could
use it in the definition of the function update. The function fraction takes
one argument that is a percentage figure, like 10.0 for 10.0%, and converts it to
a fraction, like 0.10. That allows us to compute the amount of interest on the
account at the given percentage. If the account contains $100.00 and the interest
rate is 10%, then the interest is equal to $100 times 0.10, which is $10.00.

When you call a public member function, such as update, in the main
body of your program, you must include an object name and a dot, as in the
following line from Display 10.5:

account1.update();

However, when you call a private member function (or any other member
function) within the definition of another member function, you use only the
member function name without any calling object or dot operator. For example,
the following definition of the member function BankAccount::update
includes a call to BankAccount::fraction (as shown in Display 10.5):

void BankAccount::update()
{
 balance = balance + fraction(interest_rate) * balance;
}

The calling object for the member function fraction and for the member
variables balance and interest_rate are determined when the function
update is called. For example, the meaning of

account1.update();

is the following:

One member
function calling
another

	 10.2  Classes	 571

Display 10.5   The BankAccount Class (part 1 of 3)

 1 //Program to demonstrate the class BankAccount.
 2 #include <iostream>
 3 using namespace std;

 4 //Class for a bank account:
 5 class BankAccount
 6 {
 7 public:
 8 void set(int dollars, int cents, double rate);
 9 //Postcondition: The account balance has been set to $dollars.cents;
10 //The interest rate has been set to rate percent.

11 void set(int dollars, double rate);
12 //Postcondition: The account balance has been set to $dollars.00.
13 //The interest rate has been set to rate percent.

14 void update();
15 //Postcondition: One year of simple interest has been
16 //added to the account balance.

17 double get_balance();
18 //Returns the current account balance.

19 double get_rate();
20 //Returns the current account interest rate as a percentage.

21 void output(ostream& outs);
22 //Precondition: If outs is a file output stream, then
23 //outs has already been connected to a file.
24 //Postcondition: Account balance and interest rate have
25 //been written to the stream outs.
26 private:
27 double balance;
28 double interest_rate;
29
30 double fraction(double percent);
31 //Converts a percentage to a fraction. For example, fraction(50.3)
32 //returns 0.503.
33 };

34 int main()
35 {
36 BankAccount account1, account2;
37 cout << "Start of Test:\n";
38 account1.set(123, 99, 3.0);
39 cout << "account1 initial statement:\n";
40 account1.output(cout);
41 account1.set(100, 5.0);

(continued)

The member function
set is overloaded.

Calls to the overloaded
member function set

572	 Chapter 10 /  Defining Classes

Display 10.5   The BankAccount Class (part 2 of 3)

42 cout << "account1 with new setup:\n";
43 account1.output(cout);

44 account1.update();
45 cout << "account1 after update:\n";
46 account1.output(cout);

47 account2 = account1;
48 cout << "account2:\n";
49 account2.output(cout);
50 return 0;
51 }
52
53 void BankAccount::set(int dollars, int cents, double rate)
54 {
55 if ((dollars < 0) || (cents < 0) || (rate < 0))
56 {
57 cout << "Illegal values for money or interest rate.\n";
58 exit(1);
59 }

60 balance = dollars + 0.01*cents;
61 interest_rate = rate;
62 }
63
64 void BankAccount::set(int dollars, double rate)
65 {
66 if ((dollars < 0) || (rate < 0))
67 {
68 cout << "Illegal values for money or interest rate.\n";
69 exit(1);
70 }

71 balance = dollars;
72 interest_rate = rate;
73 }
74
75 void BankAccount::update()
76 {
77 balance = balance + fraction(interest_rate)*balance;
78 }
79
80 double BankAccount::fraction(double percent_value)
81 {
82 return (percent_value / 100.0);
83 }
84

(continued)

In the definition of a member
function, you call another
member function like this.

Definitions of overloaded
member function set

	 10.2  Classes	 573

Display 10.5   The BankAccount Class (part 3 of 3)

85 double BankAccount::get_balance()
86 {
87 return balance;
88 }
89
90 double BankAccount::get_rate()
91 {
92 return interest_rate;
93 }
94
95 //Uses iostream:
96 void BankAccount::output(ostream& outs)
97 {
98 outs.setf(ios::fixed);
99 outs.setf(ios::showpoint);
100 outs.precision(2);
101 outs << "Account balance $" << balance << endl;
102 outs << "Interest rate " << interest_rate << "%" << endl;
103 }

Sample Dialogue

Start of Test:

account1 initial statement:

Account balance $123.99

Interest rate 3.00%

account1 with new setup:

Account balance $100.00

Interest rate 5.00%

account1 after update:

Account balance $105.00

Interest rate 5.00%

account2:

Account balance $105.00

Interest rate 5.00%

Stream parameter that can
be replaced either with cout
or with a file output stream

{
 account1.balance = account1.balance +
 account1.fraction(account1.interest_rate) * account1.balance;
}

Notice that the call to the member function fraction is handled in the same
way in this regard as the references to the member variables.

574	 Chapter 10 /  Defining Classes

Like the classes we discussed earlier, the class BankAccount has a member
function that outputs the data information stored in the object. In this
program we are sending output to the screen. However, we want to write
this class definition so that it can be copied into other programs and used
unchanged in those other programs. Since some other program may want to
send output to a file, we have given the member function output a formal
parameter of type ostream so that the function output can be called with an
argument that is either the stream cout or a file output stream. In the sample
program we want the output to go to the screen, so the first function call to
the member function output has the form

account1.output(cout);

Other calls to output also use cout as the argument, so all output is sent to
the screen. If you want the output to go to a file instead, then you must first
connect the file to an output stream, as we discussed in Chapter 6. If the file
output stream is called fout and is connected to a file, then the following
would write the data information for the object account1 to this file rather
than to the screen:

account1.output(fout);

The value of an object of type BankAccount represents a bank account
that has some balance and pays some interest rate. The balance and interest
rate can be set with the member function set. Notice that we have overloaded
the member function named set so that there are two versions of set. One
version has three formal parameters, and the other has only two formal
parameters. Both versions have a formal parameter of type double for the
interest rate, but the two versions of set use different formal parameters to
set the account balance. One version has two formal parameters to set the
balance, one for the dollars and one for the cents in the account balance. The
other version has only a single formal parameter, which gives the number
of dollars in the account and assumes that the number of cents is zero. This
second version of set is handy, since most people open an account with
some “even” amount of money, such as $1,000 and no cents. Notice that this
overloading is nothing new. A member function is overloaded in the same
way as an ordinary function is overloaded.

Summary of Some Properties of Classes

Classes have all of the properties that we described for structures plus all the
properties associated with member functions. The following is a list of some
points to keep in mind when using classes.

•	Classes have both member variables and member functions.
•	A member (either a member variable or a member function) may be either

public or private.

Input/output
stream arguments

Overloading
member functions

	 10.2  Classes	 575

•	Normally, all the member variables of a class are labeled as private
members.

•	A private member of a class cannot be used except within the definition of
another member function of the same class.

•	 The name of a member function for a class may be overloaded just like the
name of an ordinary function.

•	A class may use another class as the type for a member variable.
•	A function may have formal parameters whose types are classes. (See Self-

Test Exercises 19 and 20.)
•	A function may return an object; that is, a class may be the type for the

value returned by a function. (See Self-Test Exercise 21.)

Structures Versus Classes

Structures are normally used with all member variables being public
and having no member functions. However, in C++ a structure can have
private member variables and both public and private member functions.
Aside from some notational differences, a C++ structure can do anything
a class can do. Having said this and satisfied the “truth in advertising”
requirement, we advocate that you forget this technical detail about
structures. If you take this technical detail seriously and use structures
in the same way that you use classes, then you have two names (with
different syntax rules) for the same concept. On the other hand, if you
use structures as we described them, then you will have a meaningful
difference between structures (as you use them) and classes, and your
usage will be the same as that of most other programmers.

Self-Test Exercises

	19.	 Give a definition for the function with the following function declaration.
The class BankAccount is defined in Display 10.5.

double difference(BankAccount account1, BankAccount account2);
//Precondition: account1 and account2 have been given values
//(that is, their member variables have been given values).
//Returns the balance in account1 minus the balance in
account2.

	20.	 Give a definition for the function with the following function declaration.
The class BankAccount is defined in Display 10.5. (Hint: It’s easy if you
use a member function.)

576	 Chapter 10 /  Defining Classes

void double_update(BankAccount& the_account);
//Precondition: the_account has previously been given a value
//(that is, its member variables have been given values).
//Postcondition: The account balance has been changed so that
//two years' interest has been posted to the account.

	21.	 Give a definition for the function with the following function declaration.
The class BankAccount is defined in Display 10.5.

BankAccount new_account(BankAccount old_account);
//Precondition: old_account has previously been given a value
//(that is, its member variables have been given values).
//Returns the value for a new account that has a balance of zero
//and the same interest rate as the old_account.

For example, after this function is defined, a program could contain the
following:

BankAccount account3, account4;
account3.set(999, 99, 5.5);
account4 = new_account(account3);
account4.output(cout);

This would produce the following output:

	 Account balance $0.00
	 Interest rate 5.50%

Constructors for Initialization

You often want to initialize some or all the member variables for an object
when you declare the object. As we will see later in this book, there are other
initializing actions you might also want to take, but initializing member
variables is the most common sort of initialization. C++ includes special
provisions for such initializations. When you define a class, you can define
a special kind of member function known as a constructor. A constructor is
a member function that is automatically called when an object of that class
is declared. A constructor is used to initialize the values of member variables
and to do any other sort of initialization that may be needed. You can define a
constructor the same way that you define any other member function, except
for two points:

	  1.	 A constructor must have the same name as the class. For example, if the
class is named BankAccount, then any constructor for this class must be
named BankAccount.

	  2.	 A constructor definition cannot return a value. Moreover, no return type,
not even void, can be given at the start of the function declaration or in
the function header.

	 10.2  Classes	 577

For example, suppose we wanted to add a constructor for initializing
the balance and interest rate for objects of type BankAccount shown in
Display 10.5. The class definition could be as follows. (We have omitted some
of the comments to save space, but they should be included.)

class BankAccount
{
public:
 BankAccount(int dollars, int cents, double rate);
 //Initializes the account balance to $dollars.cents and
 //initializes the interest rate to rate percent.

 void set(int dollars, int cents, double rate);
 void set(int dollars, double rate);
 void update();

 double get_balance();
 double get_rate();
 void output(ostream& outs);
private:
 double balance;
 double interest_rate;
 double fraction(double percent);
};

Notice that the constructor is named BankAccount, which is the name
of the class. Also notice that the function declaration for the constructor
BankAccount does not start with void or with any other type name. Finally,
notice that the constructor is placed in the public section of the class
definition. Normally, you should make your constructors public member
functions. If you were to make all your constructors private members, then
you would not be able to declare any objects of that class type, which would
make the class completely useless.

With the redefined class BankAccount, two objects of type BankAccount
can be declared and initialized as follows:

BankAccount account1(10, 50, 2.0), account2(500, 0, 4.5);

Assuming that the definition of the constructor performs the initializing action
that we promised, the previous declaration will declare the object account1, set the
value of account1.balance to 10.50, and set the value of account1.interest_
rate to 2.0. Thus, the object account1 is initialized so that it represents a bank
account with a balance of $10.50 and an interest rate of 2.0%. Similarly, account2
is initialized so that it represents a bank account with a balance of $500.00 and
an interest rate of 4.5%. What happens is that the object account1 is declared and
then the constructor BankAccount is called with the three arguments 10, 50,
and 2.0. Similarly, account2 is declared and then the constructor BankAccount is
called with the arguments 500, 0, and 4.5. The result is conceptually equivalent to
the following (although you cannot write it this way in C++):

578	 Chapter 10 /  Defining Classes

BankAccount account1, account2; //PROBLEMS--BUT FIXABLE
account1.BankAccount(10, 50, 2.0); //VERY ILLEGAL
account2.BankAccount(500, 0, 4.5); //VERY ILLEGAL

As the comments indicate, you cannot place those three lines in your program.
The first line can be made to be acceptable, but the two calls to the constructor
BankAccount are illegal. A constructor cannot be called in the same way as an
ordinary member function is called. Still, it is clear what we want to happen
when we write those three lines, and that happens automatically when you
declare the objects account1 and account2 as follows:

BankAccount account1(10, 50, 2.0), account2(500, 0, 4.5);

The definition of a constructor is given in the same way as any other
member function. For example, if you revise the definition of the class
BankAccount by adding the constructor just described, you need to also add
the following definition of the constructor:

BankAccount::BankAccount(int dollars, int cents, double rate)
{
 if ((dollars < 0) || (cents < 0) || (rate < 0))
 {
 cout << "Illegal values for money or interest rate.\n";
 exit(1);
 }
 balance = dollars + 0.01*cents;
 interest_rate = rate;
}

Since the class and the constructor function have the same name, the
name BankAccount occurs twice in the function heading: The BankAccount
before the scope resolution operator :: is the name of the class, and
the BankAccount after the scope resolution operator is the name of the
constructor function. Also notice that no return type is specified in the
heading of the constructor definition, not even the type void. Aside from
these points, a constructor can be defined in the same way as an ordinary
member function.

You can overload a constructor name like BankAccount::BankAccount,
just as you can overload any other member function name, such as we
did with BankAccount::set in Display 10.5. In fact, constructors usually
are overloaded so that objects can be initialized in more than one way.
For example, in Display 10.6 we have redefined the class BankAccount so
that it has three versions of its constructor. This redefinition overloads the
constructor name BankAccount so that it may have three arguments (as we
just discussed), two arguments, or no arguments.

For example, suppose you give only two arguments when you declare an
object of type BankAccount, as in the following example:

BankAccount account1(100, 2.3);

	 10.2  Classes	 579

Then the object account1 is initialized so that it represents an account with a
balance of $100.00 and an interest rate of 2.3%.

On the other hand, if no arguments are given, as in the following example,

BankAccount account2;

then the object is initialized to represent an account with a balance of
$0.00 and an interest rate of 0.0%. Notice that when the constructor has no
arguments, you do not include any parentheses in the object declaration. The
following is incorrect:

BankAccount account2(); //WRONG! DO NOT DO THIS!

In some cases, you can omit mutator member functions such as set once
you have a good set of constructor definitions. You can use the overloaded
constructor BankAccount in Display 10.6 to create a new BankAccount object
with the values of your choice. However, invoking the constructor will create
a new object, so if you want to change the existing member variables in the
object, then you should use a mutator function.

Display 10.6   Class with Constructors (part 1 of 3)

 1 //Program to demonstrate the class BankAccount.
 2 #include <iostream>
 3 using namespace std;

 4 //Class for a bank account:
 5 class BankAccount
 6 {
 7 public:
 8 BankAccount(int dollars, int cents, double rate);
 9 //Initializes the account balance to $dollars.cents and
10 //initializes the interest rate to rate percent.

11 BankAccount(int dollars, double rate);
12 //Initializes the account balance to $dollars.00 and
13 //initializes the interest rate to rate percent.

14 BankAccount();
15 //Initializes the account balance to $0.00
16 //and the interest rate to 0.0%.

17 void set(int dollars, int cents, double rate);
18 //Postcondition: The account balance has been set to $dollars.cents;
19 //The interest rate has been set to rate percent.

20 void set(int dollars, double rate);
21 //Postcondition: The account balance has been set to $dollars.00.
22 //The interest rate has been set to rate percent.

23 void update();
(continued)

This definition of BankAccount
is an improved version of the class
BankAccount given in Display 10.5.

580	 Chapter 10 /  Defining Classes

Display 10.6   Class with Constructors (part 2 of 3)

24 //Postcondition: One year of simple interest has been added
25 //to the account balance.

26 double get_balance();
27 //Returns the current account balance.

28 double get_rate();
29 //Returns the current account interest rate as a percentage.

30 void output(ostream& outs);
31 //Precondition: If outs is a file output stream, then
32 //outs has already been connected to a file.
33 //Postcondition: Account balance and interest rate
34 //have been written to the stream outs.
35 private:
36 double balance;
37 double interest_rate;

38 double fraction(double percent);
39 //Converts a percentage to a fraction. For example, fraction(50.3)
40 //returns 0.503.
41 };

42 int main()
43 {
44 BankAccount account1(100, 2.3), account2;

45 cout << "account1 initialized as follows:\n";
46 account1.output(cout);
47 cout << "account2 initialized as follows:\n";
48 account2.output(cout);

49 account1 = BankAccount(999, 99, 5.5);
50 cout << "account1 reset to the following:\n";
51 account1.output(cout);
52 return 0;
53 }

54 BankAccount::BankAccount(int dollars, int cents, double rate)
55 {
56 if ((dollars < 0) || (cents < 0) || (rate < 0))
57 {
58 cout << "Illegal values for money or interest rate.\n";
59 exit(1);
60 }
61 balance = dollars + 0.01 * cents;
62 interest_rate = rate;
63 }

64 BankAccount::BankAccount(int dollars, double rate)
65 {

(continued)

This declaration causes a call to the
default constructor. Notice that
there are no parentheses.

An explicit call to the constructor
BankAccount::BankAccount

	 10.2  Classes	 581

Display 10.6   Class with Constructors (part 3 of 3)

66 if ((dollars < 0) || (rate < 0))
67 {
68 cout << "Illegal values for money or interest rate.\n";
69 exit(1);
70 }
71 balance = dollars;
72 interest_rate = rate;
73 }

74 BankAccount::BankAccount() : balance(0), interest_rate(0.0)
75 {
76 //Body intentionally empty
77 }

<Definitions of the other member functions are the same as in Display 10.5.

Screen Output

account1 initialized as follows:

Account balance $100.00

Interest rate 2.30%

account2 initialized as follows:

Account balance $0.00

Interest rate 0.00%

account1 reset to the following:

Account balance $999.99

Interest rate 5.50%

Constructor

A constructor is a member function of a class that has the same name as
the class. A constructor is called automatically when an object of the class
is declared. Constructors are used to initialize objects. A constructor must
have the same name as the class of which it is a member.

The constructor with no parameters in Display 10.6 deserves some
extra discussion since it contains something we have not seen before.
For reference, we reproduce the defining of the constructor with no
parameters:

582	 Chapter 10 /  Defining Classes

BankAccount::BankAccount() : balance(0), interest_rate(0.0)
{
 //Body intentionally empty
}

The new element, which is shown on the first line, is the part that starts with a
single colon. This part of the constructor definition is called the initialization
section. As this example shows, the initialization section goes after the
parentheses that ends the parameter list and before the opening brace of the
function body. The initialization section consists of a colon followed by a list of
some or all the member variables separated by commas. Each member variable
is followed by its initializing value in parentheses. This constructor definition is
completely equivalent to the following way of writing the definition:

BankAccount::BankAccount()
{
 balance = 0;
 interest_rate = 0.0;
}

The function body in a constructor definition with an initialization
section need not be empty. For example, the following definition of the two-
parameter constructor is equivalent to the one given in Display 10.6:

BankAccount::BankAccount(int dollars, double rate)
 : balance(dollars), interest_rate(rate)
{
 if ((dollars < 0) || (rate < 0))
 {
 cout << "Illegal values for money or interest rate.\n";
 exit(1);
 }
}

Notice that the initializing values can be given in terms of the constructor
parameters.

Constructor Initialization Section

Some or all of the member variables in a class can (optionally) be initialized
in the constructor initialization section of a constructor definition. The
constructor initialization section goes after the parentheses that end the
parameter list and before the opening brace of the function body. The
initialization section consists of a colon followed by a list of some or all
the member variables separated by commas. Each member variable is
followed by its initializing value in parentheses. The example given below
uses a constructor initialization section and is equivalent to the three-
parameter constructor given in Display 10.6.

(continued)

	 10.2  Classes	 583

Calling a Constructor

A constructor is called automatically when an object is declared, but
you must give the arguments for the constructor when you declare the
object. A constructor can also be called explicitly in order to create a new
object for a class variable.

Syntax (for an object declaration when you have
constructors)

Class_Name Object_Name(Arguments_for_Constructor);

Example

BankAccount account1(100, 2.3);

Syntax (for an explicit constructor call)

Object = Constructor_Name(Arguments_For_Constructor);

Example

account1 = BankAccount(200, 3.5);

A constructor must have the same name as the class of which it is a
member. Thus, in the syntax descriptions above, Class_Name and
Constructor_Name are the same identifier.

Initializers can also be specified if the object is created as a dynamic variable.

BankAccount *myAcct; myAcct = new BankAccount (300, 4.2);

Example

BankAccount::BankAccount(int dollars, int cents,
 double rate)
 : balance(dollars + 0.01*cents), interest_rate(rate)
{
 if ((dollars < 0) || (cents < 0) || (rate < 0))
 {
 cout <<
 "Illegal values for money or interest rate.\n";
 exit(1);
 }
}

Notice that the initializing values can be given in terms of the constructor
parameters.

584	 Chapter 10 /  Defining Classes

A constructor is called automatically whenever you declare an object of
the class type, but it can also be called again after the object has been declared.
This allows you to conveniently set all the members of an object. The technical
details are as follows. Calling the constructor creates an anonymous object
with new values. An anonymous object is an object that is not named (as
yet) by any variable. The anonymous object can be assigned to the named
object (that is, to the class variable). For example, the following line of code
is a call to the constructor BankAccount that creates an anonymous object
with a balance of $999.99 and interest rate of 5.5%. This anonymous object
is assigned to object account1 so that it too represents an account with a
balance of $999.99 and an interest rate of 5.5%:

account1 = BankAccount(999, 99, 5.5);

As you might guess from the notation, a constructor behaves like a function
that returns an object of its class type. However, since a call to a constructor
always creates a new object and a call to a set member function merely
changes the values of existing member variables, a call to set may be a
more efficient way to change the values of member variables than a call
to a constructor. Thus, for efficiency reasons or if you need to change the
values of member variables without creating a new object, you may wish
to have both the set member functions and the constructors in your class
definition.

■ P rogramming Tip  Always Include a Default Constructor

C++ does not always generate a default constructor for the classes you define.
If you give no constructor, the compiler will generate a default constructor that
does nothing. This constructor will be called if class objects are declared. On
the other hand, if you give at least one constructor definition for a class, then
the C++ compiler will generate no other constructors. Every time you declare
an object of that type, C++ will look for an appropriate constructor definition
to use. If you declare an object without using arguments for the constructor,
C++ will look for a default constructor, and if you have not defined a default
constructor, none will be there for it to find.

For example, suppose you define a class as follows:

class SampleClass
{
public:
 SampleClass(int parameter1, double parameter2);
 void do_stuff();
private:
 int data1;
 double data2;
};

Constructor that requires two arguments

	 10.2  Classes	 585

You should recognize the following as a legal way to declare an object of type
SampleClass and call the constructor for that class:

SampleClass my_object(7, 7.77);

However, you may be surprised to learn that the following is illegal:

SampleClass your_object;

The compiler interprets this declaration as including a call to a constructor
with no arguments, but there is no definition for a constructor with zero
arguments. You must either add two arguments to the declaration of your_
object or add a constructor definition for a constructor with no arguments.

A constructor that can be called with no arguments is called a default
constructor, since it applies in the default case where you declare an object
without specifying any arguments. Since it is likely that you will sometimes
want to declare an object without giving any constructor arguments, you
should always include a default constructor. The following redefined version
of SampleClass includes a default constructor:

class SampleClass
{
public:
 SampleClass(int parameter1, double parameter2);
 SampleClass();	 Default constructor
 void do_stuff();
private:
 int data1;
 double data2;
};

If you redefine the class SampleClass in this manner, then the previous
declaration of your_object would be legal.

If you do not want the default constructor to initialize any member
variables, you can simply give it an empty body when you implement it. The
following constructor definition is perfectly legal. It does nothing when called
except make the compiler happy:

SampleClass::SampleClass()
{
 //Do nothing.
}

Note that if a class is created as a dynamic variable using the new operator then
the default constructor is invoked.	 ■

Pitfall  Constructors with No Arguments

If a constructor for a class called BankAccount has two formal parameters, you
declare an object and give the arguments to the constructor as follows:

BankAccount account1(100, 2.3);

586	 Chapter 10 /  Defining Classes

To call the constructor with no arguments, you would naturally think that you
would declare the object as follows:

BankAccount account2(); //THIS WILL CAUSE PROBLEMS.

After all, when you call a function that has no arguments, you include a pair
of empty parentheses. However, this is wrong for a constructor. Moreover,
it may not produce an error message, since it does have an unintended
meaning. The compiler will think that this code is the function declaration for
a function called account2 that takes no arguments and returns a value of type
BankAccount.

Do not include parentheses when you declare an object and want C++ to
use the constructor with no arguments. The correct way to declare account2
using the constructor with no arguments is as follows:

BankAccount account2;

However, if you explicitly call a constructor in an assignment statement, you
do use the parentheses. If the definitions and declarations are as in Display
10.6, then the following will set the account balance for account1 to $0.00
and set the interest rate to 0.0%:

account1 = BankAccount();	

Constructors with No Arguments

When you declare an object and want the constructor with zero arguments
to be called, you do not include any parentheses. For example, to declare
an object and pass two arguments to the constructor, you might do the
following:

BankAccount account1(100, 2.3);

However, if you want the constructor with zero arguments to be used,
declare the object as follows:

BankAccount account1;

You do not declare the object as follows:

BankAccount account1(); //INCORRECT DECLARATION

(The problem is that this syntax declares a function named account1 that
returns a BankAccount object and has no parameters.)

	 ■

Member Initializers and Constructor Delegation in C++11

C++11 supports a feature called member initialization that is present in most
object-oriented programming languages. This feature allows you to set default
values for member variables. When an object is created the member variables
are automatically initialized to the specified values. Consider the following
definition and implementation of the Coordinate class:

class Coordinate
{
 public:
 Coordinate();
 Coordinate(int x);
 Coordinate(int x, int y);
 int getX();
 int getY();
 private:
 int x=1;
 int y=2;
};
Coordinate::Coordinate()
{ }
Coordinate::Coordinate(int xval) : x(xval)
{ }
Coordinate::Coordinate(int xval, int yval) : x(xval), y(yval)
{ }
int Coordinate::getX()
{
 return x;
}
int Coordinate::getY()
{
 return y;
}

If we create a Coordinate object, then member variable x will be set to 1 and
member variable y will be set to 2 by default. These values can be overridden if
we invoke a constructor that explicitly sets the variable. In the snippet below,
the default values for x and y are set for c1, but for c2 the default value is only
set for y because x is explicitly set to the input argument:

 Coordinate c1, c2(10);
 cout << c1.getX() << " " << c1.getY() << endl; // Outputs 1 2
 cout << c2.getX() << " " << c2.getY() << endl; // Outputs 10 2

A related feature supported by C++11 is constructor delegation. Simply
put, this allows one constructor to call another constructor. For example, we
could modify the implementation of the default constructor so it invokes the
constructor with two parameters:

Default Initialization
of Member Variables

VideoNote

	 10.2  Classes	 587

588	 Chapter 10 /  Defining Classes

Coordinate::Coordinate() : Coordinate(99,99)
{ }

The object defined by Coordinate c1; will invoke the default constructor
which will in turn invoke the constructor to set x to 99 and y to 99.

Self-Test Exercises

	22.	 Suppose your program contains the following class definition (along with
definitions of the member functions):

class YourClass
{
public:
 YourClass(int new_info, char more_new_info);
 YourClass();
 void do_stuff();
private:
 int information;
 char more_information;
};

Which of the following are legal?

YourClass an_object(42, 'A');
YourClass another_object;
YourClass yet_another_object();
an_object = YourClass(99, 'B');
an_object = YourClass();
an_object = YourClass;

	23.	 How would you change the definition of the class DayOfYear in Display
10.4 so that it has two versions of an (overloaded) constructor? One
version should have two int formal parameters (one for the month and
one for the day) and should set the private member variables to represent
that month and day. The other should have no formal parameters and
should set the date represented to January 1. Do this without using a
constructor initialization section in either constructor.

	24.	R edo the previous exercise, but this time use a constructor initialization
section to initialize all member functions in each constructor.

10.3  Abstract Data Types

We all know — the Times knows — but we pretend we don’t.

Virginia Woolf, Monday or Tuesday

	 10.3  Abstract Data Types	 589

A data type, such as the type int, has certain specified values, such as 0,
1, −1, 2, and so forth. You tend to think of the data type as being these
values, but the operations on these values are just as important as the values.
Without the operations, you could do nothing of interest with the values. The
operations for the type int consist of +, −, *, /, %, and a few other operators
and predefined library functions. You should not think of a data type as being
simply a collection of values. A data type consists of a collection of values
together with a set of basic operations defined on those values.

A data type is called an abstract data type (abbreviated ADT) if the
programmers who use the type do not have access to the details of how the
values and operations are implemented. The predefined types, such as int, are
abstract data types (ADTs). You do not know how the operations, such as +
and *, are implemented for the type int. Even if you did know, you would not
use this information in any C++ program.

Programmer-defined types, such as the structure types and class types, are not
automatically ADTs. Unless they are defined and used with care, programmer-
defined types can be used in unintuitive ways that make a program difficult to
understand and difficult to modify. The best way to avoid these problems is to
make sure all the data types that you define are ADTs. The way that you do this
in C++ is to use classes, but not every class is an ADT. To make it an ADT you
must define the class in a certain way, and that is the topic of the next subsection.

Classes to Produce Abstract Data Types

A class is a type that you define, as opposed to the types, such as int and char,
that are already defined for you. A value for a class type is the set of values
of the member variables. For example, a value for the type BankAccount in
Display 10.6 consists of two numbers of type double. For easy reference, we
repeat the class definition (omitting only the comments):

class BankAccount
{
public:
 BankAccount(int dollars, int cents, double rate);
 BankAccount(int dollars, double rate);
 BankAccount();
 void set(int dollars, int cents, double rate);
 void set(int dollars, double rate);
 void update();
 double get_balance();
 double get_rate();
 void output(ostream& outs);
private:
 double balance;
 double interest_rate;
 double fraction(double percent);
};

590	 Chapter 10 /  Defining Classes

The programmer who uses the type BankAccount need not know how
you implemented the definition of BankAccount::update or any of the
other member functions. The function definition for the member function
BankAccount::update that we used is as follows:

void BankAccount::update()
{
 balance = balance + fraction(interest_rate) * balance;
}

However, we could have dispensed with the private function fraction and
implemented the member function update with the following slightly more
complicated formula:

void BankAccount::update()
{
 balance = balance + (interest_rate / 100.0) * balance;
}

The programmer who uses the class BankAccount need not be concerned with
which implementation of update we used, since both implementations have
the same effect.

Similarly, the programmer who uses the class BankAccount need not be
concerned about how the values of the class are implemented. We chose to
implement the values as two values of type double. If vacation_savings is
an object of type BankAccount, the value of vacation_savings consists of the
two values of type double stored in the following two member variables:

vacation_savings.balance
vacation_savings.interest_rate

However, you do not want to think of the value of the object vacation_
savings as two numbers of type double, such as 1.3546e + 2 and 4.5. You
want to think of the value of vacation_savings as the single entry

Account balance $135.46
Interest rate 4.50%

That is why our implementation of BankAccount::output writes the class
value in this format.

The fact that we chose to implement this BankAccount value as the two
double values 1.3546e + 2 and 4.5 is an implementation detail. We could
instead have implemented this BankAccount value as the two int values 135 and
46 (for the dollars and cents part of the balance) and the single value 0.045 of type
double. The value 0.045 is simply 4.5% converted to a fraction, which might be a
more useful way to implement a percentage figure. After all, in order to compute
interest on the account we convert a percentage to just such a fraction. With this
alternative implementation of the class BankAccount, the public members would
remain unchanged but the private members would change to the following:

	 10.3  Abstract Data Types	 591

class BankAccount
{
public:
 <This part is exactly the same as before>
private:
 int dollars_part;
 int cents_part;
 double interest_rate;
 double fraction(double percent);
};

We would need to change the member function definitions to match this
change, but that is easy to do. For example, the function definitions for
get_balance and one version of the constructor could be changed to the
following:

double BankAccount::get_balance()
{
 return (dollars_part + 0.01 * cents_part);
}

BankAccount::BankAccount(int dollars, int cents, double rate)
{
 if ((dollars < 0) || (cents < 0) || (rate < 0))
 {
 cout << "Illegal values for money or interest rate.\n";
 exit(1);
 }
 dollars_part = dollars;
 cents_part = cents;
 interest_rate = rate;
}

Similarly, each of the other member functions could be redefined to
accommodate this new way of storing the account balance and the interest rate.

Notice that even though the user may think of the account balance as
a single number, that does not mean the implementation has to be a single
number of type double. You have just seen that it could, for example, be two
numbers of type int. The programmer who uses the type BankAccount need
not know any of this detail about how the values of the type BankAccount are
implemented.

These comments about the type BankAccount illustrate the basic technique
for defining a class so that it will be an abstract data type. In order to define a
class so that it is an abstract data type, you need to separate the specification
of how the type is used by a programmer from the details of how the type
is implemented. The separation should be so complete that you can change
the implementation of the class without needing to make any changes in
any program that uses the class ADT. One way to ensure this separation is to
follow these rules:

How to write
an ADT

592	 Chapter 10 /  Defining Classes

Separate
interface and
implementation

Separate Interface and
Implementation

VideoNote

	1.	 Make all the member variables private members of the class.

	2.	 Make each of the basic operations that the programmer needs a public
member function of the class, and fully specify how to use each such
public member function.

	3.	 Make any helping functions private member functions.

In Chapters 11 and 12 you will learn some alternative approaches to defining
ADTs, but these three rules are one common way to ensure that a class is an
abstract data type.

The interface of an ADT tells you how to use the ADT in your program.
When you define an ADT as a C++ class, the interface consists of the public
member functions of the class along with the comments that tell you how to
use these public member functions. The interface of the ADT should be all
you need to know in order to use the ADT in your program.

The implementation of the ADT tells how this interface is realized as C++
code. The implementation of the ADT consists of the private members of the
class and the definitions of both the public and private member functions.
Although you need the implementation in order to run a program that uses
the ADT, you should not need to know anything about the implementation
in order to write the rest of a program that uses the ADT; that is, you should
not need to know anything about the implementation in order to write the
main part of the program and to write any nonmember functions used by the
main part of the program. The situation is similar to what we advocated for
ordinary function definitions in Chapters 4 and 5. The implementation of an
ADT, like the implementation of an ordinary function, should be thought of
as being in a black box that you cannot see inside.

In Chapter 12 you will learn how to place the interface and implementation
of an ADT in files separate from each other and separate from the programs
that use the ADT. That way a programmer who uses the ADT literally does not
see the implementation. Until then, we will place all of the details about our
ADT classes in the same file as the main part of our program, but we still think
of the interface (given in the public section of the class definitions) and the
implementation (the private section of the class definition and the member
function definitions) as separate parts of the ADT. We will strive to write our
ADTs so that the user of the ADT need only know about the interface of the
ADT and need not know anything about the implementation. To be sure
you are defining your ADTs this way, simply make sure that if you change
the implementation of your ADT, your program will still work without your
needing to change any other part of the program. This is illustrated in the next
Programming Example.

The most obvious benefit you derive from making your classes ADTs
is that you can change the implementation without needing to change the
other parts of your program. But ADTs provide more benefits than that. If you
make your classes ADTs, you can divide work among different programmers,

with one programmer designing and writing the ADT and other programmers
using the ADT. Even if you are the only programmer working on a project,
you have divided one larger task into two smaller tasks, which makes your
program easier to design and easier to debug.

 P rogramming Example �Alternative Implementation
of a Class

Display 10.7 contains the alternative implementation of the ADT class
BankAccount discussed in the previous subsection. In this version, the data for
a bank account is implemented as three member values: one for the dollars
part of the account balance, one for the cents part of the account balance, and
one for the interest rate.

Notice that, although both the implementation in Display 10.6 and the
implementation in Display 10.7 each have a member variable called interest_
rate, the value stored is slightly different in the two implementations. If the
account pays interest at a rate of 4.7%, then in the implementation in Display
10.6 (which is basically the same as the one in Display 10.5), the value of
interest_rate is 4.7. However, in the implementation in Display 10.7, the
value of interest_rate would be 0.047. This alternative implementation,
shown in Display 10.7, stores the interest rate as a fraction rather than as a
percentage figure. The basic difference in this new implementation is that
when an interest rate is set, the function fraction is used to immediately
convert the interest rate to a fraction. Hence, in this new implementation the
private member function fraction is used in the definitions of constructors,
but it is not needed in the definition of the member function update because
the value in the member variable interest_rate has already been converted
to a fraction. In the old implementation (shown in Display 10.5 and Display
10.6), the situation was just the reverse. In the old implementation, the private
member function fraction was not used in the definition of constructors, but
was used in the definition of update.

Although we have changed the private members of the class BankAccount,
we have not changed anything in the public section of the class definition.
The public member functions have the same function declarations and they
behave exactly as they did in the old version of the ADT class given in Display
10.6. For example, although this new implementation stores a percentage
such as 4.7% as the fraction 0.047, the member function get_rate still
returns the value 4.7, just as it would for the old implementation in Display
10.5. Similarly, the member function get_balance returns a single value of
type double, which gives the balance as a number with a decimal point, just as
it did in the old implementation in Display 10.5. This is true even though the
balance is now stored in two member variables of type int, rather than in a
single member variable of type double (as in the old versions).

The public
interface is not
changed

	 10.3  Abstract Data Types	 593

594	 Chapter 10 /  Defining Classes

Display 10.7   Alternative BankAccount Class Implementation (part 1 of 4)

 1 //Demonstrates an alternative implementation of the class BankAccount.
 2 #include <iostream>
 3 #include <cmath>
 4 using namespace std; .

 5 //Class for a bank account:
 6 class BankAccount
 7 {
 8 public:
 9 BankAccount(int dollars, int cents, double rate);
10 //Initializes the account balance to $dollars.cents and
11 //initializes the interest rate to rate percent.

12 BankAccount(int dollars, double rate);
13 //Initializes the account balance to $dollars.00 and
14 //initializes the interest rate to rate percent.

15 BankAccount();
16 //Initializes the account balance to $0.00 and the
17 //interest rate to 0.0%.

18 void set(int dollars, int cents, double rate);
19 //Postcondition: The account balance has been set to $dollars.cents;
20 //The interest rate has been set to rate percent.

21 void set(int dollars, double rate);
22 //Postcondition: The account balance has been set to $dollars.00.
23 //The interest rate has been set to rate percent.

24 void update();
25 //Postcondition: One year of simple interest has been
26 //added to the account balance.

27 double get_balance();
28 //Returns the current account balance.

29 double get_rate();
30 //Returns the current account interest rate as a percentage.

31 void output(ostream& outs);
32 //Precondition: If outs is a file output stream, then
33 //outs has already been connected to a file.
34 //Postcondition: Account balance and interest rate
35 //have been written to the stream outs.
36 private:
37 int dollars_part;
38 int cents_part;
39 double interest_rate;
40 //Expressed as a fraction, for example, 0.057 for 5.7%

(continued)

Notice that the public members of
BankAccount look and behave
exactly the same as in Display 10.6

Display 10.7   Alternative BankAccount Class Implementation (part 2 of 4)

41 double fraction(double percent);
42 //Converts a percentage to a fraction. For example, fraction(50.3)
43 //returns 0.503.

44 double percent(double fraction_value);
45 //Converts a fraction to a percentage. For example, percent(0.503)
46 //returns 50.3.
47 };

48 int main()
49 {
50 BankAccount account1(100, 2.3), account2;
51
52 cout << "account1 initialized as follows:\n";
53 account1.output(cout);
54 cout << "account2 initialized as follows:\n";
55 account2.output(cout);
56
57 account1 = BankAccount(999, 99, 5.5);
58 cout << "account1 reset to the following:\n";
59 account1.output(cout);
60 return 0;
61 }

62 BankAccount::BankAccount(int dollars, int cents, double rate)
63 {
64 if ((dollars < 0) || (cents < 0) || (rate < 0))
65 {
66 cout << "Illegal values for money or interest rate.\n";
67 exit(1);
68 }
69 dollars_part = dollars;
70 cents_part = cents;
71 interest_rate = fraction(rate);
72 }

73 BankAccount::BankAccount(int dollars, double rate)
74 {
75 if ((dollars < 0) || (rate < 0))
76 {
77 cout << "Illegal values for money or interest rate.\n";
78 exit(1);
79 }
80 dollars_part = dollars;
81 cents_part = 0;
82 interest_rate = fraction(rate);
83 }
84 BankAccount::BankAccount() : dollars_part(0), cents_part(0), interest_rate(0.0)
85

(continued)

 New

Since the body of main is
identical to that in Display 10.6 ,
the screen output is also identical
to that in Display 10.6

In the old implementation of this ADT, the private
member function fraction was used in the
definition of update. In this implementation,
fraction is instead used in the definition of
constructors and in the set function.

	 10.3  Abstract Data Types	 595

596	 Chapter 10 /  Defining Classes

Display 10.7   Alternative BankAccount Class Implementation (part 3 of 4)

86 {
87 //Body intentionally empty.
88 }

89 double BankAccount::fraction(double percent_value)
90 {
91 return (percent_value/100.0);
92 }

93 //Uses cmath:
94 void BankAccount::update()
95 {
96 double balance = get_balance();
97 balance = balance + interest_rate * balance;
98 dollars_part = static_cast<int>(floor(balance));
99 cents_part = static_cast<int>(floor((balance - dollars_part)*100));
100 }

101 double BankAccount::get_balance()
102 {
103 return (dollars_part + 0.01 * cents_part);
104 }

105 double BankAccount::percent(double fraction_value)
106 {
107 return (fraction_value * 100);
108 }

109 double BankAccount::get_rate()
110 {
111 return percent(interest_rate);
112 }

113 //Uses iostream:
114 void BankAccount::output(ostream& outs)
115 {
116 outs.setf(ios::fixed);
117 outs.setf(ios::showpoint);
118 outs.precision(2);
119 outs << "Account balance $" << get_balance() << endl;
120 outs << "Interest rate "<< get_rate() << "%" << endl;
121 }

122 void BankAccount::set(int dollars, int cents, double rate)
123 {
124 if ((dollars < 0) || (cents < 0) || (rate < 0))
125 {
126 cout << "Illegal values for money or interest rate.\n";
127 exit(1);
128 }

(continued)

The new definitions of get_balance
and get_rate ensure that the
output will still be in the correct units.

Display 10.7   Alternative BankAccount Class Implementation (part 4 of 4)

129 dollars_part = dollars;
130 cents_part = cents;
131 interest_rate = fraction(rate);
132 }

133 void BankAccount::set(int dollars, double rate)
134 {
135 if ((dollars < 0) || (rate < 0))
136 {
137 cout << "Illegal values for money or interest rate.\n";
138 exit(1);
139 }
140 dollars_part = dollars;
141 interest_rate = fraction(rate);
142 }

Changing private
member functions

Information Hiding

We discussed information hiding when we introduced functions in
Chapter 3. We said that information hiding, as applied to functions,
means that you should write your functions so that they could be used
as black boxes, that is, so that the programmer who uses the function
need not know any details about how the function is implemented. This
principle means that all the programmer who uses a function needs to
know is the function declaration and the accompanying comment that
explains how to use the function. The use of private member variables
and private member functions in the definition of an abstract data type
is another way to implement information hiding, but now we apply the
principle to data values as well as to functions.

Notice that there is an important difference between how you treat the
public member functions and how you treat the private member functions.
If you want to preserve the interface of an ADT class so that any programs
that use it need not change (other than changing the definitions of the class
and its member functions), then you must leave the public member function
declarations unchanged. However, you are free to add, delete, or change any of
the private member functions. In this example, we have added one additional
private function called percent, which is the inverse of the function fraction.
The function fraction converts a percentage to a fraction, and the function
percent converts a fraction back to a percentage. For example, fraction(4.7)
returns 0.047, and percent(0.047) returns 4.7.

	 10.3  Abstract Data Types	 597

598	 Chapter 10 /  Defining Classes

Self-Test Exercises

	25.	 When you define an ADT as a C++ class, should you make the member
variables public or private? Should you make the member functions
public or private?

	26.	 When you define an ADT as a C++ class, what items are considered
part of the interface for the ADT? What items are considered part of the
implementation for the ADT?

	27.	 Suppose your friend defines an ADT as a C++ class in the way we described
in Section 10.3. You are given the task of writing a program that uses this
ADT. That is, you must write the main part of the program as well as any
nonmember functions that are used in the main part of the program. The
ADT is very long and you do not have a lot of time to write this program.
What parts of the ADT do you need to read and what parts can you safely
ignore?

	28.	R edo the three- and two-parameter constructors in Display 10.7 so that all
member variables are set using a constructor initialization section.

10.4  Introduction to Inheritance

One of the most powerful features of C++ is the use of derived classes. The
word inheritance is just another name for the topic of derived classes. When we
say that one class was derived from another class, we mean that the derived
class was obtained from the other class by adding features. For example,
suppose we define a class for vehicles that has member variables to record
the vehicle’s number of wheels and maximum number of occupants. The
class also has accessor and mutator functions. Imagine that we then define a
class for automobiles that has member variables and functions just like the
ones in the class of vehicles. In addition, our automobile class would have
added member variables for such things as the amount of fuel in the fuel
tank and the license plate number and would also have some added member
functions. Instead of repeating the definitions of the member variables and
functions of the class of vehicles within the class of automobiles, we could
use C++’s inheritance mechanism and let the automobile class inherit all the
member variables and functions of the class for vehicles.

Inheritance allows you to define a general class and then later define more
specialized classes that add some new details to the existing general class.
This saves work because the more specialized, or derived, class inherits all the
properties of the general class and you, the programmer, need only program
the new features. This section will first introduce the notion of inheritance and
a derived class and then we briefly describe how to create your own derived

classes. Details of inheritance are left to Chapter 15. It may take a while before
you are completely comfortable with the idea of a derived class, but you easily
can learn enough about derived classes to start using them in some simple,
and very useful, ways.

Derived Classes

Consider the BankAccount class defined in Display 10.7. This class keeps track
of an amount and interest rate for a bank account—fairly generic features that
apply to any interest-bearing account. If we would like to implement more
specific types of bank accounts, then there is a natural hierarchy for grouping the
account types. Display 10.8 depicts a part of this hierarchical arrangement for
bank accounts, checking accounts, money market accounts, savings accounts,
and Certificate of Deposit (CD) accounts. In the hierarchy, BankAccount is
the most general type of account; more specific types of accounts are shown
underneath. An arrow points from a specific account type to a more general
account type. In addition to representing different types of bank accounts, each
box also corresponds to a class that we can implement in C++.

For example, a checking account does everything a bank account can
do (store an amount and interest rate) but in addition allows customers to
make deposits and write checks. Similarly, a savings account does everything
a bank account can do but in addition allows customers to make deposits
and withdrawals. Unlike a checking account, a savings account may not allow
customers to write checks. Since both checking accounts and savings accounts
are types of bank accounts they are shown in Display 10.8 directly underneath
the BankAccount class. When we say that some class A is a derived class of
some other class B, it means that class A has all the features of class B but it
also has added features. The convention for indicating this relationship in a
diagram is to draw an an unfilled arrow from the specific to the more general
class. For example, in Display 10.8 the CheckingAccount and SavingsAccount
classes are derived classes of the BankAccount class.

Display 10.8   A Class Hierarchy

Money Market
Account

CD Account

Checking Account Savings Account

Bank Account

	 10.4  Introduction to Inheritance	 599

600	 Chapter 10 /  Defining Classes

In C++, some class A can be a derived class of some other class B, which
in turn can be a derived class of some other class C, and so on. For example,
a CD account is similar to a savings account except the funds and any accrued
interest must not be withdrawn until after a “maturity” date. If the funds are
withdrawn prior to the maturity date, then there is a penalty. Due to these
restrictions, a CD account normally accrues interest at a higher rate than
a savings account. In the hierarchy, this is shown by deriving CDAccount
from SavingsAccount. Similarly, a money market account is a special type
of checking account in which the customer normally has a limit on the
number of checks that can be written, along with higher minimum balances,
but pays a higher interest rate. In the hierarchy, this is shown by deriving
MoneyMarketAccount from CheckingAccount.

Derived classes are often discussed using the metaphor of inheritance
and family relationships. If class B is a derived class of class A, then class B is
called a child of class A and class A is called a parent of class B. The parent
class is also referred to as the base class. The derived class is said to inherit the
member functions of its parent class. For example, every convertible inherits
the fact that it has four wheels from the class of all automobiles. This is why
the topic of derived classes is often called inheritance.

Defining Derived Classes

If we want to create a class to represent a savings account, we could start by
making a copy of the BankAccount class and renaming it to SavingsAccount.
We would need to add new public member functions to deposit and withdraw
funds. While this approach would work, it would be very inefficient, because
the SavingsAccount class would duplicate most of the functionality in the
BankAccount class. Not only does this waste memory space, it also becomes
more difficult to make modifications. For example, if we later decide to
change the update() function to accrue interest daily instead of annually,
then we would have two places to make the change: in the SavingsAccount
class and also in the BankAccount class. These problems can be solved by
defining the SavingsAccount class as a derived class of the BankAccount class.
The SavingsAccount class then can share member variables and functions
defined in the BankAccount class. We specify this relationship when defining
the derived class by adding a colon followed by the keyword public and the
name of the parent or base class:

class SavingsAccount : public BankAccount
{
public:
 SavingsAccount(int dollars, int cents, double rate);
 <Other constructors would normally go here>
 void deposit(int dollars, int cents);
 void withdraw(int dollars, int cents);
private:
};

The colon separates the
derived class, Savings
Account, from the parent
class, BankAccount

Notice that we only defined functions and data that specifically relate to
savings accounts, in this case, functions to deposit and withdraw money.
We don’t need to redefine all of the variables and functions relating to
bank accounts—such as storing the interest rate, dollars, cents, or defining
the update() function—because those members will be inherited from
the BankAccount class and are automatically created when we construct a
SavingsAccount object. For example, if we create a SavingsAccount object,
we could invoke the following functions:

SavingsAccount account(100, 50, 5.5);
account.deposit(10,25);
account.output(cout);

Invoking a function in the
parent class, BankAccount

In this example, inheritance allowed us to reuse code defined in the parent
class from the context of the derived class. Moreover, if we later change
one of BankAccount's functions—such as update()—then the new code
automatically will be used from the context of its derived classes when the
program is recompiled and linked. An implementation of the SavingsAccount
class along with a main function to test the deposit and withdraw functions
is given in Display 10.9. For simplicity, we have left verification out of the
deposit and withdraw functions, for example, checking for negative amounts,
but you should be able to add them easily with some if statements.

Once the SavingsAccount class is defined we can go one step further and
derive more specialized classes from the SavingsAccount. For example, to
define the CD account class we need a new private member variable to store
the days until maturity and define functions to access this variable:

class CDAccount : public SavingsAccount
{
public:
 CDAccount(int dollars, int cents, double rate,
 int days_to_maturity);
 <Other constructors would normally go here>
 int get_days_to_maturity();
 //Returns the number of days until the CD matures
 void decrement_days_to_maturity();
 //Subtracts one from the days_to_maturity variable
private:
 int days_to_maturity; //Days until the CD matures
};

Once again, we only defined functions and data that specifically relate to
CD accounts, in this case, storing and manipulating the number of days to
maturity. We don’t need to redefine all of the variables and functions relating
to bank accounts or savings accounts because those members will be inherited
from the parent classes. For example, once the functions in the CDAccount
class are implemented, we could invoke the following functions from the
CDAccount, SavingsAccount, or BankAccount classes given a CDAccount
object:

Invoking a function in
the derived class,

	 10.4  Introduction to Inheritance	 601

602	 Chapter 10 /  Defining Classes

 8 void withdraw(int dollars, int cents);
 9 //Subtracts $dollars.cents from the account balance
10 private:
11 };

12 int main()
13 {
14 SavingsAccount account(100, 50, 5.5);
15 account.output(cout);
16 cout << endl;
17 cout << "Depositing $10.25." << endl;
18 account.deposit(10,25);
19 account.output(cout);
20 cout << endl;
21 cout << "Withdrawing $11.80." << endl;
22 account.withdraw(11,80);
23 account.output(cout);
24 cout << endl;
25 return 0;
26 }

27 SavingsAccount::SavingsAccount(int dollars, int cents, double rate):
28 BankAccount(dollars, cents, rate)
29 {
30 //deliberately empty

Display 10.9   A SavingsAccount Derived Class (part 1 of 2)

The colon indicates that the class
SavingsAccount is derived from
the class BankAccount

 4 SavingsAccount(int dollars, int cents, double rate);
 5 //Other constructors would go here
 6 void deposit(int dollars, int cents);
 7 //Adds $dollars.cents to the account balance

Only new member functions or
variables need to be defined

<Everything from Display 10.6 should be inserted here except for the main function.>

 1 class SavingsAccount : public BankAccount
 2 {
 3 public:

The SavingsAccount constructor
invokes the BankAccount constructor.
Note the preceding colon.

31 }

32 void SavingsAccount::deposit(int dollars, int cents)
33 {

34 double balance = get_balance();
35 balance += dollars;
36 balance += (static_cast<double>(cents) / 100);
37 int new_dollars = static_cast<int>(balance);
38 int new_cents = static_cast<int>((balance - new_dollars) * 100);

(continued)

The deposit function adds the new
amount to the balance and changes the
member variables via the set function

Display 10.9   A SavingsAccount Derived Class (part 2 of 2)

39 set(new_dollars, new_cents, get_rate());
40 }

41 void SavingsAccount::withdraw(int dollars, int cents)
42 {

//Create a new CD with $1000, 6% interest, 180 days to maturity
CDAccount newCD(1000, 0, 6.0, 180);

Invoking a function in
SavingsAccountnewCD.deposit(100,50);

days_to_maturity = newCD.get_days_to_maturity();
//Returns 180
balance = newCD.get_balance();
//Returns 1100.50

Invoking a function in
BankAccount	

Invoking a function in
CDAccount

This short example has only scratched the surface of what is possible
using inheritance. Additional details are described in Chapter 15. While
it does take some effort to learn how to effectively design classes using
inheritance, the effort will pay off in the long run. You will end up writing
less code that is easier to understand and maintain than code that does not
use inheritance.

The withdraw
function subtracts
the amount from the
balance and changes
the member variables
via the set function

43 double balance = get_balance();
44 balance -= dollars;
45 balance -= (static_cast<double>(cents) / 100);
46 int new_dollars = static_cast<int>(balance);
47 int new_cents = static_cast<int>((balance - new_dollars) * 100);
48 set(new_dollars, new_cents, get_rate());
49 }

Screen Output

Account balance $100.50

Interest rate 5.50%

Depositing $10.25.

Account balance $110.75

Interest rate 5.50%

Withdrawing $11.80.

Account balance $98.95

Interest rate 5.50%

	 10.4  Introduction to Inheritance	 603

604	 Chapter 10 /  Defining Classes

Self-Test Exercises

	29.	 How does inheritance support code reuse and make code easier to
maintain?

	30.	 Can a derived class directly access by name a private member variable of
the parent class?

	31.	 Suppose the class SportsCar is a derived class of a class Automobile.
Suppose also that the class Automobile has public member functions
named accelerate and addGas. Will an object of the class SportsCar
have member functions named accelerate and addGas?

Chapter Summary

■	 A structure can be used to combine data of different types into a single (com-
pound) data value.

■	 A class can be used to combine data and functions into a single (compound)
object.

■	 A member variable or a member function for a class may be either public
or private. If it is public, it can be used outside of the class. If it is private,
it can be used only in the definition of another member function in the
class.

■	 A function may have formal parameters of a class or structure type. A func-
tion may return values of a class or structure type.

■	 A member function for a class can be overloaded in the same way as ordi-
nary functions are overloaded.

■	 A constructor is a member function of a class that is called automatically
when an object of the class is declared. A constructor must have the same
name as the class of which it is a member.

■	 A data type consists of a collection of values together with a set of basic
operations defined on these values.

■	 A data type is called an abstract data type (abbreviated ADT) if a program-
mer who uses the type does not need to know any of the details about how
the values and operations for that type are implemented.

■	O ne way to implement an abstract data type in C++ is to define a class with
all member variables being private and with the operations implemented as
public member functions.

■	 Inheritance refers to a parent/child relationship between classes. The child
or derived class inherits members from the parent class.

	 Answers to Self-Test Exercises	 605

Answers to Self-Test Exercises

	 1.	 a.  double

		 b.  double

		 c.  illegal—cannot use struct tag instead of a structure variable

		 d.  illegal—savings_account undeclared

		 e.  char

		 f.  TermAccount

	 2. A $9.99
 A $1.11

	 3.	 Many compilers give poor error messages. Surprisingly, the error message
from g++ is quite informative.

g++ -fsyntax-only c10testq3.cc
c10testq3.cc:8: semicolon missing after declaration of
'Stuff'
c10testq3.cc:8: extraneous 'int' ignored
c10testq3.cc:8: semicolon missing after declaration of
'struct Stuff'

	 4.	 A x = {1,2};

	 5.	 a. � Too few initializers, not a syntax error. After initialization, due_date.
month == 12, due_date.day == 21, due_date.year == 0. Member vari-
ables not provided an initializer are initialized to a zero of appropriate
type.

		 b. � Correct after initialization: 12 == due_date.month, 21 == due_date.
day, 2022 == due_date.year.

		 c. E rror: too many initializers.

		 d. � May be a design error, that is, an error in intent. The author of the code
provides only two digits for the date initializer. There should be four dig-
its used for the year because a program using two-digit dates could fail in
ways that vary from amusing to disastrous at the turn of the century.

	 6.	 struct EmployeeRecord

{
 double wage_rate;
 int vacation;
 char status;
};

	 7.	 void read_shoe_record(ShoeType& new_shoe)

{

606	 Chapter 10 /  Defining Classes

 cout << "Enter shoe style (one letter): ";
 cin >> new_shoe.style;
 cout << "Enter shoe price $";
 cin >> new_shoe.price;
}

	 8.	 ShoeType discount(ShoeType old_record)

{
 ShoeType temp;
 temp.style = old_record.style;
 temp.price = 0.90 * old_record.price;
 return temp;
}

	 9.	 struct StockRecord

{
 ShoeType shoe_info;
 Date arrival_date;
};

	10.	 StockRecord aRecord;

aRecord.arrival_date.year = 2006;

	11.	 void DayOfYear::input()

{
 cout << "Enter month as a number: ";
 cin >> month;
 cout << "Enter the day of the month: ";
 cin >> day;
}

	12.	 void Temperature::set(double new_degrees, char new_scale)

{
 degrees = new_degrees;
 scale = new_scale;
}

	13.	 Both the dot operator and the scope resolution operator are used with
member names to specify the class or struct of which the member name
is a member. If class DayOfYear is as defined in Display 10.3 and today
is an object of the class DayOfYear, then the member month may be ac-
cessed with the dot operator: today.month. When we give the definition
of a member function, the scope resolution operator is used to tell the
compiler that this function is the one declared in the class whose name is
given before the scope resolution operator.

	14.	 void DayOfYear::check_date()
{
 if ((month < 1) || (month > 12)
 || (day < 1) || (day > 31))
 {
 cout << "Illegal date. Aborting program.\n";
 exit(1);
 }
 if (((month == 4) || (month == 6) || (month == 9)
 || (month == 11))
 && (day == 31))
 {
 cout << "Illegal date. Aborting program.\n";
 exit(1);
 }
 if ((month == 2) && (day > 29))
 {
 cout << "Illegal date. Aborting program.\n";
 exit(1);
 }
}

	15.	 hyundai.price = 4999.99; //ILLEGAL. price is private.

jaguar.set_price(30000.97); //LEGAL
double a_price, a_profit; //LEGAL
a_price = jaguar.get_price(); //LEGAL
a_profit = jaguar.get_profit(); //ILLEGAL. get_profit is private.
a_profit = hyundai.get_profit(); //ILLEGAL. get_profit is private.
if (hyundai == jaguar) //ILLEGAL. Cannot use == with classes.
 cout << "Want to swap cars?";
hyundai = jaguar; //LEGAL

	16.	 After the change, they would all be legal except for the following, which is
still illegal:

if (hyundai == jaguar) //ILLEGAL. Cannot use == with classes.
 cout << "Want to swap cars?";

	17.	 private restricts access to function definitions to member functions of
the same class. This restricts any change of private variables to functions
provided by the class author. The class author is then in control of these
changes to the private data, preventing inadvertent corruption of the class
data.

	18.	 a. �O nly one. The compiler warns if you have no public: members in a
class (or struct for that matter).

		 b. � None; we normally expect to find at least one private: section in a
class.

	 Answers to Self-Test Exercises	 607

608	 Chapter 10 /  Defining Classes

		 c.  In a class, such a section is by default a private: section.

		 d.  In a struct, such a section is by default a public: section.

	19.	 A possible correct answer is as follows:

double difference(BankAccount account1, BankAccount account2)
{
 return (account1.get_balance() − account2.get_balance());
}

Note that the following is not correct, because balance is a private
member.

double difference(BankAccount account1, BankAccount account2)
{
 return (account1.balance − account2.balance); //ILLEGAL
}

	20.	 void double_update(BankAccount& the_account)

{
 the_account.update();
 the_account.update();
}

Note that since this is not a member function, you must give the object
name and dot operator when you call update.

	21.	 BankAccount new_account(BankAccount old_account)

{
 BankAccount temp;
 temp.set(0, old_account.get_rate());
 return temp;
}

	22.	 YourClass an_object(42, 'A'); //LEGAL
YourClass another_object; //LEGAL
YourClass yet_another_object(); //PROBLEM
an_object = YourClass(99, 'B'); //LEGAL
an_object = YourClass(); //LEGAL
an_object = YourClass; //ILLEGAL

The statement marked //PROBLEM is not, strictly speaking, illegal, but it
does not mean what you might think it means. If you mean this to be a
declaration of an object called yet_another_object, then it is wrong. It is
a correct function declaration for a function called yet_another_object
that takes zero arguments and that returns a value of type YourClass,
but that is not the intended meaning. As a practical matter, you can
probably consider it illegal. The correct way to declare an object called

yet_another_object so that it will be initialized with the default
constructor is as follows:

YourClass yet_another_object;

	23.	 The modified class definition is as follows:

class DayOfYear
{
public:
 DayOfYear(int the_month, int the_day);
 //Precondition: the_month and the_day form a
 //possible date. Initializes the date according to
 //the arguments.
 DayOfYear();
 //Initializes the date to January first.
 void input();
 void output();
 int get_month();
 //Returns the month, 1 for January, 2 for February, etc.
 int get_day();
 //Returns the day of the month.
private:
 void check_date();
 int month;
 int day;
};

Notice that we have omitted the member function set, since
the constructors make set unnecessary. You must also add the
following function definitions (and delete the function definition for
DayOfYear::set):

DayOfYear::DayOfYear(int the_month, int the_day)
{
 month = the_month;
 day = the_day;
 check_date();
}
DayOfYear::DayOfYear()
{
 month = 1;
 day = 1;
}

	24.	 The class definition is the same as in the previous exercise. The constructor
definitions would change to the following:

DayOfYear::DayOfYear(int the_month, int the_day)
 : month(the_month), day(the_day)

	 Answers to Self-Test Exercises	 609

610	 Chapter 10 /  Defining Classes

{
 check_date();
}
DayOfYear::DayOfYear() : month(1), day(1)
{
 //Body intentionally empty.
}

	25.	 The member variables should all be private. The member functions that
are part of the interface for the ADT (that is, the member functions that
are operations for the ADT) should be public. You may also have auxiliary
helping functions that are used only in the definitions of other member
functions. These auxiliary functions should be private.

	26.	 All the declarations of private member variables are part of the implemen-
tation. (There should be no public member variables.) All the function
declarations for public member functions of the class (which are listed in
the class definitions) as well as the explanatory comments for these func-
tion declarations are part of the interface. All the function declarations for
private member functions are part of the implementation. All member
function definitions (whether the function is public or private) are part of
the implementation.

	27.	 You need to read only the interface parts. That is, you need to read only
the function declarations for public members of the class (which are listed
in the class definitions) as well as the explanatory comments for these
function declarations. You need not read any of the function declarations
of the private member functions, the declarations of the private member
variables, the definitions of the public member functions, or the defini-
tions of the private member functions.

	28.	 BankAccount::BankAccount(int dollars, int cents,
 double rate) : dollars_part(dollars),
 �cents_part(cents), interest_

rate(fraction(rate))
{
 if ((dollars < 0) || (cents < 0) || (rate < 0))
 {
 cout << "Illegal values for money or interest rate.\n";
 exit(1);
 }
}

BankAccount::BankAccount(int dollars, double rate)
 : dollars_part(dollars), cents_part(0),
 interest_rate(fraction(rate))
{
 if ((dollars < 0) || (rate < 0))

 {
 cout << "Illegal values for money or interest rate.\n";
 exit(1);
 }

	29.	 Functions and data defined for the parent class can be made available in
the derived class, eliminating the need to redefine the functions and data
again in the derived class. This enhances maintainability because there
is now no duplication of code among multiple classes and hence only a
single location in the code that may be subject to change. Additionally,
inheritance provides a clean way to isolate code that is only applicable to a
derived class. Since such code only appears in the definition of the derived
class, it is usually easier to read.

	30.	 No, but a derived class can indirectly access a private member variable of
the parent class through a public function.

	31.	 Yes, the derived class will have access to the same functions. In Chapter 15
we will discuss how we can make the functions do different things for an
object of class SportsCar versus an object of class Automobile.

Practice Programs

Practice Programs can generally be solved with a short program that directly applies
the programming principles presented in this chapter.

	 1.	R edefine CDAccount from Display 10.1 so that it is a class rather than a
structure. Use the same member variables as in Display 10.1 but make
them private. Include member functions for each of the following: one
to return the initial balance, one to return the balance at maturity, one to
return the interest rate, and one to return the term. Include a constructor
that sets all of the member variables to any specified values, as well as a
default constructor. Embed your class definition in a test program.

	 2.	R edo your definition of the class CDAccount from Practice Program 1 so
that it has the same interface but a different implementation. The new
implementation is in many ways similar to the second implementation for
the class BankAccount given in Display 10.7. Your new implementation for
the class CDAccount will record the balance as two values of type int: one
for the dollars and one for the cents. The member variable for the interest
rate will store the interest rate as a fraction rather than as a percentage. For
example, an interest rate of 4.3% will be stored as the value 0.043 of type
double. Store the term in the same way as in Display 10.1.

	 3.	 Define a class for a type called CounterType. An object of this type is used
to count things, so it records a count that is a nonnegative whole number.
Include a default constructor that sets the counter to zero and a constructor

	 Practice Programs	 611

VideoNote
Solution to Practice
Program 10.1

612	 Chapter 10 /  Defining Classes

with one argument that sets the counter to the value specified by its argu-
ment. Include member functions to increase the count by 1 and to decrease
the count by 1. Be sure that no member function allows the value of the
counter to become negative. Also, include a member function that returns
the current count value and one that outputs the count to a stream. The
member function for doing output will have one formal parameter of type
ostream for the output stream that receives the output. Embed your class
definition in a test program.

Programming Projects

Programming Projects require more problem-solving than Practice Programs and
can usually be solved many different ways.Visit www.myprogramminglab.com to
complete many of these Programming Projects online and get instant feedback.

	 1.	 Write a grading program for a class with the following grading policies:

	 a.	 There are two quizzes, each graded on the basis of 10 points.

	 b.	There is one midterm exam and one final exam, each graded on the
basis of 100 points.

	 c.	 The final exam counts for 50 percent of the grade, the midterm counts
for 25 percent, and the two quizzes together count for a total of 25
percent. (Do not forget to normalize the quiz scores. They should be
converted to a percent before they are averaged in.)

Any grade of 90 or more is an A, any grade of 80 or more (but less than
90) is a B, any grade of 70 or more (but less than 80) is a C, any grade of
60 or more (but less than 70) is a D, and any grade below 60 is an F.

The program will read in the student’s scores and output the student’s
record, which consists of two quiz and two exam scores as well as the
student’s average numeric score for the entire course and the final letter
grade. Define and use a structure for the student record. If this is a class
assignment, ask your instructor if input/output should be done with the
keyboard and screen or if it should be done with files. If it is to be done
with files, ask your instructor for instructions on file names.

	 2.	R edo Programming Project 1 (or do it for the first time), but this time
make the student record type a class type rather than a structure type. The
student record class should have member variables for all the input data
described in Programing Project 1 and a member variable for the student’s
weighted average numeric score for the entire course as well as a member
variable for the student’s final letter grade. Make all member variables pri-
vate. Include member functions for each of the following: member func-
tions to set each of the member variables to values given as an argument(s)
to the function, member functions to retrieve the data from each of the

www.myprogramminglab.com

	 Programming Projects	 613

member variables, a void function that calculates the student’s weighted
average numeric score for the entire course and sets the corresponding
member variable, and a void function that calculates the student’s final
letter grade and sets the corresponding member variable.

	 3.	 Define a class called Month that is an abstract data type for a month. Your
class will have one member variable of type int to represent a month
(1 for January, 2 for February, and so forth). Include all the following mem-
ber functions: a constructor to set the month using the first three letters in
the name of the month as three arguments, a constructor to set the month
using an integer as an argument (1 for January, 2 for February, and so forth),
a default constructor, an input function that reads the month as an integer,
an input function that reads the month as the first three letters in the name of
the month, an output function that outputs the month as an integer, an out-
put function that outputs the month as the first three letters in the name of
the month, and a member function that returns the next month as a value
of type Month. The input and output functions will each have one formal
parameter for the stream. Embed your class definition in a test program.

	 4.	R edefine the implementation of the class Month described in Programming
Project 3 (or do the definition for the first time, but do the implementation
as described here). This time the month is implemented as three member
variables of type char that store the first three letters of the name of the
month. Embed your definition in a test program.

	 5.	 (In order to do this project you must have first done either Programming
Project 3 or Project 4.) Rewrite the program in Display 10.4, but use the class
Month that you defined in Project 3 or Project 4 as the type for the mem-
ber variable to record the month. (You may define the class Month either as
described in Project 3 or as described in Project 4.) Redefine the member
function output so that it has one formal parameter of type ostream for the
output stream. Modify the program so that everything that is output to the
screen is also output to a file. This means that all output statements will occur
twice: once with the argument cout and once with an output-stream argu-
ment. If you are in a class, obtain the file name from your instructor. The
input will still come from the keyboard. Only the output will be sent to a file.

	 6.	 My mother always took a little red counter to the grocery store. The counter
was used to keep a tally of the amount of money she would have spent so
far on that visit to the store, if she bought all the items in her basket. There
was a four-digit display, increment buttons for each digit, and a reset but-
ton. There was an overflow indicator that came up red if more money was
entered than the $99.99 it would register. (This was a long time ago.)

Write and implement the member functions of a class Counter that
simulates and slightly generalizes the behavior of this grocery store

614	 Chapter 10 /  Defining Classes

counter. The constructor should create a Counter object that can count
up to the constructor’s argument. That is, Counter(9999) should provide
a counter that can count up to 9999. A newly constructed counter displays
a reading of 0. The member function void reset(); sets the counter’s
number to 0. The member functions void incr1(); increments the
units digit by 1, void incr10(); increments the tens digit by 1, and
void incr100(); and void incr1000(); increment the next two digits,
respectively. Accounting for any carry when you increment should require
no further action than adding an appropriate number to the private
data member. A member function bool overflow(); detects overflow.
(Overflow is the result of incrementing the counter’s private data member
beyond the maximum entered at counter construction.)

Use this class to provide a simulation of my mother’s little red clicker.
Even though the display is an integer, in the simulation, the rightmost
(lower-order) two digits are always thought of as cents and tens of cents,
the next digit is dollars, and the fourth digit is tens of dollars.

Provide keys for cents, dimes, dollars, and tens of dollars. Unfortunately,
no choice of keys seems particularly mnemonic. One choice is to use the
keys asdfo: a for cents, followed by a digit 1 to 9; s for dimes, followed
by digits 1 to 9; d for dollars, followed by a digit 1 to 9; and f for tens of
dollars, again followed by a digit 1 to 9. Each entry (one of asdf followed
by 1 to 9) is followed by pressing the Return key. Any overflow is reported
after each operation. Overflow can be requested by pressing the o key.

	  7.	 Write a rational number class. This problem will be revisited in Chapter 11,
where operator overloading will make the problem much easier. For now
we will use member functions add, sub, mul, div, and less that each carry
out the operations +, -, *, /, and <. For example, a + b will be written
a.add(b), and a < b will be written a.less(b).

Define a class for rational numbers. A rational number is a “ratio-nal”
number, composed of two integers with division indicated. The division
is not carried out, it is only indicated, as in 1/2, 2/3, 15/32, 65/4, 16/5.
You should represent rational numbers by two int values, numerator and
denominator.

A principle of abstract data type construction is that constructors must
be present to create objects with any legal values. You should provide
constructors to make objects out of pairs of int values; this is a constructor
with two int parameters. Since every int is also a rational number, as in
2/1 or 17/1, you should provide a constructor with a single int parameter.

Provide member functions input and output that take an istream and
ostream argument, respectively, and fetch or write rational numbers in
the form 2/3 or 37/51 to or from the keyboard (and to or from a file).

Provide member functions add, sub, mul, and div that return a rational
value. Provide a function less that returns a bool value. These functions
should do the operation suggested by the name. Provide a member function
neg that has no parameters and returns the negative of the calling object.

Provide a main function that thoroughly tests your class implementation.
The following formulas will be useful in defining functions.

a/b + c/d = (a * d + b * c) / (b * d)
a/b - c/d = (a * d - b * c) / (b * d)
(a/b) * (c/d) = (a * c) / (b * d)
(a/b) / (c/d) = (a * d) / (c * b)
-(a/b) = (-a/b)
(a/b) < (c/d) means (a * d) < (c * b)
(a/b) == (c/d) means (a * d) == (c * b)

Let any sign be carried by the numerator; keep the denominator positive.

	  8.	 Define a class called Odometer that will be used to track fuel and mileage for
an automotive vehicle. Include private member variables to track the miles
driven and the fuel efficiency of the vehicle in miles per gallon. The class
should have a constructor that initializes these values to zero. Include a
member function to reset the odometer to zero miles, a member function
to set the fuel efficiency, a member function that accepts miles driven for a
trip and adds it to the odometer’s total, and a member function that returns
the number of gallons of gasoline that the vehicle has consumed since the
odometer was last reset.

Use your class with a test program that creates several trips with different
fuel efficiencies.

	  9.	R edo Programming Project 7 from Chapter 5 (or do it for the first time),
but this time use a class to encapsulate the date. Use private member vari-
ables to store the day, month, and year along with an appropriate construc-
tor and member functions to get and set the data. Create a public function
that returns the day of the week. All helper functions should be declared
private. Embed your class definition in a suitable test program.

	10.	 The U.S. Postal Service printed a bar code on every envelope that repre-
sented a five- (or more) digit zip code using a format called POSTNET (this
format was deprecated in favor of a new system, OneCode, in 2009). The
bar code consists of long and short bars as shown:

	 Programming Projects	 615

616	 Chapter 10 /  Defining Classes

For this program, we will represent the bar code as a string of digits.
The digit 1 represents a long bar, and the digit 0 represents a short bar.
Therefore, the bar code would be represented in our program as

110100101000101011000010011

The first and last digits of the bar code are always 1. Removing these leaves
25 digits. If these 25 digits are split into groups of 5 digits each, we have

10100 10100 01010 11000 01001

Next, consider each group of 5 digits. There will always be exactly two 1s
in each group of digits. Each digit stands for a number. From left to right,
the digits encode the values 7, 4, 2, 1, and 0. Multiply the corresponding
value with the digit and compute the sum to get the final encoded digit
for the zip code. The table below shows the encoding for 10100.

Bar Code
Digits

1 0 1 0 0

Value 7 4 2 1 0

Product of
Digit * Value

7 0 2 0 0

Zip Code Digit = 7 + 0 + 2 + 0 + 0 = 9

Repeat this for each group of 5 digits and concatenate to get the complete
zip code. There is one special value. If the sum of a group of 5 digits is 11,
then this represents the digit 0 (this is necessary because with two digits
per group it is not possible to represent zero). The zip code for the sample
bar code decodes to 99504. Although the POSTNET scheme may seem
unnecessarily complex, its design allows machines to detect if errors have
been made in scanning the zip code.

Write a zip code class that encodes and decodes 5-digit bar codes used
by the U.S. Postal Service on envelopes. The class should have two
constructors. The first constructor should input the zip code as an integer,
and the second constructor should input the zip code as a bar code string
consisting of 0s and 1s, as described above. Although you have two ways
to input the zip code, internally, the class should store the zip code using
only one format (you may choose to store it as a bar code string or as a
zip code number). The class should also have at least two public member
functions, one to return the zip code as an integer, and the other to return
the zip code in bar code format as a string. All helper functions should be

declared private. Embed your class definition in a suitable test program.
Your program should print an error message if an invalid bar code is
passed to the constructor.

	11.	 Consider a class Movie that contains information about a movie. The class
has the following attributes:

■	 The movie name

■	 The MPAA rating (for example, G, PG, PG-13, R)

■	 The number of people that have rated this movie as a 1 (Terrible)

■	 The number of people that have rated this movie as a 2 (Bad)

■	 The number of people that have rated this movie as a 3 (OK)

■	 The number of people that have rated this movie as a 4 (Good)

■	 The number of people that have rated this movie as a 5 (Great)

Implement the class with accessor and mutator functions for the movie
name and MPAA rating. Write a function addRating that takes an integer
as an input parameter. The function should verify that the parameter is
a number between 1 and 5, and if so, increment the number of people
rating the movie that match the input parameter. For example, if 3 is
the input parameter, then the number of people that rated the movie as
a 3 should be incremented by 1. Write another function, getAverage,
that returns the average value for all of the movie ratings. Finally, add
a constructor that allows the programmer to create the object with a
specified name and MPAA rating. The number of people rating the movie
should be set to 0 in the constructor.

Test the class by writing a main function that creates at least two movie
objects, adds at least five ratings for each movie, and outputs the movie
name, MPAA rating, and average rating for each movie object.

	 Programming Projects	 617

This page intentionally left blank

Friends, Overloaded
Operators, and

Arrays in Classes

11.1  Friend Functions  620
Programming Example: An Equality Function  620
Friend Functions  624
Programming Tip: Define Both Accessor Functions

and Friend Functions  626
Programming Tip: Use Both Member and

Nonmember Functions  628
Programming Example: Money Class

(Version 1)  628
Implementation of digit_to_int (Optional)  635
Pitfall: Leading Zeros in Number Constants  636
The const Parameter Modifier  638
Pitfall: Inconsistent Use of const  639

11.2 O verloading Operators  643
Overloading Operators  644
Constructors for Automatic Type Conversion  647

Overloading Unary Operators  649
Overloading >> and <<  650

11.3 A rrays and Classes  660
Arrays of Classes  660
Arrays as Class Members  664
Programming Example: A Class for a Partially

Filled Array  665

11.4 C lasses and Dynamic Arrays  667
Programming Example: A String Variable Class  668
Destructors  671
Pitfall: Pointers as Call-by-Value Parameters  674
Copy Constructors  675
Overloading the Assignment Operator  680

11

Chapter Summary  683
Answers to Self-Test Exercises  683

Practice Programs  693
Programming Projects  694

Introduction

This chapter teaches you more techniques for defining functions and operators
for classes, including overloading common operators such as +, *, and / so
that they can be used with the classes you define in the same way that they are
used with the predefined types such as int and double.

Prerequisites

This chapter uses material from Chapters 2 through 10.

11.1  Friend Functions

Trust your friends.

Common advice

Until now we have implemented class operations, such as input, output,
accessor functions, and so forth, as member functions of the class, but for
some operations, it is more natural to implement the operations as ordinary
(nonmember) functions. In this section, we discuss techniques for defining
operations on objects as nonmember functions. We begin with a simple
example.

 P rogramming Example    An Equality Function

In Chapter 10, we developed a class called DayOfYear that records a date,
such as January 1 or July 4, that might be a holiday or birthday or some
other annual event. We gave progressively better versions of the class.
The final version was produced in Self-Test Exercise 23 of Chapter 10. In
Display 11.1, we repeat this final version of the class DayOfYear and have
enhanced the class one more time by adding a function called equal that
can test two objects of type DayOfYear to see if their values represent the
same date.

620

Give us the tools, and we’ll finish the job.

Winston Churchill, Radio Broadcast, February 9, 1941

	 11.1  Friend Functions	 621

Display 11.1   Equality Function (part 1 of 3)

 1 //Program to demonstrate the function equal. The class DayOfYear
 2 //is the same as in Self-Test Exercises 23-24 in Chapter 10.
 3 #include <iostream>
 4 using namespace std;

 5 class DayOfYear
 6 {
 7 public:
 8 DayOfYear(int the_month, int the_day);
 9 //Precondition: the_month and the_day form a
10 //possible date. Initializes the date according
11 //to the arguments.

12 DayOfYear();
13 //Initializes the date to January first.

14 void input();

15 void output();

16 int get_month();
17 //Returns the month, 1 for January, 2 for February, etc.

18 int get_day();
19 //Returns the day of the month.
20 private:
21 void check_date();
22 int month;
23 int day;
24 };
25
26 bool equal(DayOfYear date1, DayOfYear date2);
27 //Precondition: date1 and date2 have values.
28 //Returns true if date1 and date2 represent the same date;
29 //otherwise, returns false.
30
31 int main()
32 {
33 DayOfYear today, bach_birthday(3, 21);
34
35 cout << "Enter today's date:\n";
36 today.input();
37 cout << "Today's date is ";
38 today.output();
39
40 cout << "J. S. Bach's birthday is ";

(continued)

Display 11.1   Equality Function (part 2 of 3)

41 bach_birthday.output();
42
43 if (equal(today, bach_birthday))
44 cout << "Happy Birthday Johann Sebastian!\n";
45 else
46 cout << "Happy Unbirthday Johann Sebastian!\n";
47 return 0;
48 }
49
50 bool equal(DayOfYear date1, DayOfYear date2)
51 {
52 return (date1.get_month() == date2.get_month() &&
53 date1.get_day() == date2.get_day());
54 }
55
56 DayOfYear::DayOfYear(int the_month, int the_day)
57 : month(the_month), day(the_day)
58 {
59 check_date();
60 }
61
62 int DayOfYear::get_month()
63 {
64 return month;

622	 Chapter 11 /  Friends, Overloaded Operators, and Arrays in Classes

Omitted function and constructor
definitions are as in Chapter 10,
Self-Test Exercises 14 and 24, but
those details are not needed for what
we are doing here.

65 }
66
67 int DayOfYear::get_day()
68 {
69 return day;
70 }
71
72 //Uses iostream:
73 void DayOfYear::input()
74 {
75 cout << "Enter the month as a number: ";
76 cin >> month;
77 cout << "Enter the day of the month: ";
78 cin >> day;
79 }
80
81 //Uses iostream:
82 void DayOfYear::output()
83 {
84 cout << "month = " << month
85 << ", day = " << day << endl;
86 }

(continued)

Display 11.1   Equality Function (part 3 of 3)

Sample Dialogue

Enter today's date:

Enter the month as a number: 3

Enter the day of the month: 21

Today's date is month = 3, day = 21

J. S. Bach's birthday is month = 3, day = 21

Happy Birthday Johann Sebastian!

Suppose today and bach_birthday are two objects of type DayOfYear
that have been given values representing some dates. You can test to see if they
represent the same date with the following Boolean expression:

equal(today, bach_birthday)

This call to the function equal returns true if today and bach_birthday
represent the same date. In Display 11.1 this Boolean expression is used to
control an if-else statement.

The definition of the function equal is straight forward. Two dates are
equal if they represent the same month and the same day of the month.
The definition of equal uses accessor functions get_month and get_day to
compare the months and the days represented by the two objects.

Notice that we did not make the function equal a member function. It
would be possible to make equal a member function of the class DayOfYear,
but equal compares two objects of type DayOfYear. If you make equal a
member function, you must decide whether the calling object should be the
first date or the second date. Rather than arbitrarily choosing one of the two
dates as the calling object, we instead treated the two dates in the same way.
We made equal an ordinary (nonmember) function that takes two dates as its
arguments.

Self-Test Exercise

	  1.	 Write a function definition for a function called before that takes two
arguments of the type DayOfYear, which is defined in Display 11.1.
The function returns a bool value and returns true if the first argument
represents a date that comes before the date represented by the second
argument; otherwise, the function returns false; for example, January 5
comes before February 2.

	 11.1  Friend Functions	 623

Friend Functions

If your class has a full set of accessor functions, you can use the accessor
functions to define a function to test for equality or to do any other kind of
computing that depends on the private member variables. However, although
this may give you access to the private member variables, it may not give you
efficient access to them. Look again at the definition of the function equal
given in Display 11.1. To read the month, it must make a call to the accessor
function get_month. To read the day, it must make a call to the accessor
function get_day. This works, but the code would be simpler and more
efficient if we could just access the member variables.

A simpler and more efficient definition of the function equal given in
Display 11.1 would be as follows:

bool equal(DayOfYear date1, DayOfYear date2)
{
 return (date1.month == date2.month &&
 date1.day == date2.day);
}

There is just one problem with this definition: It’s illegal! It’s illegal because the
member variables month and day are private members of the class DayOfYear.
Private member variables (and private member functions) cannot normally be
referenced in the body of a function unless the function is a member function,
and equal is not a member function of the class DayOfYear. But there is a
way to give a nonmember function the same access privileges as a member
function. If we make the function equal a friend of the class DayOfYear, then
the previous definition of equal will be legal.

A friend function of a class is not a member function of the class,
but a friend function has access to the private members of that class
just as a member function does. A friend function can directly read the
value of a member variable and can even directly change the value of a
member variable, for example, with an assignment statement that has a
private member variable on one side of the assignment operator. To make
a function a friend function, you must name it as a friend in the class
definition. For example, in Display 11.2 we have rewritten the definition
of the class DayOfYear so that the function equal is a friend of the class.
You make a function a friend of a class by listing the function declaration
in the definition of the class and placing the keyword friend in front of the
function declaration.

A friend function is added to a class definition by listing its function
declaration, just as you would list the declaration of a member function,
except that you precede the function declaration by the keyword friend.
However, a friend is not a member function; rather, it really is an ordinary
function with extraordinary access to the data members of the class. The
friend is defined and called exactly like the ordinary function it is. In
particular, the function definition for equal shown in Display 11.2 does

624	 Chapter 11 /  Friends, Overloaded Operators, and Arrays in Classes

Friends can access
private members

A friend is not a
member

	 11.1  Friend Functions	 625

Display 11.2   Equality Function as a Friend

 1 //Demonstrates the function equal.
 2 //In this version equal is a friend of the class DayOfYear.
 3 #include <iostream>
 4 using namespace std;
 5
 6 class DayOfYear
 7 {
 8 public:
 9 friend bool equal(DayOfYear date1, DayOfYear date2);
10 //Precondition: date1 and date2 have values.
11 //Returns true if date1 and date2 represent the same date;
12 //otherwise, returns false.

13 DayOfYear(int the_month, int the_day);
14 //Precondition: the_month and the_day form a
15 //possible date. Initializes the date according
16 //to the arguments.

17 DayOfYear();
18 //Initializes the date to January first.

19 void input();

20 void output();

21 int get_month();
22 //Returns the month, 1 for January, 2 for February, etc.

23 int get_day();
24 //Returns the day of the month.
25 private:
26 void check_date();
27 int month;
28 int day;
29 };
30
31 int main()
32 {

 <The main part of the program is the same as in Display 11.1.>

33 }
34
35 bool equal(DayOfYear date1, DayOfYear date2)
36 {
37 return (date1.month == date2.month &&
38 date1.day == date2.day);
39 }
40

 <The rest of this display, including the Sample Dialogue, is the same as in Display 11.1.>

Note that the private
member variables
month and day can
be accessed by name.

626	 Chapter 11 /  Friends, Overloaded Operators, and Arrays in Classes

not include the qualifier DayOfYear:: in the function heading. Also, the
equal function is not called by using the dot operator. The function equal
takes objects of type DayOfYear as arguments the same way that any other
nonmember function would take arguments of any other type. However,
a friend function definition can access the private member variables and
private member functions of the class by name, so it has the same access
privileges as a member function.

■ P rogramming Tip � Define Both Accessor Functions
and Friend Functions

It may seem that if you make all your basic functions friends of a class, then
there is no need to include accessor and mutator functions in the class. After
all, friend functions have access to the private member variables and so do not
need accessor or mutator functions. This is not entirely wrong. It is true that if
you made all the functions in the world friends of a class, you would not need
accessor or mutator functions. However, making all functions friends is not
practical.

In order to see why you still need accessor functions, consider the
example of the class DayOfYear given in Display 11.2. You might use this
class in another program, and that other program might very well want to
do something with the month part of a DayOfYear object. For example, the
program might want to calculate how many months there are remaining
in the year. Specifically, the main part of the program might contain the
following:

DayOfYear today;
cout << "enter today's date: \n";
today.input();
cout << "There are " << (12 - today.get_month())
 << " months left in this year.\n";

You cannot replace today.get_month() with today.month because month
is a private member of the class. You need the accessor function get_
month.

You have just seen that you definitely need to include accessor functions
in your class. Other cases require mutator functions. You may think that,
because you usually need accessor and mutator functions, you do not need
friends. In a sense, that is true. Notice that you could define the function
equal either as a friend without using accessor functions (Display 11.2)
or not as a friend and use accessor functions (as in Display 11.1). In most
situations, the only reason to make a function a friend is to make the
definition of the function simpler and more efficient; but sometimes, that is
reason enough.

	 11.1  Friend Functions	 627

Friend Functions

A friend function of a class is an ordinary function except that it has
access to the private members of objects of that class. To make a function
a friend of a class, you must list the function declaration for the friend
function in the class definition. The function declaration is preceded by
the keyword friend. The function declaration may be placed in either
the private section or the public section, but it will be a public function in
either case, so it is clearer to list it in the public section.

Syntax (of a class definition with friend functions)

class Class_Name
{
public:
 friend Declaration_for_Friend_Function_1
 friend Declaration_for_Friend_Function_2
 .
 .
 .
 Member_Function_Declarations
private:
 Private_Member_Declarations
};

Example

class FuelTank
{
public:
 friend double need_to_fill(FuelTank tank);
 //Precondition: Member variables of tank have values.
 //Returns the number of liters needed to fill tank.
 FuelTank(double the_capacity, double the_level);
 FuelTank();
 void input();
 void output();
private:
 double capacity;//in liters
 double level;
};

A friend function is not a member function. A friend function is defined
and called the same way as an ordinary function. You do not use the dot
operator in a call to a friend function and you do not use a type qualifier
in the definition of a friend function.

You need not list the friend
functions first. You can inter
mix the order of these function
declarations.

	 ■

628	 Chapter 11 /  Friends, Overloaded Operators, and Arrays in Classes

■ P rogramming Tip  �Use Both Member and
Nonmember Functions

Member functions and friend functions serve a very similar role. In fact,
sometimes it is not clear whether you should make a particular function a
friend of your class or a member function of the class. In most cases, you can
make a function either a member function or a friend and have it perform
the same task in the same way. There are, however, places where it is better to
use a member function and places where it is better to use a friend function
(or even a plain old function that isn’t a friend, like the version of equal in
Display 11.1). A simple rule to help you decide between member functions
and nonmember functions is the following:

■	 Use a member function if the task being performed by the function involves
only one object.

■	 Use a nonmember function if the task being performed involves more than
one object. For example, the function equal in Display 11.1 (and Display
11.2) involves two objects, so we made it a nonmember (friend) function.

Whether you make a nonmember function a friend function or use accessor
and mutator functions is a matter of efficiency and personal taste. As long as
you have enough accessor and mutator functions, either approach will work.

The choice of whether to use a member or nonmember function is not
always as simple as the above two rules. With more experience, you will
discover situations in which it pays to violate those rules. A more accurate but
harder to understand rule is to use member functions if the task is intimately
related to a single object; use a nonmember function when the task involves
more than one object and the objects are used symmetrically. However, this
more accurate rule is not clear-cut, and the two simple rules given above will
serve as a reliable guide until you become more sophisticated in handling
objects.	 ■

 P rogramming Example   Money Class (Version 1)

Display 11.3 contains the definition of a class called Money, which represents
amounts of U.S. currency. The value is implemented as a single integer value
that represents the amount of money as if it were converted to all pennies. For
example, $9.95 would be stored as the value 995. Since we use an integer to
represent the amount of money, the amount is represented as an exact quantity.
We did not use a value of type double because values of type double are stored
as approximate values and we want our money amounts to be exact quantities.

This integer for the amount of money (expressed as all cents) is stored in
a member variable named all_cents. We could use int for the type of the

	 11.1  Friend Functions	 629

member variable all_cents, but with some compilers that would severely
limit the amounts of money we could represent. In some implementations
of C++, only 2 bytes are used to store the int type.1 The result of the 2-byte
implementation is that the largest value of type int is only slightly larger than
32000, but 32000 cents represents only $320, which is a fairly small amount
of money. Since we may want to deal with amounts of money much larger
than $320, we have used long for the type of the member variable all_cents.
C++ compilers that implement the int type in 2 bytes usually implement the
type long in 4 bytes. Values of type long are integers just like the values of the
type int, except that the 4-byte long implementation enables the largest
allowable value of type long to be much larger than the largest allowable
value of type int. On most systems the largest allowable value of type long is
2 billion or larger. (The type long is also called long int. The two names long
and long int refer to the same type.)

The class Money has two operations that are friend functions: equal and
add (which are defined in Display 11.3). The function add returns a Money
object whose value is the sum of the values of its two arguments. A function
call of the form equal(amount1, amount2) returns true if the two objects
amount1 and amount2 have values that represent equal amounts of money.

Notice that the class Money reads and writes amounts of money as we
normally write amounts of money, such as $9.95 or –$9.95. First, consider
the member function input (also defined in Display 11.3). That function first
reads a single character, which should be either the dollar sign ('$') or the
minus sign ('−'). If this first character is the minus sign, then the function
remembers that the amount is negative by setting the value of the variable
negative to true. It then reads an additional character, which should be the
dollar sign. On the other hand, if the first symbol is not '-', then negative is
set equal to false. At this point the negative sign (if any) and the dollar sign
have been read. The function input then reads the number of dollars as a value
of type long and places the number of dollars in the local variable named
dollars. After reading the dollars part of the input, the function input reads
the remainder of the input as values of type char; it reads in three characters,
which should be a decimal point and two digits.

(You might be tempted to define the member function input so that it
reads the decimal point as a value of type char and then reads the number
of cents as a value of type int. This is not done because of the way that some
C++ compilers treat leading zeros. As explained in the Pitfall section entitled
“Leading Zeros in Number Constants,” many compilers still in use do not
read numbers with leading zeros as you would like them to, so an amount
like $7.09 may be read incorrectly if your C++ code were to read the 09 as a
value of type int.)

1 See Chapter 2 for details. Display 2.2 has a description of data types as most recent
compilers implement them.

630	 Chapter 11 /  Friends, Overloaded Operators, and Arrays in Classes

Display 11.3   Money Class—Version 1 (part 1 of 4)

 1 //Program to demonstrate the class Money.
 2 #include <iostream>
 3 #include <cstdlib>
 4 #include <cctype>
 5 using namespace std;

 6 //Class for amounts of money in U.S. currency.
 7 class Money
 8 {
 9 public:
10 friend Money add(Money amount1, Money amount2);
11 //Precondition: amount1 and amount2 have been given values.
12 //Returns the sum of the values of amount1 and amount2.

13 friend bool equal(Money amount1, Money amount2);
14 //Precondition: amount1 and amount2 have been given values.
15 //Returns true if the amount1 and amount2 have the same value;
16 //otherwise, returns false.

17 Money(long dollars, int cents);
18 //Initializes the object so its value represents an amount with the
19 //dollars and cents given by the arguments. If the amount is negative,
20 //then both dollars and cents must be negative.

21 Money(long dollars);
22 //Initializes the object so its value represents $dollars.00.

23 Money();
24 //Initializes the object so its value represents $0.00.

25 double get_value();
26 //Precondition: The calling object has been given a value.
27 //Returns the amount of money recorded in the data of the calling object.

28 void input(istream& ins);
29 //Precondition: If ins is a file input stream, then ins has already been
30 //connected to a file. An amount of money, including a dollar sign, has been
31 //entered in the input stream ins. Notation for negative amounts is -$100.00.
32 //Postcondition: The value of the calling object has been set to
33 //the amount of money read from the input stream ins.

34 void output(ostream& outs);
35 //Precondition: If outs is a file output stream, then outs has already been
36 //connected to a file.
37 //Postcondition: A dollar sign and the amount of money recorded
38 //in the calling object have been sent to the output stream outs.
39 private:
40 long all_cents;
41 };

(continued)

	 11.1  Friend Functions	 631

Display 11.3   Money Class—Version 1 (part 2 of 4)

42 int digit_to_int(char c);
43 //Function declaration for function used in the definition of Money::input:
44 //Precondition: c is one of the digits '0' through '9'.
45 //Returns the integer for the digit; for example, digit_to_int ('3') returns 3.

46 int main()
47 {
48 Money your_amount, my_amount(10, 9), our_amount;
49 cout << "Enter an amount of money: ";
50 your_amount.input(cin);
51 cout << "Your amount is ";
52 your_amount.output(cout);
53 cout << endl;
54 cout << "My amount is ";
55 my_amount.output(cout);
56 cout << endl;

57 if (equal(your_amount, my_amount))
58 cout << "We have the same amounts.\n";
59 else
60 cout << "One of us is richer.\n";
61 our_amount = add(your_amount, my_amount);
62 your_amount.output(cout);
63 cout << " + ";
64 my_amount.output(cout);
65 cout << " equals ";
66 our_amount.output(cout);
67 cout << endl;
68 return 0;
69 }
70 Money add(Money amount1, Money amount2)
71 {
72 Money temp;
73
74 temp.all_cents = amount1.all_cents + amount2.all_cents;
75 return temp;
76 }
77
78 bool equal(Money amount1, Money amount2)
79 {
80 return (amount1.all_cents == amount2.all_cents);
81 }
82
83 Money::Money(long dollars, int cents)
84 {
85 if (dollars * cents < 0) //If one is negative and one is positive

(continued)

632	 Chapter 11 /  Friends, Overloaded Operators, and Arrays in Classes

Display 11.3   Money Class—Version 1 (part 3 of 4)

86 {
87 cout << "Illegal values for dollars and cents.\n";
88 exit(1);
89 }
90 all_cents = dollars * 100 + cents;
91 }
92
93 Money::Money(long dollars) : all_cents(dollars * 100)
94 {
95 //Body intentionally blank.
96 }
97
98 Money::Money() : all_cents(0)
99 {
100 //Body intentionally blank.
101 }
102
103 double Money::get_value()
104 {
105 return (all_cents * 0.01);
106 }
107 //Uses iostream, cctype, cstdlib:
108 void Money::input(istream& ins)
109 {
110 char one_char, decimal_point, digit1, digit2;
111 //digits for the amount of cents
112 long dollars;
113 int cents;
114 bool negative;//set to true if input is negative.
115
116 ins >> one_char;
117 if (one_char == ' ')
118 {
119 negative = true;
120 ins >> one_char; //read '$'
121 }
122 else
123 negative = false;
124 //if input is legal, then one_char == '$'
125
126 ins >> dollars >> decimal_point >> digit1 >> digit2;
127
128 if (one_char != '$' || decimal_point != '.'
129 || !isdigit(digit1) || !isdigit(digit2))

(continued)

	 11.1  Friend Functions	 633

Display 11.3   Money Class—Version 1 (part 4 of 4)

130 {
131 cout << "Error illegal form for money input\n";
132 exit(1);
133 }
134 cents = digit_to_int(digit1) * 10 + digit_to_int(digit2);
135
136 all_cents = dollars * 100 + cents;
137 if (negative)
138 all_cents = -all_cents;
139 }
140
141 //Uses cstdlib and iostream:
142 void Money::output(ostream& outs)
143 {
144 long positive_cents, dollars, cents;
145 positive_cents = labs(all_cents);
146 dollars = positive_cents / 100;
147 cents = positive_cents % 100;
148
149 if (all_cents < 0)
150 outs << "-$" << dollars << '.';
151 else
152 outs << "$" << dollars << '.';
153
154 if (cents < 10)
155 outs << '0';
156 outs << cents;
157 }
158
159 int digit_to_int(char c)
160 {
161 return (static_cast<int>(c) − static_cast<int>('0'));
162 }
163

Sample Dialogue

Enter an amount of money: $123.45

Your amount is $123.45

My amount is $10.09

One of us is richer.

$123.45 + $10.09 equals $133.54

634	 Chapter 11 /  Friends, Overloaded Operators, and Arrays in Classes

The following assignment statement converts the two digits that make up
the cents part of the input amount to a single integer, which is stored in the
local variable cents:

cents = digit_to_int(digit1) * 10 + digit_to_int(digit2);

After this assignment statement is executed, the value of cents is the number
of cents in the input amount.

The helping function digit_to_int takes an argument that is a digit,
such as '3', and converts it to the corresponding int value, such as 3. We
need this helping function because the member function input reads the two
digits for the number of cents as two values of type char, which are stored
in the local variables digit1 and digit2. However, once the digits are read
into the computer, we want to use them as numbers. Therefore, we use the
function digit_to_int to convert a digit such as '3' to a number such as 3.
The definition of the function digit_to_int is given in Display 11.3. You
can simply take it on faith that this definition does what it is supposed to do
and treat the function as a black box. All you need to know is that digit_to_
int('0') returns 0, digit_to_int('1') returns 1, and so forth. However, it
is not too difficult to see how this function works, so you may want to read
the optional section that follows this one. It explains the implementation of
digit_to_int.

Once the local variables dollars and cents are set to the number of
dollars and the number of cents in the input amount, it is easy to set the
member variable all_cents. The following assignment statement sets all_
cents to the correct number of cents:

all_cents = dollars * 100 + cents;

However, this always sets all_cents to a positive amount. If the amount
of money is negative, then the value of all_cents must be changed from
positive to negative. This is done with the following statement:

if (negative)
 all_cents = -all_cents;

The member function output (Display 11.3) calculates the number of
dollars and the number of cents from the value of the member variable
all_cents. It computes the number of dollars and the number of cents using
integer division by 100. For example, if all_cents has a value of 995 (cents),
then the number of dollars is 995/100, which is 9, and the number of cents is
995%100, which is 95. Thus, $9.95 would be the value output when the value
of all_cents is 995 (cents).

The definition for the member function output needs to make special
provisions for outputting negative amounts of money. The result of integer
division with negative numbers does not have a standard definition and can
vary from one implementation to another. To avoid this problem, we have
taken the absolute value of the number in all_cents before performing

	 11.1  Friend Functions	 635

division. To compute the absolute value we use the predefined function labs.
The function labs returns the absolute value of its argument, just like the
function abs, but labs takes an argument of type long and returns a value
of type long. The function labs is in the library with header file cstdlib,
just like the function abs. (Some versions of C++ do not include labs. If
your implementation of C++ does not include labs, you can easily define the
function for yourself.)

Implementation of digit_to_int (Optional)

The definition of the function digit_to_int from Display 11.3 is reproduced
here:

int digit_to_int(char c)
{
 return (static_cast<int>(c) - static_cast<int>('0'));
}

At first glance, the formula for the value returned may seem a bit
strange, but the details are not too complicated. The digit to be converted—
for example, '3'—is the parameter c, and the returned value will turn out
to be the corresponding int value—in this example, 3. As we pointed out
in Chapters 2 and 6, values of type char are implemented as numbers.
Unfortunately, the number implementing the digit '3', for example, is not
the number 3. The type cast static_cast<int>(c) produces the number that
implements the character c and converts this number to the type int. This
changes c from the type char to a number of type int but, unfortunately,
not to the number we want. For example, static_cast<int>('3') is not 3,
but is some other number. We need to convert static_cast<int>(c) to the
number corresponding to c (for example, '3' to 3). So let’s see how we must
adjust static_cast<int>(c) to get the number we want.

We know that the digits are in order. So static_cast<int>('0') + 1 is
equal to static_cast<int>('1'); static_cast<int>('1') + 1 is equal to
static_cast <int>('2'); static_cast<int>('2') + 1 is equal to static_
cast<int>('3'), and so forth. Knowing that the digits are in this order is all
we need to know in order to see that digit_to_int returns the correct value.
If c is '0', the value returned is

static_cast<int>(c) - static_cast<int>('0')

which is

static_cast<int>('0') – static_cast<int>('0')

So digit_to_int('0') returns 0.
Now let’s consider what happens when c has the value '1'. The value

returned is then static_cast<int>(c) - static_cast<int>('0'), which is
static_cast<int>('1') - static_cast<int>('0'). That equals (static_

636	 Chapter 11 /  Friends, Overloaded Operators, and Arrays in Classes

cast<int>('0') + 1) - static_cast<int>('0'), and that, in turn, equals
static_cast<int>('0') - static_cast<int>('0') + 1. Since static_
cast<int>('0') - static_cast <int>('0') is 0, this result is 0 + 1, or 1. You
can check the other digits, '2' through '9', for yourself; each digit produces a
number that is 1 larger than the previous digit.

Pitfall  Leading Zeros in Number Constants

The following are the object declarations given in the main part of the program
in Display 11.3:

Money your_amount, my_amount(10, 9), our_amount;

The two arguments in my_amount(10,9) represent $10.09. Since we normally
write cents in the format “.09,” you might be tempted to write the object
declaration as my_amount(10,09). However, this will cause problems. In
mathematics, the numerals 9 and 09 represent the same number. However,
some C++ compilers use a leading zero to signal a different kind of numeral, so
in C++ the constants 9 and 09 are not necessarily the same number. With
some compilers, a leading zero means that the number is written in base 8
rather than base 10. Since base 8 numerals do not use the digit 9, the constant
09 does not make sense in C++. The constants 00 through 07 should work
correctly, since they mean the same thing in base 8 and in base 10, but some
systems in some contexts will have trouble even with 00 through 07.

The ANSI C++ standard provides that input should default to being
interpreted as decimal, regardless of the leading 0. The GNU project C++
compiler, g++, and Microsoft’s VC++ compiler do comply with the standard,
and so they do not have a problem with leading zeros. Most compiler vendors
track the ANSI standard and thus should be compliant with the ANSI C++
standard, and so this problem with leading zeros should eventually go away.
You should write a small program to test this on your compiler.	 ■

Self-Test Exercises

	  2.	 What is the difference between a friend function for a class and a member
function for the class?

	  3.	 Suppose you wish to add a friend function to the class DayOfYear defined
in Display 11.2. This friend function will be named after and will take
two arguments of the type DayOfYear. The function returns true if the
first argument represents a date that comes after the date represented
by the second argument; otherwise, the function returns false. For
example, February 2 comes after January 5. What do you need to add to
the definition of the class DayOfYear in Display 11.2?

	 11.1  Friend Functions	 637

	  4.	 Suppose you wish to add a friend function for subtraction to the class
Money defined in Display 11.3. What do you need to add to the description
of the class Money that we gave in Display 11.3? The subtraction function
should take two arguments of type Money and return a value of type Money
whose value is the value of the first argument minus the value of the
second argument.

	  5.	N otice the member function output in the class definition of Money given
in Display 11.3. In order to write a value of type Money to the screen, you
call output with cout as an argument. For example, if purse is an object
of type Money, then to output the amount of money in purse to the
screen, you write the following in your program:

purse.output(cout);

It might be nicer not to have to list the stream cout when you send output
to the screen.

Rewrite the class definition for the type Money given in Display 11.3. The
only change is that this rewritten version overloads the function name
output so that there are two versions of output. One version is just like
the one shown in Display 11.3; the other version of output takes no
arguments and sends its output to the screen. With this rewritten version
of the type Money, the following two calls are equivalent:

purse.output(cout);

and

purse.output();

but the second is simpler. Note that since there will be two versions of the
function output, you can still send output to a file. If outs is an output
file stream that is connected to a file, then the following will output the
money in the object purse to the file connected to outs:

purse.output(outs);

	  6.	N otice the definition of the member function input of the class Money
given in Display 11.3. If the user enters certain kinds of incorrect input,
the function issues an error message and ends the program. For example,
if the user omits a dollar sign, the function issues an error message.
However, the checks given there do not catch all kinds of incorrect input.
For example, negative amounts of money are supposed to be entered in
the form −$9.95, but if the user mistakenly enters the amount in the form
$−9.95, then the input will not issue an error message and the value of
the Money object will be set to an incorrect value. What amount will the
member function input read if the user mistakenly enters $−9.95? How
might you add additional checks to catch most errors caused by such a
misplaced minus sign?

638	 Chapter 11 /  Friends, Overloaded Operators, and Arrays in Classes

	  7.	 The Pitfall section entitled “Leading Zeros in Number Constants” suggests that
you write a short program to test whether a leading 0 will cause your compiler
to interpret input numbers as base-8 numerals. Write such a program.

The const Parameter Modifier

A call-by-reference parameter is more efficient than a call-by-value parameter.
A call-by-value parameter is a local variable that is initialized to the value of its
argument, so when the function is called there are two copies of the argument.
With a call-by-reference parameter, the parameter is just a placeholder that
is replaced by the argument, so there is only one copy of the argument.
For parameters of simple types, such as int or double, the difference in
efficiency is negligible, but for class parameters the difference in efficiency can
sometimes be important. Thus, it can make sense to use a call-by-reference
parameter rather than a call-by-value parameter for a class, even if the function
does not change the parameter.

If you are using a call-by-reference parameter and your function does
not change the value of the parameter, you can mark the parameter so that
the compiler knows that the parameter should not be changed. To do so,
place the modifier const before the parameter type. The parameter is then
called a constant parameter. For example, consider the class Money defined in
Display 11.3. The Money parameters for the friend function add can be made
into constant parameters as follows:

class Money
{
public:
 friend Money add(const Money& amount1, const Money& amount2);
 //Precondition: amount1 and amount2 have been given values.
 //Returns the sum of the values of amount1 and amount2.
 ...

When you use constant parameters, the modifier const must be used in
both the function declaration and in the heading of the function definition,
so with the change in the class definition above, the function definition for
add would begin as follows:

Money add(const Money& amount1, const Money& amount2)
{
 ...

The remainder of the function definition would be the same as in Display 11.3.
Constant parameters are a form of automatic error checking. If your

function definition contains a mistake that causes an inadvertent change to
the constant parameter, then the computer will issue an error message.

The parameter modifier const can be used with any kind of parameter;
however, it is normally used only for call-by-reference parameters for
classes (and occasionally for certain other parameters whose corresponding
arguments are large).

	 11.1  Friend Functions	 639

Call-by-reference parameters are replaced with arguments when a function
is called, and the function call may (or may not) change the value of the
argument. When you have a call to a member function, the calling object
behaves very much like a call-by-reference parameter. When you have a call to a
member function, that function call can change the value of the calling object.
For example, consider the following, where the class Money is as in Display 11.3:

Money m;
m.input(cin);

When the object m is declared, the value of the member variable all_cents is
initialized to 0. The call to the member function input changes the value of
the member variable all_cents to a new value determined by what the user
types in. Thus, the call m.input(cin) changes the value of m, just as if m were a
call-by-reference argument.

The modifier const applies to calling objects in the same way that it
applies to parameters. If you have a member function that should not change
the value of a calling object, you can mark the function with the const
modifier; the computer will then issue an error message if your function code
inadvertently changes the value of the calling object. In the case of a member
function, the const goes at the end of the function declaration, just before the
final semicolon, as shown here:

class Money
{
public:
 ...
 void output(ostream& outs) const;
 ...

The modifier const should be used in both the function declaration and
the function definition, so the function definition for output would begin as
follows:

void Money::output(ostream& outs) const
{
 ...

The remainder of the function definition would be the same as in Display 11.3.

Pitfall  Inconsistent Use of const

Use of the const modifier is an all-or-nothing proposition. If you use const
for one parameter of a particular type, then you should use it for every other
parameter that has that type and that is not changed by the function call;
moreover, if the type is a class type, then you should also use the const
modifier for every member function that does not change the value of its
calling object. The reason has to do with function calls within function calls.
For example, consider the following definition of the function guarantee:

const with
member functions

const Confusion
VideoNote

640	 Chapter 11 /  Friends, Overloaded Operators, and Arrays in Classes

void guarantee(const Money& price)
{
 cout << "If not satisfied, we will pay you\n"
 << "double your money back.\n"
 << "That's a refund of $"
 << (2 * price.get_value()) << endl;
}

If you do not add the const modifier to the function declaration for the
member function get_value, then the function guarantee will give an error
message on most compilers. The member function get_value does not
change the calling object price. However, when the compiler processes the
function definition for guarantee, it will think that get_value does (or at
least might) change the value of price. This is because when it is translating
the function definition for guarantee, all that the compiler knows about
the member function get_value is the function declaration for get_value;
if the function declaration does not contain a const, which tells the compiler
that the calling object will not be changed, then the compiler assumes that
the calling object will be changed. Thus, if you use the modifier const
with parameters of type Money, then you should also use const with all
Money member functions that do not change the value of their calling object.
In particular, the function declaration for the member function get_value
should include a const.	

In Display 11.4 we have rewritten the definition of the class Money
given in Display 11.3, but this time we have used the const modifier where
appropriate. The definitions of the member and friend functions would be the
same as they are in Display 11.3, except that the modifier const must be used
in function headings so that the headings match the function declarations
shown in Display 11.4.	 ■

const Parameter Modifier

If you place the modifier const before the type for a call-by-reference
parameter, the parameter is called a constant parameter. (The heading
of the function definition should also have a const so that it matches
the function declaration.) When you add the const, you are telling
the compiler that this parameter should not be changed. If you make
a mistake in your definition of the function so that it does change the
constant parameter, then the computer will give an error message.
Parameters of a class type that are not changed by the function ordinarily
should be constant call-by-reference parameters, rather than call-by-value
parameters.

(continued)

	 11.1  Friend Functions	 641

If a member function does not change the value of its calling object, then
you can mark the function by adding the const modifier to the function
declaration. If you make a mistake in your definition of the function so
that it does change the calling object and the function is marked with
const, then the computer will give an error message. The const is placed
at the end of the function declaration, just before the final semicolon.
The heading of the function definition should also have a const so that
it matches the function declaration.

Example

class Sample
{
public:
 Sample();
 friend int compare(const Sample& s1, const Sample& s2);
 void input();
 void output() const;
private:
 int stuff;
 double more_stuff;
};

Use of the const modifier is an all-or-nothing proposition. You should
use the const modifier whenever it is appropriate for a class parameter
and whenever it is appropriate for a member function of the class. If you
do not use const every time that it is appropriate for a class, then you
should never use it for that class.

Display 11.4   The Class Money with Constant Parameters (part 1 of 2)

 1 //Class for amounts of money in U.S. currency.
 2 class Money
 3 {
 4 public:
 5 friend Money add(const Money& amount1, const Money& amount2);
 6 //Precondition: amount1 and amount2 have been given values.
 7 //Returns the sum of the values of amount1 and amount2.

 8 friend bool equal(const Money& amount1, const Money& amount2);
 9 //Precondition: amount1 and amount2 have been given values.
10 //Returns true if amount1 and amount2 have the same value;
11 //otherwise, returns false.

12 Money(long dollars, int cents);

(continued)

642	 Chapter 11 /  Friends, Overloaded Operators, and Arrays in Classes

Self-Test Exercises

	  8.	 Give the complete definition of the member function get_value that you
would use with the definition of Money given in Display 11.4.

	  9.	 Why would it be incorrect to add the modifier const, as shown here, to
the function declaration for the member function input of the class Money
given in Display 11.4?

class Money
{
 ...
public:
 void input(istream& ins) const;
 ...

	10.	 What are the differences and the similarities between a call-by-value
parameter and a call-by-const-reference parameter? Function declarations
that illustrate these are

Display 11.4   The Class Money with Constant Parameters (part 2 of 2)

13 //Initializes the object so its value represents an amount with the
14 //dollars and cents given by the arguments. If the amount is negative,
15 //then both dollars and cents must be negative.

16 Money(long dollars);
17 //Initializes the object so its value represents $dollars.00.

18 Money();
19 //Initializes the object so its value represents $0.00.

20 double get_value() const;
21 //Precondition: The calling object has been given a value.
22 //Returns the amount of money recorded in the data of the calling object.

23 void input(istream& ins);
24 //Precondition: If ins is a file input stream, then ins has already been
25 //connected to a file. An amount of money, including a dollar sign, has been
26 //entered in the input stream ins. Notation for negative amounts is -$100.00.
27 //Postcondition: The value of the calling object has been set to
28 //the amount of money read from the input stream ins.

29 void output(ostream& outs) const;
30 //Precondition: If outs is a file output stream, then outs has already been
31 //connected to a file.
32 //Postcondition: A dollar sign and the amount of money recorded
33 //in the calling object have been sent to the output stream outs.
34 private:
35 long all_cents;
36 };

	 11.2  Overloading Operators	 643

void call_by_value(int x);
void call_by_const_reference(const int& x);

	11.	 Given the following definitions:

const int x = 17;
class A
{
public:
 A();
 A(int x);
 int f() const;
 int g(const A& x);
private:
 int i;
};

Each of the three const keywords is a promise to the compiler that the
compiler will enforce. What is the promise in each case?

11.2  Overloading Operators

He’s a smooth operator.

Line from a song by Sade (written by Sade Adu and Ray St. John)

Earlier in this chapter, we showed you how to make the function add a friend
of the class Money and use it to add two objects of type Money (Display 11.3).
The function add is adequate for adding objects, but it would be nicer if you
could simply use the usual + operator to add values of type Money, as in the
last line of the following code:

Money total, cost, tax;
cout << "Enter cost and tax: ";
cost.input(cin);
tax.input(cin);
total = cost + tax;

instead of having to use the slightly more awkward

total = add(cost, tax);

Recall that an operator, such as +, is really just a function except that the
syntax for how it is used is slightly different from that of an ordinary function.
In an ordinary function call, the arguments are placed in parentheses after the
function name, as in the following:

add(cost, tax)

With a (binary) operator, the arguments are placed on either side of the
operator, as shown here:

cost + tax

644	 Chapter 11 /  Friends, Overloaded Operators, and Arrays in Classes

A function can be overloaded to take arguments of different types. An operator
is really a function, so an operator can be overloaded. The way you overload
an operator, such as +, is basically the same as the way you overload a function
name. In this section we show you how to overload operators in C++.

Overloading Operators

You can overload the operator + (and many other operators) so that it will
accept arguments of a class type. The difference between overloading the +
operator and defining the function add (given in Display 11.3) involves only
a slight change in syntax. The definition of the overloaded operator + is
basically the same as the definition of the function add. The only differences
are that you use the name + instead of the name add and you precede the +
with the keyword operator. In Display 11.5 we have rewritten the type Money
to include the overloaded operator + and we have embedded the definition in
a small demonstration program.

The class Money, as defined in Display 11.5, also overloads the == operator
so that == can be used to compare two objects of type Money. If amount1 and
amount2 are two objects of type Money, we want the expression

amount1 == amount2

to return the same value as the following Boolean expression:

amount1.all_cents == amount2.all_cents

As shown in Display 11.5, this is the value returned by the overloaded
operator ==.

You can overload most, but not all, operators. The operator need not be
a friend of a class, but you will often want it to be a friend. Check the box
entitled “Rules on Overloading Operators” for some technical details on when
and how you can overload an operator.

Operator Overloading

A (binary) operator, such as +, -, /, %, and so forth, is simply a function
that is called using a different syntax for listing its arguments. With an
operator, the arguments are listed before and after the operator; with
a function, the arguments are listed in parentheses after the function
name. An operator definition is written similarly to a function definition,
except that the operator definition includes the reserved word operator
before the operator name. The predefined operators, such as + and so
forth, can be overloaded by giving them a new definition for a class type.

An operator may be a friend of a class although this is not required. An
example of overloading the + operator as a friend is given in Display 11.5.

	 11.2  Overloading Operators	 645

Display 11.5   Overloading Operators (part 1 of 2)

 1 //Program to demonstrate the class Money. (This is an improved version of
 2 //the class Money that we gave in Display 11.3 and rewrote in Display 11.4.)
 3 #include <iostream>
 4 #include <cstdlib>
 5 #include <cctype>
 6 using namespace std;
 7
 8 //Class for amounts of money in U.S. currency.
 9 class Money
	10 {
11 public:
12 friend Money operator +(const Money& amount1, const Money& amount2);
13 //Precondition: amount1 and amount2 have been given values.
14 //Returns the sum of the values of amount1 and amount2.

15 friend bool operator ==(const Money& amount1, const Money& amount2);
16 //Precondition: amount1 and amount2 have been given values.
17 //Returns true if amount1 and amount2 have the same value;
18 //otherwise, returns false.

19 Money(long dollars, int cents);

20 Money(long dollars);

21 Money(); Some comments from Display 11.4
have been omitted to save space
in this book, but they should be
included in a real program.

22 double get_value() const;

23 void input(istream& ins);
24 void output(ostream& outs) const;
25 private:
26 long all_cents;
27 };

 <Any extra function declarations from Display 11.3 go here.>

28 int main()
29 {
30 Money cost(1, 50), tax(0, 15), total;
31 total = cost + tax;

32 cout << "cost = ";
33 cost.output(cout);
34 cout << endl;
35 cout << "tax = ";
36 tax.output(cout);
37 cout << endl;
38 cout << "total bill = ";
39 total.output(cout);
40 cout << endl;

(continued)

646	 Chapter 11 /  Friends, Overloaded Operators, and Arrays in Classes

Display 11.5   Overloading Operators (part 2 of 2)

41 if (cost == tax)
42 cout << "Move to another state.\n";
43 else
44 cout << "Things seem normal.\n";
45 return 0;
46 }
47
48 Money operator +(const Money& amount1, const Money& amount2)
49 {
50 Money temp;
51 temp.all_cents = amount1.all_cents + amount2.all_cents;
52 return temp;
53 }
54
55 bool operator ==(const Money& amount1, const Money& amount2)
56 {
57 return (amount1.all_cents == amount2.all_cents);
58 }
59

<The definitions of the member functions are the same as in Display 11.3 except
that const is added to the function headings in various places so that the function
headings match the function declarations in the preceding class definition. No other
changes are needed in the member function definitions. The bodies of the member
function definitions are identical to those in Display 11.3>

Output

cost = $1.50

tax = $0.15

total bill = $1.65

Things seem normal.

Self-Test Exercises

	12.	 What is the difference between a (binary) operator and a function?

	13.	 Suppose you wish to overload the operator < so that it applies to the
type Money defined in Display 11.5. What do you need to add to the
description of Money given in Display 11.5?

	 11.2  Overloading Operators	 647

	14.	 Suppose you wish to overload the operator <= so that it applies to the
type Money defined in Display 11.5. What do you need to add to the
description of Money given in Display 11.5?

	15.	 Is it possible using operator overloading to change the behavior of + on
integers? Why or why not?

Rules on Overloading Operators

■	W hen overloading an operator, at least one argument of the resulting over-
loaded operator must be of a class type.

■	 An overloaded operator can be, but does not have to be, a friend of a class;
the operator function may be a member of the class or an ordinary (non-
friend) function. (Overloading an operator as a class member is discussed in
Appendix 8.)

■	Y ou cannot create a new operator. All you can do is overload existing opera-
tors, such as +, -, *, /, %, and so forth.

■	Y ou cannot change the number of arguments that an operator takes. For
example, you cannot change % from a binary to a unary operator when you
overload %; you cannot change ++ from a unary to a binary operator when
you overload it.

■	Y ou cannot change the precedence of an operator. An overloaded operator
has the same precedence as the ordinary version of the operator. For exam-
ple, x*y+z always means (x*y)+z, even if x, y, and z are objects and the
operators + and * have been overloaded for the appropriate classes.

■	 The following operators cannot be overloaded: the dot operator (.), the
scope resolution operator (::), and the operators .* and ?:, which are not
discussed in this book.

■	 Although the assignment operator = can be overloaded so that the default
meaning of = is replaced by a new meaning, this must be done in a different
way from what is described here. Overloading = is discussed in the section
“Overloading the Assignment Operator” later in this chapter. Some other
operators, including [] and ->, also must be overloaded in a way that is
different from what is described in this chapter. The operators [] and ->
are discussed later in this book.

Constructors for Automatic Type Conversion

If your class definition contains the appropriate constructors, the system will
perform certain type conversions automatically. For example, if your program
contains the definition of the class Money given in Display 11.5, you could use
the following in your program:

648	 Chapter 11 /  Friends, Overloaded Operators, and Arrays in Classes

Money base_amount(100, 60), full_amount;
full_amount = base_amount + 25;
full_amount.output(cout);

The output will be

$125.60

The code above may look simple and natural enough, but there is one
subtle point. The 25 (in the expression base_amount + 25) is not of the
appropriate type. In Display 11.5 we only overloaded the operator + so that
it could be used with two values of type Money. We did not overload + so
that it could be used with a value of type Money and an integer. The constant
25 is an integer and is not of type Money. The constant 25 can be considered to
be of type int or of type long, but 25 cannot be used as a value of type Money
unless the class definition somehow tells the system how to convert an integer
to a value of type Money. The only way that the system knows that 25 means
$25.00 is that we included a constructor that takes a single argument of type
long. When the system sees the expression

base_amount + 25

it first checks to see if the operator + has been overloaded for the combination
of a value of type Money and an integer. Since there is no such overloading, the
system next looks to see if there is a constructor that takes a single argument
that is an integer. If it finds a constructor that takes a single-integer argument,
it uses that constructor to convert the integer 25 to a value of type Money. The
constructor with one argument of type long tells the system how to convert
an integer, such as 25, to a value of type Money. The one-argument constructor
says that 25 should be converted to an object of type Money whose member
variable all_cents is equal to 2500; in other words, the constructor converts
25 to an object of type Money that represents $25.00. (The definition of the
constructor is in Display 11.3.)

Note that this type conversion will not work unless there is a suitable
constructor. For example, the type Money (Display 11.5) has no constructor
that takes an argument of type double, so the following is illegal and would
produce an error message if you were to put it in a program that declares
base_amount and full_amount to be of type Money:

full_amount = base_amount + 25.67;

To make this use of + legal, you could change the definition of the class Money
by adding another constructor. The function declaration for the constructor
you need to add is the following:

class Money
{
public:
 . . .

	 11.2  Overloading Operators	 649

Money(double amount);
//Initializes the object so its value represents $amount.
 . . .

Writing the definition for this new constructor is Self-Test Exercise 16.
These automatic type conversions (produced by constructors) seem most

common and compelling with overloaded numeric operators such as + and −.
However, these automatic conversions apply in exactly the same way to
arguments for ordinary functions, arguments for member functions, and
arguments for other overloaded operators.

Self-Test Exercise

	16.	 Give the definition for the constructor discussed at the end of the previous
section. The constructor is to be added to the class Money in Display 11.5.
The definition begins as follows:

Money::Money(double amount)
{

Overloading Unary Operators

In addition to the binary operators, such as + in x+y, there are also unary
operators, such as the operator − when it is used to mean negation. In the
following statement, the unary operator − is used to set the value of a variable
x equal to the negative of the value of the variable y:

x = -y;

The increment and decrement operators ++ and −− are other examples of
unary operators.

You can overload unary operators as well as binary operators. For
example, you can redefine the type Money given in Display 11.5 so that it
has both a unary and a binary operator version of the subtraction/negation
operator -. The redone class definition is given in Display 11.6. Suppose your
program contains this class definition and the following code:

Money amount1(10), amount2(6), amount3;

Then the following sets the value of amount3 to amount1 minus amount2:

amount3 = amount1 - amount2;

The following will, then, output $4.00 to the screen:

amount3.output(cout);

On the other hand, the following will set amount3 equal to the negative of
amount1:

amount3 = -amount1;

650	 Chapter 11 /  Friends, Overloaded Operators, and Arrays in Classes

The following will, then, output -$10.00 to the screen:

amount3.output(cout);

You can overload the ++ and −− operators in ways similar to the way we
overloaded the negation operator in Display 11.6. The overloading definition
will apply to the operator when it is used in prefix position, as in ++x and −−x.
The postfix versions of ++ and −−, as in x++ and x−−, are handled in a different
manner, but we will not discuss these postfix versions. (Hey, you can’t learn
everything in a first course!)

Overloading >> and <<

The insertion operator << that we used with cout is a binary operator like the
binary operators + or -. For example, consider the following:

cout << "Hello out there.\n";

The operator is <<, the first operand is the output stream cout, and the second
operand is the string value "Hello out there.\n". You can change either of
these operands. If fout is an output stream of type ofstream and fout has
been connected to a file with a call to open, then you can replace cout with
fout and the string will instead be written to the file connected to fout. Of
course, you can also replace the string "Hello out there.\n" with another
string, a variable, or a number. Since the insertion operator << is an operator,
you should be able to overload it just as you overload operators such as +
and -. This is true, but there are a few more details to worry about when you
overload the input and output operators >> and <<.

In our previous definitions of the class Money, we used the member
function output to output values of type Money (Displays 11.3 through 11.6).
This is adequate, but it would be nicer if we could simply use the insertion
operator << to output values of type Money as in the following:

Money amount(100);
cout << "I have " << amount << " in my purse.\n";

instead of having to use the member function output as shown here:

Money amount(100);
cout << "I have ";
amount.output(cout);
cout << " in my purse.\n";

One problem in overloading the operator << is deciding what value
should be returned when << is used in an expression like the following:

cout << amount

<< is an operator

Overloading <<

	 11.2  Overloading Operators	 651

Display 11.6   Overloading a Unary Operator

 1 //Class for amounts of money in U.S. currency. This is an improved version
of the class Money given
in Display 11.5.

 2 class Money
 3 {
 4 public:
 5 friend Money operator +(const Money& amount1, const Money& amount2);

 6 friend Money operator −(const Money& amount1, const Money& amount2);
 7 //Precondition: amount1 and amount2 have been given values.
 8 //Returns amount1 minus amount2.

 9 friend Money operator −(const Money& amount);
10 //Precondition: amount has been given a value.
11 //Returns the negative of the value of amount.

12 friendbool operator ==(const Money& amount1, const Money& amount2);

13 Money(long dollars, int cents); We have omitted the include
directives and some of the
comments, but you should include
them in your programs.

14 Money(long dollars);

15 Money();

16 double get_value() const;

17 void input(istream& ins);
18 void output(ostream& outs) const;
19 private:
20 long all_cents;
21 };

<Any additional function declarations as well as the main part of the program go here.>

22 Money operator −(const Money& amount1, const Money& amount2)
23 {
24 Money temp;
25 temp.all_cents = amount1.all_cents − amount2.all_cents;
26 return temp;
27 }

28 Money operator −(const Money& amount)
29 {
30 Money temp;
31 temp.all_cents = −amount.all_cents;
32 return temp;
33 }

<The other function definitions are the same as in Display 11.5.>

652	 Chapter 11 /  Friends, Overloaded Operators, and Arrays in Classes

The two operands in this expression are cout and amount, and evaluating
the expression should cause the value of amount to be written to the screen.
But if << is an operator like + or *, then the expression above should
also return some value. After all, expressions with other operands, such as
n1 + n2, return values. But what does cout << amount return? To obtain the
answer to that question, we need to look at a more complicated expression
involving <<.

Let’s consider the following expression, which involves evaluating a chain
of expressions using <<:

cout << "I have " << amount << " in my purse.\n";

If you think of the operator << as being analogous to other operators, such as +,
then the above should be (and in fact is) equivalent to the following:

((cout << "I have ") << amount) << " in my purse.\n";

What value should << return in order to make sense of this expression? The
first thing evaluated is the subexpression:

(cout << "I have ")

If things are to work out, then the subexpression had better return cout so that
the computation can continue as follows:

(cout << amount) << " in my purse.\n";

And if things are to continue to work out, (cout << amount) had better also
return cout so that the computation can continue as follows:

cout << " in my purse.\n";

This is illustrated in Display 11.7. The operator << should return its first
argument, which is a stream of type ostream.

Thus, the declaration for the overloaded operator << (to use with the class
Money) should be as follows:

class Money
{
public:
 . . .
 friend ostream& operator <<(ostream& outs, const
 Money& amount);
 //Precondition: If outs is a file output stream, then outs
 //has already been connected to a file.
 //Postcondition: A dollar sign and the amount of money
 //recorded in the calling object have been sent to the output
 //stream outs.
 . . .

Once we have overloaded the insertion (output) operator <<, we will no
longer need the member function output and thus can delete output from

Chains of <<

<< returns a
stream

	 11.2  Overloading Operators	 653

our definition of the class Money. The definition of the overloaded operator <<
is very similar to the member function output. In outline form, the definition
for the overloaded operator is as follows:

ostream& operator <<(ostream& outs, const Money& amount)
{

 �<This part is the same as the body of Money::output
that is given in Display 11.3 (except that all_cents
is replaced with amount.all_cents).>

 return outs;
}

Display 11.7   << as an Operator

 1 cout << "I have " << amount << " in my purse.\n";
 2
 3 means the same as
 4
 5 ((cout << "I have ") << amount) << " in my purse.\n";
 6
 7 and is evaluated as follows:
 8
 9 First evaluate (cout << "I have "), which returns cout:
10 ((cout << "I have ") << amount) << " in my purse.\n";
11
12
13
14 (cout << amount) << " in my purse.\n";
15
16
17 Then evaluate (cout << amount), which returns cout:
18
19 (cout << amount) << " in my purse.\n";
20
21
22
23 cout << " in my purse.\n";
24
25
26 Then evaluate cout << " in my purse.\n", which returns cout:
27
28 cout << " in my purse.\n";
29
30
31
32 cout;

and the string “I have” is output.

and the string “in my purse.\n” is output.

and the value of amount is output.

Since there are no more <<
operators, the process ends.

}
}

}

654	 Chapter 11 /  Friends, Overloaded Operators, and Arrays in Classes

There is one thing left to explain in the previous function declaration and
definition for the overloaded operator <<. What is the meaning of the & in the
returned type ostream&? The easiest answer is that whenever an operator (or a
function) returns a stream, you must add an & to the end of the name for the returned
type. That simple rule will allow you to overload the operators << and >>.
However, although that is a good working rule that will allow you to write
your class definitions and programs, it is not very satisfying. You do not need
to know what that & really means, but if we explain it, that will remove some
of the mystery from the rule that tells you to add an &.

When you add an & to the name of a returned type, you are saying that the
operator (or function) returns a reference. All the functions and operators we have
seen thus far return values. However, if the returned type is a stream, you cannot
simply return the value of the stream. In the case of a stream, the value of the
stream is an entire file or the keyboard or the screen, and it may not make sense
to return those things. Thus, you want to return only the stream itself rather than
the value of the stream. When you add an & to the name of a returned type, you
are saying that the operator (or function) returns a reference, which means that
you are returning the object itself, as opposed to the value of the object.

The extraction operator >> is overloaded in a way that is analogous to what
we described for the insertion operator <<. However, with the extraction (input)
operator >>, the second argument will be the object that receives the input value,
so the second parameter must be an ordinary call-by-reference parameter. In
outline form, the definition for the overloaded extraction operator >> is as follows:

istream& operator >>(istream& ins, Money& amount)
{

 �<This part is the same as the body of
Money::input given in Display 11.3 (except that
all_cents is replaced with amount.all_cents).>

 return ins;
}

The complete definitions of the overloaded operators << and >> are given
in Display 11.8, where we have rewritten the class Money yet again. This time
we have rewritten the class so that the operators << and >> are overloaded to
allow us to use these operators with values of type Money.

<< and >> return
a reference

Returning a
reference

Overloading >> and <<

The input and output operators >> and << can be overloaded just like
any other operators. The value returned must be the stream. The type for
the value returned must have the & symbol added to the end of the type
name. The function declarations and beginnings of the function definitions
are as shown on the next page. See Display 11.8 for an example.

(continued)

	 11.2  Overloading Operators	 655

Function Declarations

class Class_Name
{
public:
 . . .

 friend istream& operator >>(istream& Parameter_1,
 Class_Name& Parameter_2);

 friend ostream& operator <<(ostream& Parameter_3,
 const Class_Name&
 Parameter_4);
 . . .

DEFINITIONS

istream& operator >>(istream& Parameter_1,
 Class_Name& Parameter_2)
{
 . . .
}

ostream& operator <<(ostream& Parameter_3,
 const Class_Name& Parameter_4)
{
 . . .

Parameter for
the object to
receive the inputParameter for

the stream

Display 11.8   Overloading << and >> (part 1 of 4)

 1 //Program to demonstrate the class Money This is an improved version
of the class  Money that
we gave in Display 11.6.

 2 #include <iostream>
 3 #include <fstream>
 4 #include <cstdlib>
 5 #include <cctype> Although we have omitted

some of the comments from
Displays 11.5 and 11.6,
you should include them.

 6 using namespace std;
 7
 8 //Class for amounts of money in U.S. currency.
 9 class Money
10 {
11 public:
12 friend Money operator +(const Money& amount1, const Money& amount2);

13 friend Money operator −(const Money& amount1, const Money& amount2);

14 friend Money operator −(const Money& amount);

(continued)

656	 Chapter 11 /  Friends, Overloaded Operators, and Arrays in Classes

Display 11.8   Overloading << and >> (part 2 of 4)

15 friend bool operator ==(const Money& amount1, const Money& amount2);

16 Money(long dollars, int cents);

17 Money(long dollars);

18 Money();

19 double get_value() const;

20 friend istream& operator >>(istream& ins, Money& amount);
21 //Overloads the >> operator so it can be used to input values of type Money.
22 //Notation for inputting negative amounts is as in −$100.00.
23 //Precondition: If ins is a file input stream, then ins has already been
24 //connected to a file.

25 friend ostream& operator <<(ostream& outs, const Money& amount);
26 //Overloads the << operator so it can be used to output values of type Money.
27 //Precedes each output value of type Money with a dollar sign.
28 //Precondition: If outs is a file output stream,
29 //then outs has already been connected to a file.
30 private:
31 long all_cents;
32 };
33 int digit_to_int(char c);
34 //Used in the definition of the overloaded input operator >>.
35 //Precondition: c is one of the digits '0' through '9'.
36 //Returns the integer for the digit; for example, digit_to_int('3') returns 3.
37
38 int main()
39 {
40 Money amount;
41 ifstream in_stream;
42 ofstream out_stream;
43
44 in_stream.open("infile.dat");
45 if (in_stream.fail())
46 {
47 cout << "Input file opening failed.\n";
48 exit(1);
49 }
50
51 out_stream.open("outfile.dat");
52 if (out_stream.fail())
53 {
54 cout << "Output file opening failed.\n";
55 exit(1);
56 }

(continued)

	 11.2  Overloading Operators	 657

Display 11.8   Overloading << and >> (part 3 of 4)

57
58 in_stream >> amount;
59 out_stream << amount
60 << " copied from the file infile.dat.\n";
61 cout << amount
62 << " copied from the file infile.dat.\n";
63
64 in_stream.close();
65 out_stream.close();
66
67 return 0;
68 }
69 //Uses iostream, cctype, cstdlib:
70 istream& operator >>(istream& ins, Money& amount)
71 {
72 char one_char, decimal_point,
73 digit1, digit2; //digits for the amount of cents
74 long dollars;
75 int cents;
76 bool negative;//set to true if input is negative.

77 ins >> one_char;
78 if (one_char == '−')
79 {
80 negative = true;
81 ins >> one_char; //read '$'
82 }
83 else
84 negative = false;
85 //if input is legal, then one_char == '$'

86 ins >> dollars >> decimal_point >> digit1 >> digit2;

87 if (one_char != '$' || decimal_point != '.'
88 || !isdigit(digit1) || !isdigit(digit2))
89 {
90 cout << "Error illegal form for money input\n";
91 exit(1);
92 }

93 cents = digit_to_int(digit1) * 10 + digit_to_int(digit2);

94 amount.all_cents = dollars * 100 + cents;
95 if (negative)
96 amount.all_cents = −amount.all_cents;
97 return ins;
98 }
99

(continued)

658	 Chapter 11 /  Friends, Overloaded Operators, and Arrays in Classes

Display 11.8   Overloading << and >> (part 4 of 4)

100 int digit_to_int(char c)
101 {
102 return (static_cast<int>(c) − static_cast<int>('0'));
103 }

104 //Uses cstdlib and iostream:
105 ostream& operator <<(ostream& outs, const Money& amount)
106 {
107 long positive_cents, dollars, cents;
108 positive_cents = labs(amount.all_cents);
109 dollars = positive_cents/100;
110 cents = positive_cents%100;
111
112 if (amount.all_cents < 0)
113 outs << "− $" << dollars << '.';
114 else
115 outs << "$" << dollars << '.';
116
117 if (cents < 10)
118 outs << '0';
119 outs << cents;
120
121 return outs;
122 }
123

<The definitions of the member functions and other overloaded operators go here.
See Displays 11.3, 11.4, 11.5, and 11.6 for the definitions.>

infile.dat outfile.dat

(Not changed by program.) (After program is run.)

$1.11 $2.22
  $3.33

$1.11 copied from the file infile.dat.

Screen Output

$1.11 copied from the file infile.dat.

	 11.2  Overloading Operators	 659

Self-Test Exercises

	17.	H ere is a definition of a class called Pairs. Objects of type Pairs can be
used in any situation where ordered pairs are needed. Your task is to write
implementations of the overloaded operator >> and the overloaded operator
<< so that objects of class Pairs are to be input and output in the form
(5,6)(5,-4)(-5,4) or (-5,-6). You need not implement any constructor
or other member, and you need not do any input format checking.

#include <iostream>
using namespace std;
class Pairs
{
public:
 Pairs();
 Pairs(int first, int second);
 //other members and friends
 friend istream& operator >>(istream& ins, Pairs& second);
 friend ostream& operator <<(ostream& outs, const Pairs& second);
private:
 int f;
 int s;
};

	18.	 Following is the definition for a class called Percent. Objects of type
Percent represent percentages such as 10% or 99%. Give the definitions
of the overloaded operators >> and << so that they can be used for
input and output with objects of the class Percent. Assume that input
always consists of an integer followed by the character ‘%’, such as 25%.
All percentages are whole numbers and are stored in the int member
variable named value. You do not need to define the other overloaded
operators and do not need to define the constructor. You only have to
define the overloaded operators >> and <<.

#include <iostream>
using namespace std;

class Percent
{
public:
 friend bool operator ==(const Percent& first,
 const Percent& second);

 friend bool operator <(const Percent& first,
 const Percent& second);

 Percent();

 Percent(int percent_value);

660	 Chapter 11 /  Friends, Overloaded Operators, and Arrays in Classes

 friend istream& operator >>(istream& ins,
 Percent& the_object);

 //Overloads the >> operator to input values of type
 //Percent.
 //Precondition: If ins is a file input stream, then ins
 //has already been connected to a file.

 friend ostream& operator <<(ostream& outs,
 const Percent& a_percent);
 //Overloads the << operator for output values of type
 //Percent.
 //Precondition: If outs is a file output stream, then
 //outs has already been connected to a file.
private:
 int value;
};

11.3  Arrays and Classes

You can combine arrays, structures, and classes to form intricately structured
types such as arrays of structures, arrays of classes, and classes with arrays as
member variables. In this section we discuss a few simple examples to give
you an idea of the possibilities.

Arrays of Classes

The base type of an array may be any type, including types that you define,
such as structure and class types. If you want each indexed variable to
contain items of different types, make the array an array of structures.
For example, suppose you want an array to hold ten weather data points,
where each data point is a wind velocity and a wind direction (north,
south, east, or west). You might use the following type definition and array
declaration:

struct WindInfo
{
 double velocity; //in miles per hour
 char direction; //'N', 'S', 'E', or 'W'
};

WindInfo data_point[10];

To fill the array data_point, you could use the following for loop:

int i;
for (i = 0; i < 10; i++)

	 11.3  Arrays and Classes	 661

{
 cout << "Enter velocity for "
 << i << " numbered data point: ";
 cin >> data_point[i].velocity;
 cout << "Enter direction for that data point"
 << " (N, S, E, or W): ";
 cin >> data_point[i].direction;
}

The way to read an expression such as data_point[i].velocity is left to right
and very carefully. First, data_point is an array. So, data_point[i] is the
ith indexed variable of this array. An indexed variable of this array is of type
WindInfo, which is a structure with two member variables named velocity
and direction. So, data_point[i].velocity is the member variable named
velocity for the ith array element. Less formally, data_point[i].velocity is
the wind velocity for the ith data point. Similarly, data_point[i].direction
is the wind direction for the ith data point.

The ten data points in the array data_point can be written to the screen
with the following for loop:

for (i = 0; i < 10; i++)
 cout << "Wind data point number " << i << ": \n"
 << data_point[i].velocity
 << " miles per hour\n"
 << "direction " << data_point[i].direction
 << endl;

Display 11.9 contains the definition for a class called Money. Objects of
the class Money are used to represent amounts of money in U.S. currency.
The definitions of the member functions, member operations, and friend
functions for this class can be found in Displays 11.3 through 11.8 and in the
answer to Self-Test Exercise 13. You can have arrays whose base type is the
type Money. A simple example is given in Display 11.9. That program reads in
a list of five amounts of money and computes how much each amount differs
from the largest of the five amounts. Notice that an array whose base type is
a class is treated basically the same as any other array. In fact, the program
in Display 11.9 is very similar to the program in Display 7.1, except that in
Display 11.9 the base type is a class.

When an array of classes is declared, the default constructor is called to
initialize the indexed variables, so it is important to have a default constructor
for any class that will be the base type of an array. An array of classes is
manipulated just like an array with a simple base type like int or double.
For example, the difference between each amount and the largest amount is
stored in an array named difference, as follows:

Money difference[5];
for (i = 0; i < 5; i++)
 difference[i] = max - amount[i];

Constructor call

662	 Chapter 11 /  Friends, Overloaded Operators, and Arrays in Classes

Display 11.9   Program Using an Array of Money Objects (part 1 of 2)

 1 //This is the definition for the class Money.
 2 //Values of this type are amounts of money in U.S. currency.
 3 #include <iostream>
 4 using namespace std;

 5 class Money
 6 {
 7 public:
 8 friend Money operator +(const Money& amount1, const Money& amount2);
 9 //Returns the sum of the values of amount1 and amount2.

10 friend Money operator −(const Money& amount1, const Money& amount2);
11 //Returns amount1 minus amount2.

12 friend Money operator −(const Money& amount);
13 //Returns the negative of the value of amount.

14 friend bool operator ==(const Money& amount1, const Money& amount2);
15 //Returns true if amount1 and amount2 have the same value; false otherwise.

16 friend bool operator <(const Money& amount1, const Money& amount2);
17 //Returns true if amount1 is less than amount2; false otherwise.

18 Money(long dollars, int cents);
19 //Initializes the object so its value represents an amount with
20 //the dollars and cents given by the arguments. If the amount
21 //is negative, then both dollars and cents should be negative.

22 Money(long dollars);
23 //Initializes the object so its value represents $dollars.00.

24 Money();
25 //Initializes the object so its value represents $0.00.

26 double get_value() const;
27 //Returns the amount of money recorded in the data portion of the calling
28 //object.

29 friend istream& operator >>(istream& ins, Money& amount);
30 //Overloads the >> operator so it can be used to input values of type
31 //Money. Notation for inputting negative amounts is as in − $100.00.
32 //Precondition: If ins is a file input stream, then ins has already been
33 //connected to a file.
34
35 friend ostream& operator <<(ostream& outs, const Money& amount);
36 //Overloads the << operator so it can be used to output values of type
37 //Money. Precedes each output value of type Money with a dollar sign.
38 //Precondition: If outs is a file output stream, then outs has already been
39 //connected to a file.
40 private:
41 long all_cents;
42 };
43

(continued)

	 11.3  Arrays and Classes	 663

Display 11.9   Program Using an Array of Money Objects (part 2 of 2)

<The definitions of the member functions and the overloaded operators goes here.>

44 //Reads in 5 amounts of money and shows how much each
45 //amount differs from the largest amount.

46 int main()
47 {
48 Money amount[5], max;
49 int i;

50 cout << "Enter 5 amounts of money:\n";
51 cin >> amount[0];
52 max = amount[0];
53 for (i = 1; i < 5; i++)
54 {
55 cin >> amount[i];
56 if (max < amount[i])
57 max = amount[i];
58 //max is the largest of amount[0], . . ., amount[i].
59 }

60 Money difference[5];
61 for (i = 0; i < 5; i++)
62 difference[i] = max − amount[i];

63 cout << "The highest amount is " << max << endl;
64 cout << "The amounts and their\n"
65 << "differences from the largest are:\n";
66 for (i = 0; i < 5; i++)
67 {
68 cout << amount[i] << " off by "
69 << difference[i] << endl;
70 }

71 return 0;
72 }

Sample Dialogue

Enter 5 amounts of money:

$5.00 $10.00 $19.99 $20.00 $12.79

The highest amount is $20.00

The amounts and their

differences from the largest are:

$5.00 off by $15.00

$10.00 off by $10.00

$19.99 off by $0.01

$20.00 off by $0.00

$12.79 off by $7.21

664	 Chapter 11 /  Friends, Overloaded Operators, and Arrays in Classes

Self-Test Exercises

	19.	 Give a type definition for a structure called Score that has two member
variables called home_team and opponent. Both member variables are of
type int. Declare an array called game that is an array with ten elements
of type Score. The array game might be used to record the scores of each of
ten games for a sports team.

	20.	 Write a program that reads in five amounts of money, doubles each
amount, and then writes out the doubled values to the screen. Use one
array with Money as the base type. (Hint: Use Display 11.9 as a guide, but
this program will be simpler than the one in Display 11.9.)

Arrays as Class Members

You can have a structure or class that has an array as a member variable. For
example, suppose you are a speed swimmer and want a program to keep track
of your practice times for various distances. You can use the structure my_best
(of the type Data given next) to record a distance (in meters) and the times (in
seconds) for each of ten practice tries swimming that distance:

struct Data
{
 double time[10];
 int distance;
};

Data my_best;

The structure my_best, declared above, has two member variables: One,
named distance, is a variable of type int (to record a distance); the other,
named time, is an array of ten values of type double (to hold times for
ten practice tries at the specified distance). To set the distance equal to 20
(meters), you can use the following:

my_best.distance = 20;

You can set the ten array elements with values from the keyboard as follows:

cout << "Enter ten times (in seconds):\n";
for (int i = 0; i < 10; i++)
 cin >> my_best.time[i];

The expression my_best.time[i] is read left to right: my_best is a structure;
my_best.time is the member variable named time. Since my_best.time is an
array, it makes sense to add an index. So, the expression my_best.time[i] is
the ith indexed variable of the array my_best.time. If you use a class rather
than a structure type, then you can do all your array manipulations with
member functions and avoid such confusing expressions. This is illustrated in
the following Programming Example.

	 11.3  Arrays and Classes	 665

A Class for a Partially
Filled Array

 P rogramming Example 

Display 11.10 shows the definition for a class called TemperatureList, whose
objects are lists of temperatures. You might use an object of type TemperatureList
in a program that does weather analysis. The list of temperatures is kept in the
member variable list, which is an array. Since this array will typically be only
partially filled, a second member variable, called size, is used to keep track
of how much of the array is used. The value of size is the number of indexed
variables of the array list that are being used to store values.

An object of type TemperatureList is declared like an object of any other
type. For example, the following declares my_data to be an object of type
TemperatureList:

TemperatureList my_data;

This declaration calls the default constructor with the new object my_data,
and so the object my_data is initialized so that the member variable size has
the value 0, indicating an empty list.

Once you have declared an object such as my_data, you can add an item
to the list of temperatures (that is, to the member array list) with a call to the
member function add_temperature as follows:

my_data.add_temperature(77);

In fact, this is the only way you can add a temperature to the list my_data, since
the array list is a private member variable. Notice that when you add an item
with a call to the member function add_temperature, the function call first tests
to see if the array list is full and adds the value only if the array is not full.

The class TemperatureList is very specialized. The only things you can
do with an object of the class TemperatureList are to initialize the list so it
is empty, add items to the list, check if the list is full, and output the list. To
output the temperatures stored in the object my_data (declared previously),
the call would be as follows:

cout << my_data;

With the class TemperatureList you cannot delete a temperature from
the list (array) of temperatures. You can, however, erase the entire list and
start over with an empty list by calling the default constructor, as follows:

my_data = TemperatureList();

The type TemperatureList uses almost no properties of temperatures.
You could define a similar class for lists of pressures or lists of distances or
lists of any other data expressed as values of type double. To save yourself the
trouble of defining all these different classes, you could define a single class
that represents an arbitrary list of values of type double without specifying
what the values represent.

666	 Chapter 11 /  Friends, Overloaded Operators, and Arrays in Classes

Display 11.10   Program for a Class with an Array Member (part 1 of 2)

 1 //This is a definition for the class
 2 //Temperaturelist. Values of this type are lists of Fahrenheit temperatures.
 3
 4 #include <iostream>
 5 #include <cstdlib>
 6 using namespace std;
 7
 8 const int MAX_LIST_SIZE = 50;
 9
10 class TemperatureList
11 {
12 public:
13 TemperatureList();
14 //Initializes the object to an empty list.
15
16 void add_temperature(double temperature);
17 //Precondition: The list is not full.
18 //Postcondition: The temperature has been added to the list.
19
20 bool full() const;
21 //Returns true if the list is full; false otherwise.
22
23 friend ostream& operator <<(ostream& outs,
24 const TemperatureList& the_object);
25 //Overloads the << operator so it can be used to output values of
26 //type TemperatureList. Temperatures are output one per line.
27 //Precondition: If outs is a file output stream, then outs
28 //has already been connected to a file.

29 private:
30 double list[MAX_LIST_SIZE]; //of temperatures in Fahrenheit
31 int size; //number of array positions filled
32 };
33
34 //This is the implementation for the class TemperatureList.
35
36 TemperatureList::TemperatureList() : size(0)
37 {
38 //Body intentionally empty.
39 }
40 void TemperatureList::add_temperature(double temperature)
41 {//Uses iostream and cstdlib:
42 if (full())
43 {
44 cout << "Error: adding to a full list.\n";
45 exit(1);
46 }

(continued)

	 11.4  Classes and Dynamic Arrays	 667

Display 11.10   Program for a Class with an Array Member (part 2 of 2)

47 else
48 {
49 list[size] = temperature;
50 size = size + 1;
51 }
52 }

53 bool TemperatureList::full() const
54 {
55 return (size == MAX_LIST_SIZE);
56 }

57 //Uses iostream:
58 ostream& operator <<(ostream& outs, const TemperatureList& the_object)
59 {
60 for (int i = 0; i < the_object.size; i++)
61 outs << the_object.list[i] << " F\n";
62 return outs;
63 }

Self-Test Exercises

	21.	 Change the class TemperatureList given in Display 11.10 by adding a
member function called get_size, which takes no arguments and returns
the number of temperatures on the list.

	22.	 Change the type TemperatureList given in Display 11.10 by adding
a member function called get_temperature, which takes one int
argument that is an integer greater than or equal to 0 and strictly less
than MAX_LIST_SIZE. The function returns a value of type double, which
is the temperature in that position on the list. So, with an argument of 0,
get_temperature returns the first temperature; with an argument of 1,
it returns the second temperature, and so forth. Assume that get_
temperature will not be called with an argument that specifies a location
on the list that does not currently contain a temperature.

11.4  Classes and Dynamic Arrays

With all appliances and means to boot.

William Shakespeare, King Henry IV, Part III

A dynamic array can have a base type that is a class. A class can have a
member variable that is a dynamic array. You can combine the techniques you

668	 Chapter 11 /  Friends, Overloaded Operators, and Arrays in Classes

learned about classes and the techniques you learned about dynamic arrays in
just about any way. There are a few more things to worry about when using
classes and dynamic arrays, but the basic techniques are the ones that you
have already used. Let’s start with an example.

 P rogramming Example   A String Variable Class

In Chapter 8 we showed you how to define array variables to hold C strings.
In the previous section you learned how to define dynamic arrays so that
the size of the array can be determined when your program is run. In this
example we will define a class called StringVar whose objects are string
variables. An object of the class StringVar will be implemented using a
dynamic array whose size is determined when your program is run. So objects
of type StringVar will have all the advantages of dynamic arrays, but they
will also have some additional features. We will define StringVar’s member
functions so that if you try to assign a string that is too long to an object of
type StringVar, you will get an error message. The version we define here
provides only a small collection of operations for manipulating string objects.
In Programming Project 1 you are asked to enhance the class definition by
adding more member functions and overloaded operators.

Since you could use the standard class string, as discussed in Chapter 8,
you do not really need the class StringVar, but it will be a good exercise to
design and code it.

The definition for the type StringVar is given in Display 11.11. One
constructor for the class StringVar takes a single argument of type int.
This argument determines the maximum allowable length for a string value
stored in the object. A default constructor creates an object with a maximum
allowable length of 100. Another constructor takes an array argument that
contains a C string of the kind discussed in Chapter 8. Note that this means
the argument to this constructor can be a quoted string. This constructor
initializes the object so that it can hold any string whose length is less than or
equal to the length of its argument, and it initializes the object’s string value
to a copy of the value of its argument. For the moment, ignore the constructor
that is labeled Copy constructor. Also ignore the member function named
~StringVar. Although it may look like one, ~StringVar is not a constructor.
We will discuss these two new kinds of member functions in later subsections.
The meanings of the remaining member functions for the class StringVar are
straight forward.

A simple demonstration program is given in Display 11.11. Two objects,
your_name and our_name, are declared within the definition of the function
conversation. The object your_name can contain any string that is max_name_
size or fewer characters long. The object our_name is initialized to the string value
"Borg" and can have its value changed to any other string of length 4 or less.

Constructors

Size of string
value

	 11.4  Classes and Dynamic Arrays	 669

Display 11.11   Program Using the StringVar Class (part 1 of 2)

 1 //This is the definition for the class StringVar
 2 //whose values are strings. An object is declared as follows.
 3 //Note that you use (max_size), not [max_size]
 4 //StringVar the_object(max_size);
 5 //where max_size is the longest string length allowed.
 6 #include <iostream>
 7 using namespace std;
 8
 9 class StringVar
10 {
11 public:
12 StringVar(int size);
13 //Initializes the object so it can accept string values up to size
14 //in length. Sets the value of the object equal to the empty string.
15
16 StringVar();
17 //Initializes the object so it can accept string values of length 100
18 //or less. Sets the value of the object equal to the empty string.
19
20 StringVar(const char a[]);
21 //Precondition: The array a contains characters terminated with '\0'.
22 //Initializes the object so its value is the string stored in a and
23 //so that it can later be set to string values up to strlen(a) in length.
24
25 StringVar(const StringVar& string_object);
26 //Copy constructor.
27
28 ~StringVar();
29 //Returns all the dynamic memory used by the object to the freestore.
30
31 int length() const;
32 //Returns the length of the current string value.

33 void input_line(istream& ins);
34 //Precondition: If ins is a file input stream, then ins has been
35 //connected to a file.
36 //Action: The next text in the input stream ins, up to '\n', is copied
37 //to the calling object. If there is not sufficient room, then
38 //only as much as will fit is copied.

39 friend ostream& operator <<(ostream& outs, const StringVar& the_string);
40 //Overloads the << operator so it can be used to output values
41 //of type StringVar
42 //Precondition: If outs is a file output stream, then outs
43 //has already been connected to a file.
44

(continued)

670	 Chapter 11 /  Friends, Overloaded Operators, and Arrays in Classes

Display 11.11   Program Using the StringVar Class (part 2 of 2)

45 private:
46 char *value; //pointer to dynamic array that holds the string value.
47 int max_length; //declared max length of any string value.
48 };
49
50
51 <The definitions of the member functions and overloaded operators go here>
52
53 //Program to demonstrate use of the class StringVar.
54

55 void conversation(int max_name_size);
56 //Carries on a conversation with the user.
57
58 int main()
59 {
60 using namespace std;
61 conversation(30);
62 cout << "End of demonstration.\n";
63 return 0;
64 }
65
66 //This is only a demonstration function:
67 void conversation(int max_name_size)
68 {
69 using namespace std;
70
71 StringVar your_name(max_name_size), our_name("Borg");
72
73 cout << "What is your name?\n";
74 your_name.input_line(cin);
75 cout << "We are " << our_name << endl;
76 cout << "We will meet again " << your_name << endl;
77 }

Sample Dialogue

What is your name?

Kathryn Janeway

We are Borg

We will meet again Kathryn Janeway

End of demonstration

Memory is returned to the freestore
when the function call ends.

Determines the size of the
dynamic array

	 11.4  Classes and Dynamic Arrays	 671

As we indicated at the beginning of this subsection, the class StringVar is
implemented using a dynamic array. The implementation is shown in Display
11.12. When an object of type StringVar is declared, a constructor is called
to initialize the object. The constructor uses the new operator to create a new
dynamic array of characters for the member variable value. The string value
is stored in the array value as an ordinary string value, with '\0' used to
mark the end of the string. Notice that the size of this array is not determined
until the object is declared, at which point the constructor is called and the
argument to the constructor determines the size of the dynamic array. As
illustrated in Display 11.11, this argument can be a variable of type int. Look
at the declaration of the object your_name in the definition of the function
conversation. The argument to the constructor is the call-by-value parameter
max_name_size. Recall that a call-by-value parameter is a local variable, so
max_name_size is a variable. Any int variable may be used as the argument to
the constructor in this way.

The implementation of the member functions length, input_line, and
the overloaded output operator << are all straightforward. In the next few
subsections we discuss the function ~StringVar and the constructor labeled
Copy constructor.

Destructors

There is one problem with dynamic variables. They do not go away unless your
program makes a suitable call to delete. Even if the dynamic variable was
created using a local pointer variable and the local pointer variable goes away at
the end of a function call, the dynamic variable will remain unless there is a call
to delete. If you do not eliminate dynamic variables with calls to delete, they
will continue to occupy memory space, which may cause your program to abort
because it used up all the memory in the freestore. Moreover, if the dynamic
variable is embedded in the implementation of a class, the programmer who
uses the class does not know about the dynamic variable and cannot be expected
to perform the call to delete. In fact, since the data members are normally
private members, the programmer normally cannot access the needed pointer
variables and so cannot call delete with these pointer variables. To handle this
problem, C++ has a special kind of member function called a destructor.

A destructor is a member function that is called automatically when
an object of the class passes out of scope. This means that if your program
contains a local variable that is an object with a destructor, then when the
function call ends, the destructor is called automatically. If the destructor is
defined correctly, the destructor calls delete to eliminate all the dynamic
variables created by the object. This may be done with a single call to delete
or it may require several calls to delete. You might also want your destructor
to perform some other cleanup details as well, but returning memory to the
freestore is the main job of the destructor.

Implementation

Arrays of Classes using
Dynamic Arrays

VideoNote

672	 Chapter 11 /  Friends, Overloaded Operators, and Arrays in Classes

The member function ~StringVar is the destructor for the class StringVar
shown in Display 11.11. Like a constructor, a destructor always has the same
name as the class it is a member of, but the destructor has the tilde symbol,~,
at the beginning of its name (so you can tell that it is a destructor and not
a constructor). Like a constructor, a destructor has no type for the value
returned, not even the type void. A destructor has no parameters. Thus, a class
can have only one destructor; you cannot overload the destructor for a class.
Otherwise, a destructor is defined just like any other member function.

Notice the definition of the destructor ~StringVar given in Display 11.12.
~StringVar calls delete to eliminate the dynamic array pointed to by the
member pointer variable value. Look again at the function conversation
in the sample program shown in Display 11.11. The local variables your_
name and our_name both create dynamic arrays. If this class did not have a
destructor, then after the call to conversation has ended, these dynamic arrays
would still be occupying memory, even though they are useless to the program.
This would not be a problem here because the sample program ends soon after
the call to conversation is completed; but if you wrote a program that made
repeated calls to functions like conversation, and if the class StringVar did
not have a suitable destructor, then the function calls could consume all the
memory in the freestore and your program would then end abnormally.

Display 11.12   Implementation of StringVar (part 1 of 2)

 1 //This is the implementation of the class StringVar.
 2 //The definition for the class StringVar is in Display 11.11.
 3 #include <cstdlib>
 4 #include <cstddef>
 5 #include <cstring>
 6
 7 //Uses cstddef and cstdlib:
 8 StringVar::StringVar(int size) : max_length(size)
 9 {
10 value = new char[max_length + 1];//+1 is for '\0'.
11 value[0] = '\0';
12 }
13
14 //Uses cstddef and cstdlib:
15 StringVar::StringVar() : max_length(100)
16 {
17 value = new char[max_length + 1];//+1 is for '\0'.
18 value[0] = '\0';
19 }
20
21 //Uses cstring, cstddef, and cstdlib:
22 StringVar::StringVar(const char a[]) : max_length(strlen(a))
23 {
24 value = new char[max_length + 1];//+1 is for '\0'.

(continued)

	 11.4  Classes and Dynamic Arrays	 673

Destructor

A destructor is a member function of a class that is called automatically
when an object of the class goes out of scope. Among other things, this
means that if an object of the class type is a local variable for a function,
then the destructor is automatically called as the last action before the
function call ends. Destructors are used to eliminate any dynamic variables
that have been created by the object so that the memory occupied by
these dynamic variables is returned to the freestore. Destructors may
perform other cleanup tasks as well. The name of a destructor must
consist of the tilde symbol,~, followed by the name of the class.

Copy constructor
(discussed later in
this chapter)

Destructor

Display 11.12   Implementation of StringVar (part 2 of 2)

25 strcpy(value, a);
26 }
27 //Uses cstring, cstddef, and cstdlib:
28 StringVar::StringVar(const StringVar& string_object)
29 : max_length(string_object.length())
30 {
31 value = new char[max_length + 1];//+1 is for '\0'.
32 strcpy(value, string_object.value);
33 }
34 StringVar::~StringVar()
35 {
36 delete [] value;
37 }
38
39 //Uses cstring:
40 int StringVar::length() const
41 {
42 return strlen(value);
43 }
44
45 //Uses iostream:
46 void StringVar::input_line(istream& ins)
47 {
48 ins.getline(value, max_length + 1);
49 }
50
51 //Uses iostream:
52 ostream& operator <<(ostream& outs, const StringVar& the_string)
53 {
54 outs << the_string.value;
55 return outs;
56 }

674	 Chapter 11 /  Friends, Overloaded Operators, and Arrays in Classes

Pitfall  Pointers as Call-by-Value Parameters

When a call-by-value parameter is of a pointer type, its behavior can be subtle
and troublesome. Consider the function call shown in Display 11.13. The
parameter temp in the function sneaky is a call-by-value parameter, and hence
it is a local variable. When the function is called, the value of temp is set to
the value of the argument p and the function body is executed. Since temp is a
local variable, no changes to temp should go outside of the function sneaky.
In particular, the value of the pointer variable p should not be changed. Yet
the sample dialogue makes it look as if the value of the pointer variable p had
changed. Before the call to the function sneaky, the value of *p was 77, and
after the call to sneaky the value of *p is 99. What has happened?

Display 11.13   A Call-by-Value Pointer Parameter (part 1 of 2)

 1 //Program to demonstrate the way call-by-value parameters
 2 //behave with pointer arguments.
 3 #include <iostream>
 4 using namespace std;
 5
 6 typedef int* IntPointer;
 7
 8 void sneaky(IntPointer temp);
 9
10 int main()
11 {
12 IntPointer p;
13
14 p = new int;
15 *p = 77;
16 cout << "Before call to function *p == "
17 << *p << endl;

18 sneaky(p);

19 cout << "After call to function *p == "
20 << *p << endl;
21
22 return 0;
23 }
24
25 void sneaky(IntPointer temp)
26 {
27 *temp = 99;
28 cout << "Inside function call *temp == "
29 << *temp << endl;
30 }
31

(continued)

	 11.4  Classes and Dynamic Arrays	 675

The situation is diagrammed in Display 11.14. Although the sample
dialogue may make it look as if p were changed, the value of p was not
changed by the function call to sneaky. Pointer p has two things associated
with it: p’s pointer value and the value stored where p points. Now, the
value of p is a pointer (that is, a memory address). After the call to sneaky,
the variable p contains the same pointer value (that is, the same memory
address). The call to sneaky has changed the value of the variable pointed to
by p, but it has not changed the value of p itself.

If the parameter type is a class or structure type that has member variables
of a pointer type, the same kind of surprising changes can occur with call-by-
value arguments of the class type. However, for class types, you can avoid (and
control) these surprise changes by defining a copy constructor, as described in
the next subsection.	 ■

Copy Constructors

A copy constructor is a constructor that has one parameter that is of the same
type as the class. The one parameter must be a call-by-reference parameter, and
normally the parameter is preceded by the const parameter modifier, so it is a
constant parameter. In all other respects, a copy constructor is defined in the
same way as any other constructor and can be used just like other constructors.

Display 11.14   The Function Call sneaky(p);

1. Before call to sneaky:

p 77

2. Value of p is plugged in for temp:

p

temp

77

4. After call to sneaky: 3. Change made to *temp:

p

temp

99 p 99

Display 11.13   A Call-by-Value Pointer Parameter (part 2 of 2)

Sample Dialogue

Before call to function *p == 77

Inside function call *temp == 99

After call to function *p == 99

676	 Chapter 11 /  Friends, Overloaded Operators, and Arrays in Classes

For example, a program that uses the class StringVar defined in
Display 11.11 might contain the following:

StringVar line(20), motto("Constructors can help.");
cout << "Enter a string of length 20 or less:\n";
line.input_line(cin);
StringVar temp(line);//Initialized by the copy constructor.

The constructor used to initialize each of the three objects of type StringVar
is determined by the type of the argument given in parentheses after the
object’s name. The object line is initialized with the constructor that has
a parameter of type int; the object motto is initialized by the constructor
that has a parameter of type const char a[]. Similarly, the object temp
is initialized by the constructor that has one argument of type const
StringVar&. When used in this way, a copy constructor is being used just like
any other constructor.

A copy constructor should be defined so that the object being initialized
becomes a complete, independent copy of its argument. So, in the declaration

StringVar temp(line);

the member variable temp.value is not simply set to the same value as line.
value; that would produce two pointers pointing to the same dynamic array.
The definition of the copy constructor is shown in Display 11.12. Note that in
the definition of the copy constructor, a new dynamic array is created and the
contents of one dynamic array are copied to the other dynamic array. Thus,
in the previous declaration, temp is initialized so that its string value is equal
to the string value of line, but temp has a separate dynamic array. Thus, any
change that is made to temp has no effect on line.

As you have seen, a copy constructor can be used just like any other
constructor. A copy constructor is also called automatically in certain other
situations. Roughly speaking, whenever C++ needs to make a copy of an
object, it automatically calls the copy constructor. In particular, the copy
constructor is called automatically in three circumstances: (1) when a class
object is declared and is initialized by another object of the same type, (2)
when a function returns a value of the class type, and (3) whenever an
argument of the class type is “plugged in” for a call-by-value parameter. In this
case, the copy constructor defines what is meant by “plugging in.”

To see why you need a copy constructor, let’s see what would happen if we
did not define a copy constructor for the class StringVar. Suppose we did not
include the copy constructor in the definition of the class StringVar and suppose
we used a call-by-value parameter in a function definition, for example:

void show_string(StringVar the_string)
{
 cout << "The string is: "
 << the_string << endl;
}

Called when an
object is declared

Call-by-value
parameters

Why a copy
constructor is
needed

	 11.4  Classes and Dynamic Arrays	 677

Consider the following code, which includes a function call:

StringVar greeting("Hello");
show_string(greeting);
cout << "After call: " << greeting << endl;

Assuming there is no copy constructor, things proceed as follows: When the
function call is executed, the value of greeting is copied to the local variable
the_string, so the_string.value is set equal to greeting.value. But these
are pointer variables, so during the function call, the_string.value and
greeting.value point to the same dynamic array, as follows:

"Hello"

greeting.value the_string.value

When the function call ends, the destructor for StringVar is called to
return the memory used by the_string to the freestore. The definition of the
destructor contains the following statement:

delete [] value;

Since the destructor is called with the object the_string, this statement is
equivalent to:

delete [] the_string.value;

which changes the picture to the following:

Undefined

greeting.value the_string.value

Since greeting.value and the_string.value point to the same dynamic
array, deleting the_string.value is the same as deleting greeting.value.
Thus, greeting.value is undefined when the program reaches the statement

cout << "After call: " << greeting << endl;

This cout statement is therefore undefined. The cout statement may by chance
give you the output you want, but sooner or later the fact that greeting.value
is undefined will produce problems. One major problem occurs when the object
greeting is a local variable in some function. In this case the destructor will be called
with greeting when the function call ends. That destructor call will be equivalent to

delete [] greeting.value;

678	 Chapter 11 /  Friends, Overloaded Operators, and Arrays in Classes

But, as we just saw, the dynamic array pointed to by greeting.value has already
been deleted once, and now the system is trying to delete it a second time.
Calling delete twice to delete the same dynamic array (or other variable created
with new) can produce a serious system error that can cause your program to
crash.

That was what would happen if there were no copy constructor.
Fortunately, we included a copy constructor in our definition of the class
StringVar, so the copy constructor is called automatically when the following
function call is executed:

StringVar greeting("Hello");
show_string(greeting);

The copy constructor defines what it means to “plug in” the argument
greeting for the call-by-value parameter the_string, so that now the picture
is as follows:

"Hello"

greeting.value the_string.value

"Hello"

Thus, any change that is made to the_string.value has no effect on the
argument greeting, and there are no problems with the destructor. If the
destructor is called for the_string and then called for greeting, each call to
the destructor deletes a different dynamic array.

When a function returns a value of a class type, the copy constructor is
called automatically to copy the value specified by the return statement. If
there is no copy constructor, then problems similar to what we described for
value parameters will occur.

If a class definition involves pointers and dynamically allocated memory
using the new operator, then you need to include a copy constructor. Classes that
do not involve pointers or dynamically allocated memory do not need a copy
constructor.

Contrary to what you might expect, the copy constructor is not called
when you set one object equal to another using the assignment operator.2
However, if you do not like what the default assignment operator does, you
can redefine the assignment operator in the way described in the subsection
entitled “Overloading the Assignment Operator.”

Returned value

When you need a
copy constructor

Assignment
statements

2 C++ makes a careful distinction between initialization (the three cases where the copy
constructor is called) and assignment. Initialization uses the copy constructor to create
a new object; the assignment operator takes an existing object and modifies it so that it
is an identical copy (in all but location) of the right-hand side of the assignment.

	 11.4  Classes and Dynamic Arrays	 679

Self-Test Exercises

	23.	 If a class is named MyClass and it has a constructor, what is the constructor
named? If MyClass has a destructor, what is the destructor named?

	24.	 Suppose you change the definition of the destructor in Display 11.12 to
the following. How would the sample dialogue in Display 11.11 change?

StringVar::~StringVar()
{
 cout << endl
 << "Good-bye cruel world! The short life of\n"
 << "this dynamic array is about to end.\n";
 delete [] value;
}

= must be a
member

Copy Constructor

A copy constructor is a constructor that has one call-by-reference
parameter that is of the same type as the class. The one parameter must
be a call-by-reference parameter. Normally, the parameter is also a
constant parameter, that is, preceded by the const parameter modifier.
The copy constructor for a class is called automatically whenever a
function returns a value of the class type. The copy constructor is also
called automatically whenever an argument is “plugged in” for a call-by-
value parameter of the class type. A copy constructor can also be used in
the same ways as other constructors.

Any class that uses pointers and the new operator should have a copy
constructor.

The Big Three

The copy constructor, the =operator, and the destructor are called the
big three because experts say that if you need to define any of them,
then you need to define all three. If any of these is missing, the compiler
will create it, but it may not behave as you want. So it pays to define
them yourself. The copy constructor and overloaded =operator that the
compiler generates for you will work fine if all member variables are of
predefined types such as int and double, but they may misbehave on
classes that have class or pointer member variables. For any class that
uses pointers and the new operator, it is safest to define your own copy
constructor, overloaded =, and destructor.

680	 Chapter 11 /  Friends, Overloaded Operators, and Arrays in Classes

	25.	 The following is the first line of the copy constructor definition for the
class StringVar. The identifier StringVar occurs three times and means
something slightly different each time. What does it mean in each of the
three cases?

StringVar::StringVar(const StringVar& string_object)

	26.	 Answer these questions about destructors.

a.	 What is a destructor and what must the name of a destructor be?

b.	 When is a destructor called?

c.	 What does a destructor actually do?

d.	 What should a destructor do?

Overloading the Assignment Operator

Suppose string1 and string2 are declared as follows:

StringVar string1(10), string2(20);

The class StringVar was defined in Displays 11.11 and 11.12. If string2
has somehow been given a value, then the following assignment statement is
defined, but its meaning may not be what you would like it to be:

string1 = string2;

As usual, this predefined version of the assignment statement copies the value
of each of the member variables of string2 to the corresponding member
variables of string1, so the value of string1.max_length is changed to be
the same as string2.max_length and the value of string1.value is changed
to be the same as string2.value. But this can cause problems with string1
and probably even cause problems for string2.

The member variable string1.value contains a pointer, and the
assignment statement sets this pointer equal to the same value as string2.
value. Thus, both string1.value and string2.value point to the same place
in memory. If you change the string value in string1, you will therefore also
change the string value in string2. If you change the string value in string2,
you will change the string value in string1.

In short, the predefined assignment statement does not do what we would
like an assignment statement to do with objects of type StringVar. Using the
predefined version of the assignment operator with the class StringVar can
only cause problems. The way to fix this is to overload the assignment operator =
so that it does what we want it to do with objects of the class StringVar.

The assignment operator cannot be overloaded in the way we have
overloaded other operators, such as << and +. When you overload the
assignment operator, it must be a member of the class; it cannot be a friend of
the class. To add an overloaded version of the assignment operator to the class
StringVar, the definition of StringVar should be changed to the following:

VideoNote
Overloading = and == for
a Class

	 11.4  Classes and Dynamic Arrays	 681

class StringVar
{
public:
 void operator =(const StringVar& right_side);
 //Overloads the assignment operator = to copy a string
 //from one object to another.
 <�The rest of the definition of the class can be the same as in

Display 11.11.>

The assignment operator is then used just as you always use the assignment
operator. For example, consider the following:

string1 = string2;

In this call, string1 is the calling object and string2 is the argument to the
member operator =.

The definition of the assignment operator can be as follows:

//The following is acceptable, but
//we will give a better definition:
void StringVar::operator =(const StringVar& right_side)
{
 int new_length = strlen(right_side.value);
 if ((new_length) > max_length)
 new_length = max_length;

 for (int i = 0; i < new_length; i++)
 value[i] = right_side.value[i];
 value[new_length] = '\0';
}

Notice that the length of the string in the object on the right side of the
assignment operator is checked. If it is too long to fit in the object on the left
side of the assignment operator (which is the calling object), then only as
many characters as will fit are copied to the object receiving the string. But
suppose you do not want to lose any characters in the copying process. To fit
in all the characters, you can create a new, larger dynamic array for the object
on the left-hand side of the assignment operator. You might try to redefine the
assignment operator as follows:

//This version has a bug:
void StringVar::operator =(const StringVar& right_side)
{
 delete [] value;
 int new_length = strlen(right_side.value);
 max_length = new_length;

 value = new char[max_length + 1];

 for (int i = 0; i < new_length; i++)
 value[i] = right_side.value[i];
 value[new_length] = '\0';
}

Calling object
for =

682	 Chapter 11 /  Friends, Overloaded Operators, and Arrays in Classes

This version has a problem when used in an assignment with the same object
on both sides of the assignment operator, like the following:

my_string = my_string;

When this assignment is executed, the first statement executed is

delete [] value;

But the calling object is my_string, so this means

delete [] my_string.value;

So, the string value in my_string is deleted and the pointer my_string.value
is undefined. The assignment operator has corrupted the object my_string,
and this run of the program is probably ruined.

One way to fix this bug is to first check whether there is sufficient room
in the dynamic array member of the object on the left-hand side of the
assignment operator and to delete the array only if extra space is needed. Our
final definition of the overloaded assignment operator does just such a check:

//This is our final version:
void StringVar::operator =(const StringVar& right_side)
{
 int new_length = strlen(right_side.value);
 if (new_length > max_length)
 {
 delete [] value;
 max_length = new_length;
 value = new char[max_length + 1];
 }
 for (int i = 0; i < new_length; i++)
 value[i] = right_side.value[i];
 value[new_length] = '\0';
}

For many classes, the obvious definition for overloading the assignment
operator does not work correctly when the same object is on both sides of
the assignment operator. You should always check this case and be careful
to write your definition of the overloaded assignment operator so that it also
works in this case.

Self-Test Exercise

	27.	 a. � Explain carefully why no overloaded assignment operator is needed
when the only data consists of built-in types.

b.  Same as part (a) for a copy constructor.

c.  Same as part (a) for a destructor.

	 Answers to Self-Test Exercises	 683

Chapter Summary

■	 A friend function of a class is an ordinary function except that it has access
to the private members of the class, just like the member functions do.

■	 If your classes each have a full set of accessor and mutator functions, then
the only reason to make a function a friend is to make the definition of
the friend function simpler and more efficient, but that is often reason
enough.

■	 A parameter of a class type that is not changed by the function should nor-
mally be a constant parameter.

■	O perators, such as + and ==, can be overloaded so they can be used with
objects of a class type that you define.

■	 When overloading the >> or << operators, the type returned should be a
stream type and must be a reference, which is indicated by appending an &
to the name of the returned type.

■	 The base type of an array can be a structure or class type. A structure or class
can have an array as a member variable.

■	 A destructor is a special kind of member function for a class. A destruc-
tor is called automatically when an object of the class passes out of scope.
The main reason for destructors is to return memory to the freestore so the
memory can be reused.

■	 A copy constructor is a constructor that has a single argument that is of the
same type as the class. If you define a copy constructor, it will be called auto-
matically whenever a function returns a value of the class type and whenever
an argument is “plugged in” for a call-by-value parameter of the class type.
Any class that uses pointers and the operator new should have a copy con-
structor.

■	 The assignment operator = can be overloaded for a class so that it behaves as
you wish for that class. However, it must be overloaded as a member of the
class; it cannot be overloaded as a friend. Any class that uses pointers and
the operator new should overload the assignment operator for use with that
class.

Answers to Self-Test Exercises

	  1.	 bool before(DayOfYear date1, DayOfYear date2)
{
 return ((date1.get_month() < date2.get_month())
 || (date1.get_month() == date2.get_month()
 && date1.get_day () < date2.get_day ()));
}

684	 Chapter 11 /  Friends, Overloaded Operators, and Arrays in Classes

The previous Boolean expression says that date1 is before date2, provided
the month of date1 is before the month of date2 or that the months
are the same and the day of date1 is before the day of date2.

	  2.	 A friend function and a member function are alike in that they both can
use any member of the class (either public or private) in their function
definition. However, a friend function is defined and used just like an
ordinary function; the dot operator is not used when you call a friend
function, and no type qualifier is used when you define a friend function.
A member function, on the other hand, is called using an object name and
the dot operator. Also, a member function definition includes a type quali-
fier consisting of the class name and the scope resolution operator ::.

	  3.	 The modified definition of the class DayOfYear is shown below. The part
in color is new. We have omitted some comments to save space, but all the
comments shown in Display 11.2 should be included in this definition.

class DayOfYear
{
public:
 friend bool equal(DayOfYear date1, DayOfYear date2);
 friend bool after(DayOfYear date1, DayOfYear date2);
 //Precondition: date1 and date2 have values.
 //Returns true if date1 follows date2 on the calendar;
 //otherwise, returns false.

 DayOfYear(int the_month, int the_day);
 DayOfYear();
 void input();
 void output();
 int get_month();
 int get_day();
private:
 void check_date();
 int month;
 int day;
};

You also must add the following definition of the function after:

bool after(DayOfYear date1, DayOfYear date2)
{
 return ((date1.month > date2 month))||
 ((date1.month == date2.month) && (date1.day > date2.day))
}

	  4.	 The modified definition of the class Money is shown here. The part in color
is new. We have omitted some comments to save space, but all the com-
ments shown in Display 11.3 should be included in this definition.

class Money
{
public:
 friend Money subtract(Money amount1, Money amount2);
 //Precondition: amount1 and amount2 have values.
 //Returns amount1 minus amount2.

 friend bool equal(Money amount1, Money amount2);
 Money(long dollars, int cents);
 Money(long dollars);
 Money();
 double get_value();
 void input(istream& ins);
 void output(ostream& outs);
private:
 long all_cents;
};

You also must add the following definition of the function subtract:

Money subtract(Money amount1, Money amount2)
{
 Money temp;
 temp.all_cents = amount1.all_cents
 - amount2.all_cents;
 return temp;
}

	  5.	 The modified definition of the class Money is shown here. The part in color
is new. We have omitted some comments to save space, but all the com-
ments shown in Display 11.3 should be included in this definition.

class Money
{
public:
 friend Money add(Money amount1, Money amount2);
 friend bool equal(Money amount1, Money amount2);
 Money(long dollars, int cents);
 Money(long dollars);
 Money();
 double get_value();
 void input(istream& ins);

 void output(ostream& outs);
 //Precondition: If outs is a file output stream, then
 //outs has already been connected to a file.
 //Postcondition: A dollar sign and the amount of money
 //recorded in the calling object has been sent to the
 //output stream outs.

	 Answers to Self-Test Exercises	 685

686	 Chapter 11 /  Friends, Overloaded Operators, and Arrays in Classes

 void output();
 //Postcondition: A dollar sign and the amount of money
 //recorded in the calling object has been output to the
 //screen.
private:
 long all_cents;
};

You also must add the following definition of the function name output.
(The old definition of output stays, so that there are two definitions of
output.)

void Money::output()
{
 output(cout);
}

The following longer version of the function definition also works:

//Uses cstdlib and iostream
void Money::output()
{
 long positive_cents, dollars, cents;
 positive_cents = labs(all_cents);
 dollars = positive_cents/100;
 cents = positive_cents%100;

 if (all_cents < 0)
 cout << "-$" << dollars << '.';
 else
 cout << "$" << dollars << '.';

 if (cents < 10)
 cout << '0';
 cout << cents;
}

You can also overload the member function input so that a call like

purse.input();

means the same as

purse.input(cin);

And, of course, you can combine this enhancement with the enhancements
from previous Self-Test Exercises to produce one highly improved class
Money.

	  6.	 If the user enters $−9.95 (instead of −$9.95), the function input will read
the '$' as the value of one_char, the -9 as the value of dollars, the '.' as
the value of decimal_point, and the '9' and '5' as the values of digit1
and digit2. That means it will set dollars equal to -9 and cents equal

	 Answers to Self-Test Exercises	 687

to 95 and so set the amount equal to a value that represents −$9.00 plus
0.95, which is −$8.05. One way to catch this problem is to test if the value
of dollars is negative (since the value of dollars should be an absolute
value). To do this, rewrite the error message portion as follows:

if (one_char != '$' || decimal_point != '.'
 || !isdigit(digit1) || !isdigit(digit2)
 || dollars < 0)			 New
{
 cout << "Error illegal form for money input\n";
 exit(1);
}

This code still will not give an error message for incorrect input with zero
dollars as in $-0.95. However, with the material we have learned thus far,
a test for this case, while certainly possible, would significantly complicate
the code and make it harder to read.

  7. #include <iostream>
using namespace std;
int main()
{
 int x;
 cin >> x;
 cout << x << endl;
 return 0;
}

If the compiler interprets input with a leading 0 as a base-8 numeral, then
with input data 077, the output should be 63. The output should be 77 if
the compiler does not interpret data with a leading 0 as indicating base 8.

	  8.	 The only change from the version given in Display 11.3 is that the modifier
const is added to the function heading, so the definition is

double Money::get_value() const
{
 return (all_cents * 0.01);
}

	  9.	 The member function input changes the value of its calling object, and so
the compiler will issue an error message if you add the const modifier.

	10.	 Similarities: Each parameter call protects the caller’s argument from change.
Differences: The call-by-value makes a copy of the caller’s argument, so it
uses more memory than a call-by-constant-reference.

	11.	 In the const int x = 17; declaration, the const keyword promises the
compiler that code written by the author will not change the value of x.

688	 Chapter 11 /  Friends, Overloaded Operators, and Arrays in Classes

In the int f() const; declaration, the const keyword is a promise to the
compiler that code written by the author to implement function f will not
change anything in the calling object.

In the int g(const A& x); declaration, the const keyword is a promise
to the compiler that code written by the class author will not change the
argument plugged in for x.

	12.	 The difference between a (binary) operator (such as +, *, /, and so forth)
and a function involves the syntax of how they are called. In a function call,
the arguments are given in parentheses after the function name. With an
operator, the arguments are given before and after the operator. Also, you
must use the reserved word operator in the declaration and in the defini-
tion of an overloaded operator.

	13.	 The modified definition of the class Money is shown here. The part in color
is new. We have omitted some comments to save space, but all the com-
ments shown in Display 11.5 should be included in this definition.

class Money
{
public:
 friend Money operator +(const Money& amount1,
 const Money& amount2);
 friend bool operator ==(const Money& amount1,
 const Money& amount2);
 friend bool operator <(const Money& amount1,
 const Money& amount2);
 //Precondition: amount1 and amount2 have been given
 //values.
 //Returns true if amount1 is less than amount2;
 //otherwise, returns false.
 Money(long dollars, int cents);
 Money(long dollars);
 Money();
 double get_value() const;
 void input(istream& ins);
 void output(ostream& outs) const;
private:
 long all_cents;
};

You also must add the following definition of the overloaded operator <:

bool operator <(const Money& amount1,
 const Money& amount2)
{
 return (amount1.all_cents < amount2.all_cents);
}

	 Answers to Self-Test Exercises	 689

	14.	 The modified definition of the class Money is shown here. The part in color is
new. We have omitted some comments to save space, but all the comments
shown in Display 11.5 should be included in this definition. We have included
the changes from the previous exercises in this answer, since it is natural to use
the overloaded < operator in the definition of the overloaded <= operator.

class Money
{
public:
 friend Money operator +(const Money& amount1,
 const Money& amount2);
 friend bool operator ==(const Money& amount1,
 const Money& amount2);
 friend bool operator <(const Money& amount1,
    const Money& amount2);
 //Precondition: amount1 and amount2 have been given
 //values.
 //Returns true if amount1 is less than amount2;
 //otherwise, returns false.
 friend bool operator <=(const Money& amount1,
 const Money& amount2);
 //Precondition: amount1 and amount2 have been given
 //values.
 //Returns true if amount1 is less than or equal to
 //amount2; otherwise, returns false.
 Money(long dollars, int cents);
 Money(long dollars);
 Money();
 double get_value() const;
 void input(istream& ins);
 void output(ostream& outs) const;
private:
 long all_cents;
};

You also must add the following definition of the overloaded operator
<= (as well as the definition of the overloaded operator < given in the
previous exercise):

bool operator <=(const Money& amount1,
   const Money& amount2)
{
 return ((amount1.all_cents < amount2.all_cents)
 ||(amount1.all_cents == amount2.all_cents));
}

	15.	 When overloading an operator, at least one of the arguments to the op-
erator must be of a class type. This prevents changing the behavior of +
for integers. Actually, this requirement prevents changing the effect of any
operator on any built-in type.

690	 Chapter 11 /  Friends, Overloaded Operators, and Arrays in Classes

	16.	 //Uses cmath (for floor):
Money::Money(double amount)
{
 all_cents = floor(amount * 100);
}

This definition simply discards any amount that is less than one cent. For
example, it converts 12.34999 to the integer 1234, which represents the
amount $12.34. It is possible to define the constructor to instead do other
things with any fraction of a cent.

	17.	 istream& operator >>(istream& ins, Pairs& second)
{
 char ch;
 ins >> ch; //discard initial '('
 ins >> second.f;
 ins >> ch; //discard comma ','
 ins >> second.s;
 ins >> ch; //discard final ')'
 return ins;
}

ostream& operator <<(ostream& outs, const Pairs& second)

{
 outs << '(';
 outs << second.f;
 outs << ','; //You might prefer ","
 //to get an extra space
 outs << second.s;
 outs << ')';
 return outs;
}

	18.	 //Uses iostream:
istream& operator >>(istream& ins, Percent& the_object)
{
 char percent_sign;
 ins >> the_object.value;
 ins >> percent_sign;//Discards the % sign.
 return ins;
}

//Uses iostream:
ostream& operator <<(ostream& outs,
 const Percent& a_percent)
{
 outs << a_percent.value << '%';
 return outs;
}

	 Answers to Self-Test Exercises	 691

	19.	 struct Score
{
 int home_team;
 int opponent;
};
Score game[10];

	20.	 //Reads in 5 amounts of money, doubles each amount,
//and outputs the results.
#include <iostream>

<The definitions for the Money class go here>

int main()
{
 using namespace std;
 Money amount[5];
 int i;
 cout << "Enter 5 amounts of money:\n";
 for (i = 0; i < 5; i++)
 cin >> amount[i];
 for (i = 0; i < 5; i++)
 amount[i] = amount[i] + amount[i];
 cout << "After doubling, the amounts are:\n";
 for (i = 0; i < 5; i++)
 cout << amount[i] << " ";
 cout << endl;
 return 0;
}

(You cannot use 2 * amount[i], since * has not been overloaded for
operands of type Money.)

	21.	 See answer 22.

	22.	 This answer combines the answers to this and the previous Self-Test Exer-
cise. The class definition would change to the following. (We have deleted
some comments from Display 11.10 to save space, but you should include
them in your answer.)

class TemperatureList
{
public:
 TemperatureList();

 int get_size() const;
 //Returns the number of temperatures on the list.

 void add_temperature(double temperature);

 double get_temperature(int position) const;

692	 Chapter 11 /  Friends, Overloaded Operators, and Arrays in Classes

 //Precondition: 0 <= position < get_size().
 //Returns the temperature that was added in position
 //specified. The first temperature that was added is
 //in position 0.

 bool full() const;

 friend ostream& operator <<(ostream& outs,
 const TemperatureList& the_object);
private:
 double list[MAX_LIST_SIZE];//of temperatures in
 //Fahrenheit
 int size; //number of array positions filled
};

You also need to add the following member function definitions:

int TemperatureList::get_size() const
{
 return size;
}

//Uses iostream and cstdlib:
double TemperatureList::get_temperature (int position) const
{
 if ((position >= size) || (position < 0))
 {
 cout << "Error:"
 << " reading an empty list position.\n";
 exit(1);
 }
 else
 return (list[position]);
}

	23.	 The constructor is named MyClass, the same name as the name of the class.
The destructor is named ~MyClass.

	24.	 The dialogue would change to the following:

 What is your name?
 Kathryn Janeway
 We are Borg
 We will meet again Kathryn Janeway
 Good-bye cruel world! The short life of
 this dynamic array is about to end.
 Good-bye cruel world! The short life of
 this dynamic array is about to end.
 End of demonstration

	 Practice Programs	 693

	25.	 The StringVar before the :: is the name of the class. The StringVar right
after the :: is the name of the member function. (Remember, a constructor
is a member function that has the same name as the class.) The StringVar
inside the parentheses is the type for the parameter string_object.

	26.	 a. � A destructor is a member function of a class. A destructor’s name always
begins with a tilde, ~, followed by the class name.

b. A destructor is called when a class object goes out of scope.

c.  A destructor actually does whatever the class author programs it to do!

d. � A destructor is supposed to delete dynamic variables that have been
allocated by constructors for the class. Destructors may also do other
cleanup tasks.

	27.	 In the case of the assignment operator = and the copy constructor, if there
are only built-in types for data, the default copy mechanism is exactly what
you want, so the default works fine. In the case of the destructor, no dy-
namic memory allocation is done (no pointers), so the default do-nothing
action is again what you want.

PrACTICE ProGRAMS

Practice Programs can generally be solved with a short program that directly applies
the programming principles presented in this chapter.

	  1.	 Modify the definition of the class Money shown in Display 11.8 so that all
of the following are added:

a. � The operators <, <=, >, and >= have each been overloaded to apply to
the type Money. (Hint: See Self-Test Exercise 13.)

b. � The following member function has been added to the class definition.
(We show the function declaration as it should appear in the class
definition. The definition of the function itself will include the
qualifier Money::.)

Money percent(int percent_figure) const;
//Returns a percentage of the money amount in the
//calling object. For example, if percent_figure is 10,
//then the value returned is 10% of the amount of
//money represented by the calling object.

For example, if purse is an object of type Money whose value represents
the amount $100.10, then the call

purse.percent(10);

returns 10% of $100.10; that is, it returns a value of type Money that
represents the amount $10.01.

694	 Chapter 11 /  Friends, Overloaded Operators, and Arrays in Classes

	  2.	 Self-Test Exercise 17 asked you to overload the operator >> and the opera-
tor << for a class Pairs. Complete and test this exercise. Implement the
default constructor and the constructors with one and two int parameters.
The one-parameter constructor should initialize the first member of the
pair; the second member of the pair is to be 0.

Overload binary operator+ to add pairs according to the rule

(a, b) + (c, d) = (a + c, b + d)

Overload operator- analogously.

Overload operator* on Pairs and int according to the rule

(a, b) * c = (a * c, b * c)

Write a program to test all the member functions and overloaded
operators in your class definition.

	  3.	 Self-Test Exercise 18 asked you to overload the operator >> and the opera-
tor << for a class Percent. Complete and test this exercise. Implement the
default constructor and the constructor with one int parameter. Overload
the + and - operators to add and subtract percents. Also, overload the *
operator to allow multiplication of a percent by an integer.

Write a program to test all the member functions and overloaded
operators in your class definition.

Programming Projects

Programming Projects require more problem-solving than Practice Programs and
can usually be solved many different ways. Visit www.myprogramminglab.com to
complete many of these Programming Projects online and get instant feedback.

	  1.	 In Chapter 8 we discussed vectors, which are like arrays that can grow in
size. Suppose that vectors were not defined in C++. Define a class called
VectorDouble that is like a class for a vector with base type double. Your
class VectorDouble will have a private member variable for a dynamic
array of doubles. It will also have two member variables of type int; one
called max_count for the size of the dynamic array of doubles; and one
called count for the number of array positions currently holding values.
(max_count is the same as the capacity of a vector; count is the same as the
size of a vector.)

If you attempt to add an element (a value of type double) to the vector
object of the class VectorDouble and there is no more room, then a new
dynamic array with twice the capacity of the old dynamic array is created
and the values of the old dynamic array are copied to the new dynamic array.

www.myprogramminglab.com

	 Programming Projects	 695

Your class should have all of the following:

■	� Three constructors: a default constructor that creates a dynamic array
for 50 elements, a constructor with one int argument for the number
of elements in the initial dynamic array, and a copy constructor.

■	� A destructor.

■	 A suitable overloading of the assignment operator =.

■	� A suitable overloading of the equality operator ==. To be equal, the
values of count and the count array elements must be equal, but the
values of max_count need not be equal.

■	� Member functions push_back, capacity, size, reserve, and resize
that behave the same as the member functions of the same names for
vectors.

■	� Two member functions to give your class the same utility as the
square brackets: value_at(i), which returns the value of the ith
element in the dynamic array; and change_value_at(d, i), which
changes the double value at the ith element of the dynamic array
to d. Enforce suitable restrictions on the arguments to value_at and
change_value_at. (Your class will not work with the square brackets.
It can be made to work with square brackets, but we have not covered
the material which tells you how to do that.)

	  2.	 Define a class for rational numbers. A rational number is a number that
can be represented as the quotient of two integers. For example, 1/2, 3/4,
64/2, and so forth are all rational numbers. (By 1/2, etc., we mean the
everyday meaning of the fraction, not the integer division this expression
would produce in a C++ program.) Represent rational numbers as two val-
ues of type int, one for the numerator and one for the denominator. Call
the class Rational.

Include a constructor with two arguments that can be used to set the
member variables of an object to any legitimate values. Also include a
constructor that has only a single parameter of type int; call this single
parameter whole_number and define the constructor so that the object
will be initialized to the rational number whole_number/1. Also include a
default constructor that initializes an object to 0 (that is, to 0/1).

Overload the input and output operators >> and <<. Numbers are to be
input and output in the form 1/2, 15/32, 300/401, and so forth. Note
that the numerator, the denominator, or both may contain a minus
sign, so -1/2, 15/32, and -300/-401 are also possible inputs. Overload
all of the following operators so that they correctly apply to the type
Rational: ==, <, <=, >, >=, +, -, *, and /. Also write a test program to test
your class.

696	 Chapter 11 /  Friends, Overloaded Operators, and Arrays in Classes

(Hints: Two rational numbers a/b and c/d are equal if a*d equals
c*b. If b and d are positive rational numbers, a/b is less than c/d
provided a*d is less than c*b. You should include a function to nor-
malize the values stored so that, after normalization, the denomi-
nator is positive and the numerator and denominator are as small
as possible. For example, after normalization 4/-8 would be repre-
sented the same as -1/2. You should also write a test program to test
your class.)

	  3.	 Define a class for complex numbers. A complex number is a number of the
form

a + b * i

where, for our purposes, a and b are numbers of type double, and i is a
number that represents the quantity −1. Represent a complex number
as two values of type double. Name the member variables real and
imaginary. (The variable for the number that is multiplied by i is the one
called imaginary.) Call the class Complex.

Include a constructor with two parameters of type double that can be
used to set the member variables of an object to any values. Also include
a constructor that has only a single parameter of type double; call this
parameter real_part and define the constructor so that the object will
be initialized to real_part+0*i. Also include a default constructor that
initializes an object to 0 (that is, to 0+0*i). Overload all of the following
operators so that they correctly apply to the type Complex: ==, +, -, *, >>,
and <<. You should write a test program to test your class.

(Hints: To add or subtract two complex numbers, you add or subtract
the two member variables of type double. The product of two complex
numbers is given by the following formula:

 (a + b*i)*(c + d*i) == (a*c – b*d) + (a*d + b*c)*i

In the interface file, you should define a constant i as follows:

const Complex i(0, 1);

This defined constant i will be the same as the i discussed earlier.

delete p;

	  4.	 Enhance the definition of the class StringVar given in Displays 11.11 and
11.12 by adding all of the following:

■	� Member function copy_piece, which returns a specified substring;
member function one_char, which returns a specified single
character; and member function set_char, which changes a specified
character

√

	 Programming Projects	 697

■	� An overloaded version of the == operator (note that only the string
values have to be equal; the values of max_length need not be the
same)

■	� An overloaded version of + that performs concatenation of strings of
type StringVar

■	� An overloaded version of the extraction operator >> that reads one
word (as opposed to input_line, which reads a whole line)

If you did the section on overloading the assignment operator, then add
it as well. Also write a suitable test program and thoroughly test your class
definition.

	  5.	 Define a class called Text whose objects store lists of words. The class Text
will be just like the class StringVar except that the class Text will use a dy-
namic array with base type StringVar rather than base type char and will
mark the end of the array with a StringVar object consisting of a single
blank, rather than using '\0' as the end marker. Intuitively, an object of
the class Text represents some text consisting of words separated by blanks.
Enforce the restriction that the array elements of type StringVar contain
no blanks (except for the end marker elements of type StringVar).

Your class Text will have member functions corresponding to all the
member functions of StringVar. The constructor with an argument of
type const char a[] will initialize the Text object in the same way as
described below for input_line. If the C-string argument contains the
new-line symbol '\n', that is considered an error and ends the program
with an error message.

The member function input_line will read blank separated strings and
store each string in one element of the dynamic array with base type
StringVar. Multiple blank spaces are treated the same as a single blank
space. When outputting an object of the class Text, insert one blank
between each value of type StringVar. You may either assume that no tab
symbols are used or you can treat the tab symbols the same as a blank; if
this is a class assignment, ask your instructor how you should treat the tab
symbol.

Add the enhancements described in Programming Project 6. The
overloaded version of the extraction operator >> will fill only one element
of the dynamic array.

	  6.	 Using dynamic arrays, implement a polynomial class with polynomial
addition, subtraction, and multiplication.

Discussion: A variable in a polynomial does very little other than act
as a placeholder for the coefficients. Hence, the only interesting thing

698	 Chapter 11 /  Friends, Overloaded Operators, and Arrays in Classes

about polynomials is the array of coefficients and the corresponding
exponent. Think about the polynomial

x*x*x + x + 1

One simple way to implement the polynomial class is to use an array
of doubles to store the coefficients. The index of the array is the ex-
ponent of the corresponding term. Where is the term in x*x in the
previous example? If a term is missing, then it simply has a zero
coefficient.

There are techniques for representing polynomials of high degree
with many missing terms. These use so-called sparse polynomial
techniques. Unless you already know these techniques, or learn very
quickly, don’t use them.

Provide a default constructor, a copy constructor, and a parameterized
constructor that enable an arbitrary polynomial to be constructed. Also
supply an overloaded operator = and a destructor.

Provide these operations:

■	 polynomial + polynomial

■	 constant + polynomial

■	 polynomial + constant

■	 polynomial - polynomial

■	 constant - polynomial

■	 polynomial - constant

■	 polynomial * polynomial

■	 constant * polynomial

■	 polynomial * constant

Supply functions to assign and extract coefficients, indexed by exponent.

Supply a function to evaluate the polynomial at a value of type double.

You should decide whether to implement these functions as members,
friends, or stand-alone functions.

	  7.	 Write a checkbook balancing program. The program will read in the follow-
ing for all checks that were not cashed as of the last time you balanced your
checkbook: the number of each check, the amount of the check, and whether
or not it has been cashed. Use an array with a class base type. The class should
be a class for a check. There should be three member variables to record the
check number, the check amount, and whether or not the check was cashed.
The class for a check will have a member variable of type Money (as defined in
Display 19) to record the check amount. So, you will have a class used within

	 Programming Projects	 699

a class. The class for a check should have accessor and mutator functions as
well as constructors and functions for both input and output of a check.

In addition to the checks, the program also reads all the deposits, as well
as the old and the new account balance. You may want another array to
hold the deposits. The new account balance should be the old balance
plus all deposits, minus all checks that have been cashed.

The program outputs the total of the checks cashed, the total of the
deposits, what the new balance should be, and how much this figure
differs from what the bank says the new balance is. It also outputs two
lists of checks: the checks cashed since the last time you balanced your
checkbook and the checks still not cashed. Display both lists of checks in
sorted order from lowest to highest check number.

If this is a class assignment, ask your instructor if input/output should
be done with the keyboard and screen or if it should be done with files.
If it is to be done with files, ask your instructor for instructions on file
names.

	  8.	 Define a class called List that can hold a list of values of type double.
Model your class definition after the class TemperatureList given in
Display 11.10, but your class List will make no reference to temperatures
when it outputs values. The values may represent any sort of data items as
long as they are of type double. Include the additional features specified in
Self-Test Exercises 21 and 22. Change the member function names so that
they do not refer to temperature.

Add a member function called get_last that takes no arguments and
returns the last item on the list. The member function get_last does not
change the list, and it should not be called if the list is empty. Add another
member function called delete_last that deletes the last element on the
list. The member function delete_last is a void function. Note that
when the last element is deleted, the member variable size must be
adjusted. If delete_last is called with an empty list as the calling object,
the function call has no effect. Design a program to thoroughly test your
definition for the class List.

	  9.	 Define a class called StringSet that will be used to store a set of STL
strings. Use an array or a vector to store the strings. Create a constructor
that takes as an input parameter an array of strings for the initial values in
the set. Then write member functions to add a string to the set, remove a
string from the set, clear the entire set, return the number of strings in the
set, and output all strings in the set. Overload the + operator so that it re-
turns the union of two StringSet objects. Also overload the * operator so
that it returns the intersection of two StringSet objects. Write a program
to test all member functions and overloaded operators in your class.

700	 Chapter 11 /  Friends, Overloaded Operators, and Arrays in Classes

	10.	 This programming project requires you to complete Programming Project
9 first.

The field of information retrieval is concerned with finding relevant
electronic documents based upon a query. For example, given a group of
keywords (the query), a search engine retrieves Web pages (documents)
and displays them sorted by relevance to the query. This technology
requires a way to compare a document with the query to see which is
most relevant to the query.

A simple way to make this comparison is to compute the binary cosine
coefficient. The coefficient is a value between 0 and 1, where 1 indicates
that the query is very similar to the document and 0 indicates that the
query has no keywords in common with the document. This approach
treats each document as a set of words. For example, given the following
sample document:

“Chocolate ice cream, chocolate milk, and chocolate bars are delicious.”

This document would be parsed into keywords where case is ignored
and punctuation discarded and turned into the set containing the words
{chocolate, ice, cream, milk, and, bars, are, delicious}. An identical
process is performed on the query to turn it into a set of strings. Once we
have a query Q represented as a set of words and a document D represented
as a set of words, the similarity between Q and D is computed by:

Sim =
 |Q ∩ D|

    |Q|  |D|

Modify the StringSet from Programming Project 12 by adding an
additional member function that computes the similarity between the
current StringSet and an input parameter of type StringSet. The sqrt
function is in the cmath library.

Create two text files on your disk named Document1.txt and Document2.
txt. Write some text content of your choice in each file, but make
sure that each file contains different content. Next, write a program that
allows the user to input from the keyboard a set of strings that represents
a query. The program should then compare the query to both text files
on the disk and output the similarity to each one using the binary cosine
coefficient. Test your program with different queries to see if the similarity
metric is working correctly.

	11.	R edo Programming Project 6 from Chapter 9 (or do it for the first time),
but this time encapsulate the dynamic array and array size within a
class. The class should have public member functions addEntry and
deleteEntry. Make the array and size variables private. This will require

√ √

	 Programming Projects	 701

adding functions for getting and setting specific items in the array as well
as returning the current size of the array. Add a destructor that frees up the
memory allocated to the dynamic array. Also, add a copy constructor and
overload the assignment operator so that the dynamic array is properly
copied from the object on the right-hand side of the assignment to the
object on the left-hand side. Embed your class in a suitable test program.

	12.	 To combat election fraud, your city is instituting a new voting procedure.
The ballot has a letter associated with every selection a voter may make.
A sample ballot is shown.

1.	 VOTE FOR MAYOR
	 A.  Pincher, Penny	
	 B.  Dover, Skip	
	 C.  Perman, Sue	

2.	 PROPOSITION 17
	 D.  YES	
	 E.  NO	

3.	 MEASURE 1
	 F.  YES	
	 G.  NO	

4.	 MEASURE 2
	H .  YES	
	 I.  NO	

After submitting the ballot, every voter receives a receipt that has a unique
ID number and a record of the voting selections. For example, a voter who
submits a ballot for Sue Perman, Yes on Proposition 17, No on Measure
1, and Yes on Measure 2 might receive a receipt with

ID 4925 : CDGH

The next day the city posts all votes on its Web page sorted by ID number.
This allows a voter to confirm their submission and allows anyone to count
the vote totals for themselves. A sample list for the sample ballot is shown.

ID VOTES

4925 CDGH

4926 AEGH

4927 CDGI

4928 BEGI

4929 ADFH

VideoNote
Solution to Programming
Project 11.12

702	 Chapter 11 /  Friends, Overloaded Operators, and Arrays in Classes

Write a program that reads the posted voting list from a file and outputs
the percent of votes cast for each ballot item. You may assume that the
file does not have any header lines. The first line will contain a voter ID
and a string representing votes. Define a class named Voter that stores an
individual’s voting record. The class should have a constructor that takes
as input a string of votes (for example, “CDGH”), a voter ID, and accessor
function(s) that return the person’s ID and vote for a specific question.
Store each Voter instance in an array or vector. Your program should
iterate over the array to compute and output the percent of votes cast for
each candidate, proposition, and measure. It should then prompt the user
to enter a voter ID, iterate over the list again to find the object with that
ID, and print his or her votes.

	13.	R epeat Programming Project 11 from Chapter 10 but use an array to store
the movie ratings instead of separate variables. All changes should be inter-
nal to the class so the main function to test the class should run identically
with either the old Movie class or the new Movie class that uses an array
member variable.

Next, modify the main function so that instead of creating separate
variables for each Movie object, an array of at least four Movie objects is
created with sample data. Loop through the array and output the name,
MPAA rating, and average rating for each of the four movies.

	14.	 Do Programming Project 16 from Chapter 8 except use a Racer class to
store information about each race participant. The class should store the
racer’s name, bib number, finishing position, and all of his or her split
times as recorded by the RFID sensors. You can choose appropriate struc-
tures to store this information. Include appropriate functions to access or
change the racer’s information, along with a constructor. Make an array or
vector of Racer objects to store the entire race results.

The racer’s name should come from a separate text file. The information
for this file is collected before the race when the participant registers for
the event. Listed below is a sample file:

100,Bill Rodgers
132,Frank Shorter
182,Joan Benoit

Separate Compilation
and Namespaces

12.1  Separate Compilation  704
ADTs Reviewed  705
Case Study: DigitalTime—A Class Compiled

Separately  706
Using #ifndef  715
Programming Tip: Defining Other Libraries  718

12.2 N amespaces  719
Namespaces and using Directives  719
Creating a Namespace  721

Qualifying Names  724
A Subtle Point About Namespaces (Optional)  725
Unnamed Namespaces  726
Programming Tip: Choosing a Name for a

Namespace  731
Pitfall: Confusing the Global Namespace and the

Unnamed Namespace  732

12

Chapter Summary  733
Answers to Self-Test Exercises  734

Practice Programs  736
Programming Projects  738

Introduction

This chapter covers two topics that have to do with how you organize a C++
program into separate parts. Section 12.1 on separate compilation discusses
how a C++ program can be distributed across a number of files so that when
some parts of the program change, only those parts need to be recompiled.
The separate parts can also be more easily reused in other applications.

Section 12.2 discusses namespaces, which we introduced briefly in
Chapter 2. Namespaces are a way of allowing you to reuse the names of classes,
functions, and other items by qualifying the names to indicate different uses.
Namespaces divide your code into sections so that the different sections may
reuse the same names with differing meanings. Namespaces allow a kind of
local meaning for names that is more general than local variables.

Prerequisites

This chapter uses material from Chapters 2 through 6 and 10 through 11.

12.1  Separate Compilation

Your “if “ is the only peacemaker; much virtue in “if.”

William Shakespeare, As You Like It

C++ has facilities for dividing a program into parts that are kept in separate
files, compiled separately, and then linked together when (or just before) the
program is run. You can place the definition for a class (and its associated
function definitions) in files that are separate from the programs that use the
class. That way you can build up a library of classes so that many programs
can use the same class. You can compile the class once and then use it in
many different programs, just like you use the predefined libraries (such as
those with header files iostream and cstdlib). Moreover, you can define
the class itself in two files so that the specification of what the class does
is separate from how the class is implemented. If your class is defined
following the guidelines we have been giving you and you change only the
implementation of the class, then you need only recompile the file with the
class implementation. The other files, including the files with the programs
that use the class, need not be changed or even recompiled. In this section, we
tell you how to carry out this separate compilation of classes.

704

From mine own library with volumes that
I prize above my dukedom.

William Shakespeare, The Tempest

ADTs Reviewed

Recall that an ADT (abstract data type) is a class that has been defined so as
to separate the interface and the implementation of the class. All your class
definitions should be ADTs. In order to define a class so that it is an ADT, you
need to separate the specification of how the class is used by a programmer
from the details of how the class is implemented. The separation should be so
complete that you can change the implementation without needing to change
any program that uses the class in any way. The way to ensure this separation
can be summarized in three rules:

	1.	 Make all the member variables private members of the class.

	2.	 Make each of the basic operations for the ADT (the class) either a public
member function of the class, a friend function, an ordinary function, or
an overloaded operator. Group the class definition and the function and
operator declarations together. This group, along with its accompanying
comments, is called the interface for the ADT. Fully specify how to use
each such function or operator in a comment given with the class or with
the function or operator declaration.

	3.	 Make the implementation of the basic operations unavailable to the
programmer who uses the abstract data type. The implementation consists
of the function definitions and overloaded operator definitions (along
with any helping functions or other additional items these definitions
require).

In C++, the best way to ensure that you follow these rules is to place the
interface and the implementation of the ADT class in separate files. As you
might guess, the file that contains the interface is often called the interface file,
and the file that contains the implementation is called the implementation
file. The exact details of how to set up, compile, and use these files will vary
slightly from one version of C++ to another, but the basic scheme is the same
in all versions of C++. In particular, the details of what goes into the files are
the same in all systems. The only things that vary are what commands you
use to compile and link these files. The details about what goes into these files
are illustrated in the next Case Study.

An ADT class has private member variables. Private member variables
(and private member functions) present a problem to our basic philosophy
of placing the interface and the implementation of an ADT in separate files.
The public part of the class definition for an ADT is part of the interface for
the ADT, but the private part is part of the implementation. This is a problem
because C++ will not allow you to split the class definition across two files.
Thus, some sort of compromise is needed. The only sensible compromise,
and the one we use, is to place the entire class definition in the interface file.
Since a programmer who is using the ADT class cannot use any of the private
members of the class, the private members will, in effect, still be hidden from
the programmer.

	 12.1  Separate Compilation	 705

Private members
are part of the
implementation.

Case Study DigitalTime —A Class Compiled Separately

Display 12.1 contains the interface file for an ADT class called DigitalTime.
DigitalTime is a class whose values are times of day, such as 9:30. Only the
public members of the class are part of the interface. The private members
are part of the implementation, even though they are in the interface file.
The label private: warns you that these private members are not part of the
public interface. Everything that a programmer needs to know in order to use
the ADT DigitalTime is explained in the comment at the start of the file and
in the comments in the public section of the class definition. This interface
tells the programmer how to use the two versions of the member function
named advance, the constructors, and the overloaded operators =, >>, and
<<. The member function named advance, the overloaded operators, and the
assignment statement are the only ways that a programmer can manipulate
objects and values of this class. As noted in the comment at the top of the
interface file, this ADT class uses 24-hour notation, so, for instance, 1:30 PM is
input and output as 13:30. This and the other details you must know in order
to effectively use the class DigitalTime are included in the comments given
with the member functions.

We have placed the interface in a file named dtime.h.The suffix .h
indicates that this is a header file. An interface file is always a header file
and therefore always ends with the suffix .h. Any program that uses the class
DigitalTime must contain an include directive like the following, which
names this file:

#include "dtime.h"

When you write an include directive, you must indicate whether the header
file is a predefined header file that is provided for you or is a header file
that you wrote. If the header file is predefined, write the header file name in
angular brackets, like <iostream>. If the header file is one that you wrote,
then write the header file name in quotes, like "dtime.h". This distinction
tells the compiler where to look for the header file. If the header file name is

706	 Chapter 12 /  Separate Compilation and Namespaces

ADT

A data type is called an abstract data type (abbreviated ADT) if the
programmers who use the type do not have access to the details of
how the values and operations are implemented. All the classes that
you define should be ADTs. An ADT class is a class that is defined
following good programming practices that separate the interface and
implementation of the class. (Any nonmember basic operations for the
class such as overloaded operators are considered part of the ADT, even
though they may not be officially part of the class definition.)

	 12.1  Separate Compilation	 707

For the definition of the types
istream and ostream, which
are used as parameter types

Display 12.1   Interface File for DigitalTime

 1 //Header file dtime.h: This is the INTERFACE for the class DigitalTime.
 2 //Values of this type are times of day. The values are input and output in
 3 //24-hour notation, as in 9:30 for 9:30 AM and 14:45 for 2:45 PM.
 4 #include <iostream>
 5 using namespace std;

 6 class DigitalTime
 7 {
 8 public:
 9 friend bool operator ==(const DigitalTime& time1, const DigitalTime& time2);
10 //Returns true if time1 and time2 represent the same time;
11 //otherwise, returns false.

12 DigitalTime(int the_hour, int the_minute);
13 //Precondition: 0 <= the_hour <= 23 and 0 <= the_minute <= 59.
14 //Initializes the time value to the_hour and the_minute.

15 DigitalTime();
16 //Initializes the time value to 0:00 (which is midnight).

17 void advance(int minutes_added);
18 //Precondition: The object has a time value.
19 //Postcondition: The time has been changed to minutes_added minutes later.

20 void advance(int hours_added, int minutes_added);
21 //Precondition: The object has a time value.
22 //Postcondition: The time value has been advanced
23 //hours_added hours plus minutes_added minutes.

24 friend istream& operator >>(istream& ins, DigitalTime& the_object);
25 //Overloads the >> operator for input values of type DigitalTime.
26 //Precondition: If ins is a file input stream, then ins has already been
27 //connected to a file.

28 friend ostream& operator <<(ostream& outs, const DigitalTime& the_object);
29 //Overloads the << operator for output values of type DigitalTime.
30 //Precondition: If outs is a file output stream, then outs has already been
31 //connected to a file.
32 private:
33 int hour;
34 int minute;
35 };

This is part of the implementation.
It is not part of the interface.
The word private indicates that
this is not part of the public interface.

}

in angular brackets, the compiler looks wherever the predefined header files
are kept in your implementation of C++. If the header file name is in quotes,
the compiler looks in the current directory or wherever programmer-defined
header files are kept on your system.

Any program that uses our DigitalTime class must contain the previous
include directive that names the header file dtime.h. That is enough to

allow you to compile the program but is not enough to allow you to run
the program. In order to run the program, you must write (and compile) the
definitions of the member functions and the overloaded operators. We have
placed these function and operator definitions in another file, which is called
the implementation file. Although it is not required by most compilers, it
is traditional to give the interface file and the implementation file the same
name. The two files do, however, end in different suffixes. We have placed the
interface for our ADT class in the file named dtime.h and the implementation
for our ADT class in a file named dtime.cpp. The suffix you use for the
implementation file depends on your version of C++. Use the same suffix
for the implementation file as you normally use for files that contain C++
programs. If your program files end in .cxx, then you would use .cxx in place
of .cpp. If your program files end in .CPP, then your implementation files will
end in .CPP instead of .cpp. We are using .cpp since most compilers accept .cpp
as the suffix for a C++ source code file. The implementation file for our
DigitalTime ADT class is given in Display 12.2. After we explain how the
various files for our ADT interact with each other, we will return to Display
12.2 and discuss the details of the definitions in this implementation file.

In order to use the ADT class DigitalTime in a program, the program
must contain the include directive

#include "dtime.h"

Notice that both the implementation file and the program file must contain
this include directive that names the interface file. The file that contains the
program (that is, the file that contains the main part of the program) is often
called the application file or driver file. Display 12.3 contains an application
file with a very simple program that uses and demonstrates the DigitalTime
ADT class.

The exact details on how you run this complete program, which is
contained in three files, depend on what system you are using. However,
the basic details are the same for all systems. You must compile the
implementation file, and you must compile the application file that contains
the main part of your program. You do not compile the interface file, which
in this example is the file dtime.h given in Display 12.1. You do not need
to compile the interface file because the compiler thinks the contents of this
interface file are already contained in each of the other two files. Recall that
both the implementation file and the application file contain the directive

#include "dtime.h"

Compiling your program automatically invokes a preprocessor that reads
this include directive and replaces it with the text in the file dtime.h. Thus,
the compiler sees the contents of dtime.h, and so the file dtime.h does not
need to be compiled separately. (In fact, the compiler sees the contents of
dtime.h twice: once when you compile the implementation file and once
when you compile the application file.) This copying of the file dtime.h is

708	 Chapter 12 /  Separate Compilation and Namespaces

Compiling and
running the
program

	 12.1  Separate Compilation	 709

Display 12.2   Implementation File for DigitalTime (part 1 of 3)

 1 //Implementation file dtime.cpp (Your system may require some
 2 //suffix other than .cpp): This is the IMPLEMENTATION of the ADT DigitalTime.
 3 //The interface for the class DigitalTime is in the header file dtime.h.
 4 #include <iostream>
 5 #include <cctype>
 6 #include <cstdlib>
 7 #include "dtime.h"
 8 using namespace std;

 9 //These FUNCTION DECLARATIONS are for use in the definition of
10 //the overloaded input operator >>:

11 void read_hour(istream& ins, int& the_hour);
12 //Precondition: Next input in the stream ins is a time in 24-hour notation,
13 //like 9:45 or 14:45.
14 //Postcondition: the_hour has been set to the hour part of the time.
15 //The colon has been discarded and the next input to be read is the minute.

16 void read_minute(istream& ins, int& the_minute);
17 //Reads the minute from the stream ins after read_hour has read the hour.

18 int digit_to_int(char c);
19 //Precondition: c is one of the digits '0' through '9'.
20 //Returns the integer for the digit; for example, digit_to_int('3') returns 3.

21 bool operator ==(const DigitalTime& time1, const DigitalTime& time2)
22 {
23 return (time1.hour == time2.hour && time1.minute == time2.minute);
24 }

25 //Uses iostream and cstdlib:
26 DigitalTime::DigitalTime(int the_hour, int the_minute)
27 {
28 if (the_hour< 0 || the_hour> 23 || the_minute< 0 || the_minute> 59)
29 {
30 cout<< "Illegal argument to DigitalTime constructor.";
31 exit(1);
32 }
33
34 else
35 {
36 hour = the_hour;
37 minute = the_minute;
38 }
39 }
40 DigitalTime::DigitalTime() : hour(0), minute(0)
41 {
42 //Body intentionally empty.
43 }
44

(continued)

710	 Chapter 12 /  Separate Compilation and Namespaces

Display 12.2   Implementation File for DigitalTime (part 2 of 3)

45 void DigitalTime::advance(int minutes_added)
46 {
47 int gross_minutes = minute + minutes_added;
48 minute = gross_minutes % 60;
49
50 int hour_adjustment = gross_minutes / 60;
51 hour = (hour + hour_adjustment) % 24;
52 }
53
54 void DigitalTime::advance(int hours_added, int minutes_added)
55 {
56 hour = (hour + hours_added) % 24;
57 advance(minutes_added);
58 }
59
60 //Uses iostream:
61 ostream& operator <<(ostream& outs, const DigitalTime& the_object)
62 {
63 outs << the_object.hour<< ':';
64 if (the_object.minute< 10)
65 outs << '0';
66 outs << the_object.minute;
67 return outs;
68 }
69
70 //Uses iostream:
71 istream& operator >>(istream& ins, DigitalTime& the_object)
72 {
73 read_hour(ins, the_object.hour);
74 read_minute(ins, the_object.minute);
75 return ins;
76 }
77
78 int digit_to_int(char c)
79 {
80 return (static_cast <int>(c) - static_cast<int>('0'));
81 }
82
83 //Uses iostream, cctype, and cstdlib:
84 void read_minute(istream& ins, int& the_minute)
85 {
86 char c1, c2;
87 ins >> c1 >> c2;
88
89 if (!(isdigit(c1) && isdigit(c2)))

(continued)

	 12.1  Separate Compilation	 711

Display 12.2   Implementation File for DigitalTime (part 3 of 3)

90 {
91 cout<< "Error illegal input to read_minute\n";
92 exit(1);
93 }
94
95 the_minute = (digit_to_int(c1) * 10) + digit_to_int(c2);
96
97 if (the_minute< 0 || the_minute> 59)
98 {
99 cout<< "Error illegal input to read_minute\n";
100 exit(1);
101 }
102 }
103
104 //Uses iostream, cctype, and cstdlib:
105 void read_hour(istream& ins, int& the_hour)
106 {
107 char c1, c2;
108 ins >> c1 >> c2;
109 if (!(isdigit(c1) && (isdigit(c2) || c2 == ':')))
110 {
111 cout<< "Error illegal input to read_hour\n";
112 exit(1);
113 }
114
115 if (isdigit(c1) && c2 == ':')
116 {
117 the_hour = digit_to_int(c1);
118 }
119 else//(isdigit(c1) && isdigit(c2))
120 {
121 the_hour = (digit_to_int(c1) * 10) + digit_to_int(c2);
122 ins >> c2;//discard ':'
123 if (c2 != ':')
124 {
125 cout<< "Error illegal input to read_hour\n";
126 exit(1);
127 }
128 }
129 if (the_hour < 0 || the_hour > 23)
130 {
131 cout<< "Error illegal input to read_hour\n";
132 exit(1);
133 }
134 }

712	 Chapter 12 /  Separate Compilation and Namespaces

Display 12.3   Application File Using DigitalTime

 1 //Application file timedemo.cpp (your system may require some suffix
 2 //other than .cpp): This program demonstrates use of the class DigitalTime.
 3 #include <iostream>
 4 #include "dtime.h"
 5 using namespace std;
 6
 7 int main()
 8 {
 9 DigitalTime clock, old_clock;
10
11 cout<< "Enter the time in 24-hour notation: ";
12 cin>> clock;
13
14 old_clock = clock;
15 clock.advance(15);
16 if (clock == old_clock)
17 cout << "Something is wrong.";
18 cout << "You entered " << old_clock << endl;
19 cout << "15 minutes later the time will be "
20 << clock << endl;
21
22 clock.advance(2, 15);
23 cout << "2 hours and 15 minutes after that\n"
24 << "the time will be "
25 << clock << endl;
26
27 return 0;
28 }

Sample Dialogue

Enter the time in 24-hour notation: 11:15

You entered 11:15

15 minutes later the time will be 11:30

2 hours and 15 minutes after that

the time will be 13:45

only a conceptual copying. The compiler acts as if the contents of dtime.h
were copied into each file that has the include directive. However, if you look
in that file after it is compiled, you will only find the include directive; you
will not find the contents of the file dtime.h.

Once the implementation file and the application file are compiled, you
still need to connect these files so that they can work together. This is called

	 12.1  Separate Compilation	 713

linking the files and is done by a separate utility called a linker. The details
for how you call the linker depend on what system you are using. After
the files are linked, you can run your program. (Often the linking is done
automatically as part of the process of running the program.)

This process sounds complicated, but many systems have facilities that
manage much of this detail for you automatically or semiautomatically. On
any system, the details quickly become routine.

Displays 12.1, 12.2, and 12.3 contain one complete program divided
into pieces and placed in three different files. You could instead combine the
contents of these three files into one file and then compile and run this one
file without all this fuss about include directives and linking separate files.
Why bother with three separate files? There are several advantages to dividing
your program into separate files. Since you have the definition and the
implementation of the class DigitalTime in files separate from the application
file, you can use this class in many different programs without needing to
rewrite the definition of the class in each of the programs. Moreover, you need
to compile the implementation file only once, no matter how many programs
use the class DigitalTime. But there are more advantages than that. Since you
have separated the interface from the implementation of your DigitalTime
ADT class, you can change the implementation file and will not need to
change any program that uses the ADT. In fact, you will not even need to
recompile the program. If you change the implementation file, you only need
to recompile the implementation file and to relink the files. Saving a bit of
recompiling time is nice, but the big advantage is not having to rewrite code.
You can use the ADT class in many programs without writing the class code
into each program. You can change the implementation of the ADT class and
you need not rewrite any part of any program that uses the class.

Why separate
files?

Defining a Class in Separate Files: A Summary

You can define a class and place the definition of the class and the
implementation of its member functions in separate files. You can then
compile the class separately from any program that uses the class, and
you can use this same class in any number of different programs. The
class and the program that uses the class are placed in three files as
follows:

1.	 Put the definition of the class in a header file called the interface file.
The name of this header file ends in .h. The interface file also contains the
declarations for any functions and overloaded operators that define basic
operations for the class but that are not listed in the class definition. Include
comments that explain how all these functions and operators are used.

(continued)

714	 Chapter 12 /  Separate Compilation and Namespaces

Now that we have explained how the various files in our ADT class and
program are used, let’s discuss the implementation of our ADT class (Display
12.2) in more detail. Most of the implementation details are straightforward,
but there are two things that merit comment. Notice that the member function
name advance is overloaded so that it has two function definitions. Also
notice that the definition for the overloaded extraction (input) operator >>
uses two “helping functions” called read_hour and read_minute and these
two helping functions themselves use a third helping function called digit_
to_int. Let’s discuss these points.

The class DigitalTime (Displays 12.1 and 12.2) has two member
functions called advance. One version takes a single argument, which is an
integer giving the number of minutes to advance the time. The other version
takes two arguments, one for a number of hours and one for a number of
minutes, and advances the time by that number of hours plus that number of
minutes. Notice that the definition of the two-argument version of advance
includes a call to the one-argument version of advance. Look at the definition
of the two-argument version that is given in Display 12.2. First the time is

2.	 The definitions of all the functions and overloaded operators mentioned in
step 1 (whether they are members or friends or neither) are placed in another
file called the implementation file. This file must contain an include direc-
tive that names the interface file described above. This include directive uses
quotes around the file name, as in the following example:

#include "dtime.h"

	 The interface file and the implementation file traditionally have the same
name, but end in different suffixes. The interface file ends in .h. The imple-
mentation file ends in the same suffix that you use for files that contain a
complete C++ program. The implementation file is compiled separately
before it is used in any program.

3.	 When you want to use the class in a program, place the main part of the
program (and any additional function definitions, constant declarations, and
so on) in another file called an application file. This file also must contain an
include directive naming the interface file, as in the following example:

#include "dtime.h"

	 The application file is compiled separately from the implementation file. You
can write any number of these application files to use with one pair of inter-
face and implementation files. To run an entire program, you must first link
the object code that is produced by compiling the application file and the
object code that is produced by compiling the implementation file. (On some
systems the linking may be done automatically or semiautomatically.)

Implementation
details

	 12.1  Separate Compilation	 715

Using #ifndef

We have given you a method for placing a program in three files: two for the
interface and implementation of a class, and one for the application part of the
program. A program can be kept in more than three files. For example, a program
might use several classes, and each class might be kept in a separate pair of files.

advanced by hours_added hours, and then the single-argument version of
advance is used to advance the time by an additional minutes_added minutes.
At first this may seem strange, but it is perfectly legal. The two functions
named advance are two different functions that, as far as the compiler
is concerned, coincidentally happen to have the same name. The situation
is no different in this regard than it would be if one of the two versions of the
overloaded function advance had been called another_advance.

Now let’s discuss the helping functions. The helping functions read_hour
and read_minute read the input one character at a time and then convert
the input to integer values that are placed in the member variables hour and
minute. The functions read_hour and read_minute read the hour and minute
one digit at a time, so they are reading values of type char. This is more
complicated than reading the input as int values, but it allows us to perform
error checking to see whether the input is correctly formed and to issue an
error message if the input is not well formed. These helping functions read_
hour and read_minute use another helping function named digit_to_int,
which is the same as the digit_to_int function we used in our definition of
the class Money in Displays 11.3. The function digit_to_int converts a digit,
such as '3', to a number, such as 3.

Reusable Components

An ADT class developed and coded into separate files is a software
component that can be used again and again in a number of different
programs. Reusability, such as the reusability of these ADT classes, is
an important goal to strive for when designing software components.
A reusable component saves effort because it does not need to be
redesigned, recoded, and retested for every application. A reusable
component is also likely to be more reliable than a component that is
used only once—for two reasons. First, you can afford to spend more
time and effort on a component if it will be used many times. Second,
if the component is used again and again, it is tested again and again.
Every use of a software component is a test of that component. Using
a software component many times in a variety of contexts is one of the
best ways to discover any remaining bugs in the software.

Avoiding Multiple
Definitions

VideoNote

716	 Chapter 12 /  Separate Compilation and Namespaces

Suppose you have a program spread across a number of files and more than one
file has an include directive for a class interface file such as the following:

#include "dtime.h"

Under these circumstances, you can have files that include other files, and
these other files may in turn include yet other files. This can easily lead to a
situation in which a file, in effect, contains the definitions in dtime.h more
than once. C++ does not allow you to define a class more than once, even if the
repeated definitions are identical. Moreover, if you are using the same header
file in many different projects, it becomes close to impossible to keep track
of whether you included the class definition more than once. To avoid this
problem, C++ provides a way of marking a section of code to say “if you have
already included this stuff once before, do not include it again.” The way this
is done is quite intuitive, although the notation may look a bit weird until you
get used to it. We will go through an example, explaining the details as we go.

The following directive “defines” DTIME_H:

#define DTIME_H

What this means is that the compiler’s preprocessor puts DTIME_H on a list to
indicate that DTIME_H has been seen. Defines is perhaps not the best word for
this, since DTIME_H is not defined to mean anything but is merely put on a
list. The important point is that you can use another directive to test whether
or not DTIME_H has been defined and so test whether or not a section of code
has already been processed. You can use any (nonkeyword) identifier in place
of DTIME_H, but you will see that there are standard conventions for which
identifier you should use.

The following directive tests to see whether or not DTIME_H has been
defined:

#ifndef DTIME_H

If DTIME_H has already been defined, then everything between this directive
and the first occurrence of the following directive is skipped:

#endif

(An equivalent way to state this, which may clarify the way the directives
are spelled, is the following: If DTIME_H is not defined, then the compiler
processes everything up to the next #endif. That not is why there is an n in
#ifndef. This may lead you to wonder whether there is a #ifdef directive as
well as a #ifndef directive. There is, and it has the obvious meaning, but we
will have no occasion to use #ifdef.

Now consider the following code:

#ifndef DTIME_H
#define DTIME_H
<a class definition>
#endif

	 12.1  Separate Compilation	 717

If this code is in a file named dtime.h, then no matter how many times your
program contains

#include "dtime.h"

the class will be defined only one time.
The first time

#include "dtime.h"

is processed, the flag DTIME_H is defined and the class is defined. Now, suppose
the compiler again encounters

#include "dtime.h"

When the include directive is processed this second time, the directive

#ifndef DTIME_H

says to skip everything up to

#endif

and so the class is not defined again.
In Display 12.4 we have rewritten the header file dtime.h shown in Display

12.1, but this time we used these directives to prevent multiple definitions.
With the version of dtime.h shown in Display 12.4, if a file contains the
following include directive more than once, the class DigitalTime will still be
defined only once:

#include "dtime.h"

Display 12.4   Avoiding Multiple Definitions of a Class

 1 //Header file dtime.h: This is the INTERFACE for the class DigitalTime.
 2 //Values of this type are times of day. The values are input and output in
 3 //24-hour notation, as in 9:30 for 9:30 AM and 14:45 for 2:45 PM.

 4 #ifndef DTIME_H
 5 #define DTIME_H

 6 #include <iostream>
 7 using namespace std;

 8 class DigitalTime
 9 {
10

 <The definition of the class DigitalTime is the same as in Display 12.1.>

11
12 };
13
14 #endif//DTIME_H

718	 Chapter 12 /  Separate Compilation and Namespaces

You may use some other identifier in place of DTIME_H, but the normal
convention is to use the name of the file written in all uppercase letters with
the underscore used in place of the period. You should follow this convention
so that others can more easily read your code and so that you do not have to
remember the flag name. This way the flag name is determined automatically
and there is nothing arbitrary to remember.

These same directives can be used to skip over code in files other than
header files, but we will not have occasion to use these directives except in
header files.

■ P rogramming Tip  Defining Other Libraries

You need not define a class in order to use separate compilation. If you have a
collection of related functions that you want to make into a library of your own
design, you can place the function declarations and accompanying comments in
a header file and the function definitions in an implementation file, just as we
outlined for ADT classes. After that, you can use this library in your programs the
same way you would use a class that you placed in separate files.	 ■

Self-Test Exercises

	  1.	 Suppose that you are defining an ADT class and that you then use this
class in a program. You want to separate the class and program parts into
separate files as described in this chapter. Specify whether each of the
following should be placed in the interface file, implementation file, or
application file:

a.	 The class definition

b.	� The declaration for a function that is to serve as an ADT operation,
but that is neither a member nor a friend of the class

c.	� The declaration for an overloaded operator that is to serve as an ADT
operation, but that is neither a member nor a friend of the class

d.	� The definition for a function that is to serve as an ADT operation, but
that is neither a member nor a friend of the class

e.	� The definition for a friend function that is to serve as an ADT
operation

f.	 The definition for a member function

g.	� The definition for an overloaded operator that is to serve as an ADT
operation, but that is neither a member nor a friend of the class

h.	� The definition for an overloaded operator that is to serve as an ADT
operation and that is a friend of the class

i.	 The main part of your program

	 12.2  Namespaces	 719

	  2.	 Which of the following files has a name that ends in .h: the interface file
for a class, the implementation file for the class, or the application file
that uses the class?

	  3.	 When you define a class in separate files, there is an interface file and an
implementation file. Which of these files needs to be compiled? (Both?
Neither? Only one? If so, which one?)

	  4.	 Suppose you define a class in separate files and use the class in a program.
Now suppose you change the class implementation file. Which of the
following files, if any, need to be recompiled: the interface file, the
implementation file, or the application file?

	  5.	 Suppose you want to change the implementation of the class DigitalTime
given in Displays 12.1 and 12.2. Specifically, you want to change the way
the time is recorded. Instead of using the two private variables hour and
minute, you want to use a single (private) int variable, which will be
called minutes. In this new implementation, the private variable minutes
will record the time as the number of minutes since the time 0:00 (that
is, since midnight). So 1:30 is recorded as 90 minutes, since it is 90
minutes past midnight. Describe how you need to change the interface
and implementation files shown in Displays 12.1 and 12.2. You need not
write out the files in their entirety; just indicate what items you need to
change and how, in a very general way, you would change them.

	  6.	 What is the difference between an ADT you define in C++ and a class you
define in C++?

12.2  Namespaces

What’s in a name? That which we call a rose
By any other name would smell as sweet.

William Shakespeare, Romeo and Juliet

When a program uses different classes and functions written by different
programmers, there is a possibility that two programmers will use the same
name for two different things. Namespaces are a way to deal with this problem.
A namespace is a collection of name definitions, such as class definitions and
variable declarations.

Namespaces and using Directives

We have already been using the namespace that is named std. The std
namespace contains all the names defined in the standard library files (such

720	 Chapter 12 /  Separate Compilation and Namespaces

as iostream and cstdlib) that you use. For example, when you place the
following at the start of a file,

#include <iostream>

that places all of the name definitions (for names like cin and cout) into
the std namespace. Your program does not know about names in the std
namespace unless you specify that it is using the std namespace. So far, the
only way we know how to specify the std namespace (or any namespace) is
with the following sort of using directive:

using namespace std;

A good way to see why you might want to include this using directive is
to think about why you might want to not include it. If you do not include this
using directive for the namespace std, then you can define cin and cout to
have some meaning other than their standard meaning. (Perhaps you want to
redefine cin and cout because you want them to behave a bit differently from
the standard versions.) Their standard meaning is in the std namespace, and
without the using directive (or something like it), your code knows nothing
about the std namespace, and therefore, as far as your code is concerned, the
only definitions of cin and cout are whatever definitions you give them.

Every bit of code you write is in some namespace. If you do not place the
code in some specific namespace, then the code is in a namespace known as
the global namespace. So far, we have not placed any code we wrote in any
namespace, so all of our code has been in the global namespace. The global
namespace does not have a using directive because you are always using the
global namespace. You could say that there is always an implicit automatic
using directive that says you are using the global namespace.

Note that you can be using more than one namespace at the same
time. For example, we are always using the global namespace and we are
usually using the std namespace. What happens if a name is defined in two
namespaces and you are using both namespaces? This results in an error
(either a compiler error or a run-time error, depending on the exact details).
You can have the same name defined in two different namespaces, but if that
is true, then you can only use one of those namespaces at a time.1 However,
this does not mean you cannot use the two namespaces in the same program.
You can use them each at different times in the same program.

For example, suppose ns1 and ns2 are two namespaces, and suppose
my_function is a void function with no arguments that is defined in both
namespaces but defined in different ways in the two namespaces. The
following is then legal:

1As you will see later in this chapter, there are ways to use two namespaces at the same
time even if they contain the same name, but that is a subtle point that does not yet
concern us.

	 12.2  Namespaces	 721

Creating a Namespace

In order to place some code in a namespace, you simply place it in a
namespace grouping of the following form:

namespace Name_Space_Name
{
 Some_Code
}

When you include one of these groupings in your code, you are said to place
the names defined in Some_Code into the namespace Name_Space_Name. These

{
 using namespace ns1;
 my_function();
}
{
 using namespace ns2;
 my_function();
}

The first invocation would use the definition of my_function given in the
namespace ns1, and the second invocation would use the definition of my_
function given in the namespace ns2.

Recall that a block is a list of statements, declarations, and possibly other
code, enclosed in braces {}. A using directive at the start of a block applies
only to that block. So the first using directive applies only in the first block,
and the second using directive applies only in the second block. The usual
way of phrasing this is to say that the scope of the ns1 namespace is the first
block, while the scope of the ns2 namespace is the second block. Note that
because of this scope rule, we are able to use two conflicting namespaces
in the same program (such as in a program that contains the two blocks we
discussed in the previous paragraph).

When you use a using directive in a block, it is typically the block
consisting of the body of a function definition. If you place a using directive
at the start of a file (as we have usually done so far), then the using directive
applies to the entire file. A using directive should normally be placed near
the start of a file or the start of a block.

Scope Rule for using Directives

The scope of a using directive is the block in which it appears (more
precisely, from the location of the using directives to the end of the
block). If the using directive is outside of all blocks, then it applies to all
of the file that follows the using directive.

722	 Chapter 12 /  Separate Compilation and Namespaces

names (really the definitions of these names) can be made available with the
using directive:

using namespace Name_Space_Name;

For example, the following, taken from Display 12.5, places a function
declaration in the namespace savitch1:

namespace savitch1
{
 void greeting();
}

If you look again at Display 12.5, you see that the definition of the function
greeting is also placed in namespace savitch1. That is done with the
following additional namespace grouping:

namespace savitch1
{
 void greeting()
 {
 cout << "Hello from namespace savitch1.\n";
 }
}

Note that you can have any number of these namespace groupings for a single
namespace. In Display 12.5, we used two namespace groupings for namespace
savitch1 and two other groupings for namespace savitch2.

Every name defined in a namespace is available inside the namespace
grouping, but the names can be also be made available to code outside
of the namespace. That function declaration and function definition in the
namespace savitch1 can be made available with the using directive:

using namespace savitch1

as illustrated in Display 12.5.

Display 12.5   Namespace Demonstration (part 1 of 2)

 1 #include <iostream>
 2 using namespace std;
 3
 4 namespace savitch1
 5 {
 6 void greeting();
 7 }
 8
 9 namespace savitch2
10 {
11 void greeting();
12 }

(continued)

	 12.2  Namespaces	 723

Display 12.5   Namespace Demonstration (part 2 of 2)

13
14 void big_greeting();
15
16 int main()
17 {
18 {
19 using namespace savitch2;
20 greeting();
21 }
22
23 {
24 using namespace savitch1;
25 greeting();
26 }
27
28 big_greeting();
29
30 return 0;
31 }
32
33 namespace savitch1
34 {
35 void greeting()
36 {
37 cout << "Hello from namespace savitch1.\n";
38 }
39 }
40
41 namespace savitch2
42 {
43 void greeting()
44 {
45 cout<< "Greetings from namespace savitch2.\n";
46 }
47 }
48
49 void big_greeting()
50 {
51 cout<< "A Big Global Hello!\n";
52 }

Sample Dialogue

Greetings from namespace savitch2.

Hello from namespace savitch1.

A Big Global Hello!

Names in this block use
definitions in namespaces
savitch2, std, and the
global namespace.

Names in this block use
definitions in namespaces
savitch1, std, and the
global namespace.

Names out here use only definitions
in namespace std and the
global namespace.

724	 Chapter 12 /  Separate Compilation and Namespaces

Self-Test Exercises

	  7.	 Consider the program shown in Display 12.5. Could we use the name
greeting in place of big_greeting?

	  8.	 In Self-Test Exercise 7, we saw that you could not add a definition for the
following function (to the global namespace):

void greeting();

Can you add a definition for the following function declaration to the
global namespace?

void greeting(int how_many);

	  9.	 Can a namespace have more than one namespace grouping?

Qualifying Names

Suppose you are faced with the following situation: You have two namespaces, ns1
and ns2. You want to use the function fun1 defined in ns1 and the function fun2
defined in namespace ns2. The complication is that both ns1 and ns2 define a
function my_function. (Assume all functions in this discussion take no arguments,
so overloading does not apply.) It would not be a good idea to use the following:

using namespace ns1;
using namespace ns2;

This would provide conflicting definitions for my_function.
What you need is a way to say you are using fun1 in namespace ns1 and

fun2 in namespace ns2 and nothing else in the namespaces ns1 and ns2. The
following are called using declarations, and they are your answer:

using ns1::fun1;
using ns2::fun2;

A using declaration of the form

using Name_Space::One_Name

makes (the definition of ) the name One_Name from the namespace Name_
Space available, but does not make any other names in Name_Space available.

Note that you have seen the scope resolution operator, ::, before. For
example, in Display 12.2 we had the following function definition:

void DigitalTime::advance(int hours_added, int minutes_added)
{
 hour = (hour + hours_added) % 24;
 advance(minutes_added);
}

	 12.2  Namespaces	 725

In this case the :: means that we are defining the function advance for the
class DigitalTime, as opposed to any other function named advance in any
other class. Similarly,

using ns1::fun1;

means we are using the function named fun1 as defined in the namespace
ns1, as opposed to any other definition of fun1 in any other namespace.

Now suppose that you intend to use the name fun1 as defined in the
namespace ns1, but you intend to use it only one time (or a small number of
times). You can then name the function (or other item) using the name of the
namespace and the scope resolution operator as in the following:

ns1::fun1();

This form is often used when specifying a parameter type. For example,
consider

int get_number(std::istream input_stream)
. . .

In the function get_number, the parameter input_stream is of type istream,
where istream is defined as in the std namespace. If this use of the type name
istream is the only name you need from the std namespace (or if all the
names you need are similarly qualified with std::), then you do not need

using namespace std;

A Subtle Point About Namespaces (Optional)

There are two differences between a using declaration, such as

using std::cout;

and a using directive, such as

using namespace std;

The differences are as follows:

	  1.	A using declaration (like using std::cout;) makes only one name in
the namespace available to your code, while a using directive (like using
namespace std;) makes all the names in a namespace available.

	  2.	A using declaration introduces a name (like cout) into your code so that
no other use of the name can be made. However, a using directive only
potentially introduces the names in the namespace.

Point 1 is pretty obvious. Point 2 has some subtleties. For example, suppose
the namespaces ns1 and ns2 both provide definitions for my_function but
have no other name conflicts. Then the following will produce no problems:

726	 Chapter 12 /  Separate Compilation and Namespaces

using namespace ns1;
using namespace ns2;

provided that (within the scope of these directives) the conflicting name
my_function is never used in your code. On the other hand, the following is
illegal, even if the function my_function is never used:

using ns1::my_function;
using ns2::my_function;

Sometimes this subtle point can be important, but it does not impinge on
most routine code.

Self-Test Exercises

	10.	 Write the function declaration for a void function named wow. The
function wow has two parameters, the first of type speed as defined in
the speedway namespace and the second of type speed as defined in the
indy500 namespace.

	11.	 Consider the following function declarations from the definition of the
class Money in Display 11.4.

void input(istream& ins);
void output(ostream& outs) const;

Rewrite these function declarations so that they do not need to be
preceded by

using namespace std;

(You do not need to look back at Display 11.4 to do this.)

Unnamed Namespaces

Our definition of the class DigitalTime in Displays 12.1 and 12.2 used
three helping functions: digit_to_int, read_hour, and read_minute. These
helping functions are part of the implementation for the ADT class
DigitalTime, so we placed their definitions in the implementation file
(Display 12.2). However, this does not really hide these three functions. We
would like these functions to be local to the implementation file for the class
DigitalTime. However, as we have done it, they are not. In particular, we
cannot define another function with the name digit_to_int (or read_hour
or read_minute) in an application program that uses the class DigitalTime.
This violates the principle of information hiding. To truly hide these helping
functions and make them local to the implementation file for DigitalTime,
we need to place them in a special namespace called the unnamed namespace.

	 12.2  Namespaces	 727

A compilation unit is a file, such as a class implementation file, along
with all the files that are #included in the file, such as the interface header
file for the class. Every compilation unit has an unnamed namespace. A
namespace grouping for the unnamed namespace is written in the same way
as any other namespace, but no name is given, as in the following example:

namespace
{
 void sample_function()
 .
 .
 .
} //unnamed namespace

All the names defined in the unnamed namespace are local to the
compilation unit, and thus the names can be reused for something else
outside the compilation unit. For example, Displays 12.6 and 12.7 show a
rewritten (and our final) version of the interface and implementation file for
the class DigitalTime. Note that the helping functions (read_hour, read_
minute, and digit_to_int) are all in the unnamed namespace and therefore
are local to the compilation unit. As illustrated in Display 12.8, the names
in the unnamed namespace can be reused for something else outside the
compilation unit. In Display 12.8 the function name read_hour is reused for
another different function in the application program.

Display 12.6   Placing a Class in a Namespace—Header File

 1 //Header file dtime.h: This is the interface for the class DigitalTime.
 2 //Values of this type are times of day. The values are input and output in
 3 //24-hour notation, as in 9:30 for 9:30 AM and 14:45 for 2:45 PM.
 4
 5 #ifndef DTIME_H
 6 #define DTIME_H
 7
 8 #include <iostream>
 9 using namespace std;
10
11 namespace dtimesavitch
12 {
13
14 class DigitalTime
15 {
16
 <The definition of the class DigitalTime is the same as in Display 12.1.>
17 };
18 }//end dtimesavitch
19
20 #endif //DTIME_H

One grouping for the namespace dtimesavitch.
Another grouping for the namespace dtimesavitch
is in the implementation file dtime.cpp.

728	 Chapter 12 /  Separate Compilation and Namespaces

Display 12.7   Placing a Class in a Namespace—Implementation File (part 1 of 2)

 1 //Implementation file dtime.cpp (your system may require some
 2 //suffix other than .cpp): This is the IMPLEMENTATION of the ADT DigitalTime.
 3 //The interface for the class DigitalTime is in the header file dtime.h.
 4 #include <iostream>
 5 #include <cctype>
 6 #include <cstdlib>
 7 #include "dtime.h"
 8 using namespace std;
 9
10 namespace
11 {
12 //These function declarations are for use in the definition of
13 //the overloaded input operator >>:
14
15 void read_hour(istream& ins, int& the_hour);
16 //Precondition: Next input in the stream ins is a time in 24-hour notation,
17 //like 9:45 or 14:45.
18 //Postcondition: the_hour has been set to the hour part of the time.
19 //The colon has been discarded and the next input to be read is the minute.
20
21 void read_minute(istream& ins, int& the_minute);
22 //Reads the minute from the stream ins after read_hour has read the hour.
23
24 int digit_to_int(char c);
25 //Precondition: c is one of the digits '0' through '9'.
26 //Returns the integer for the digit; for example, digit_to_int('3')
27 //returns 3.
28 }//unnamed namespace
29
30
31 namespace dtimesavitch
32 {
33 bool operator ==(const DigitalTime& time1, const DigitalTime& time2)
 <The rest of the definition of == is the same as in Display 12.2.>
34
35 DigitalTime::DigitalTime()
 <The rest of the definition of this constructor is the same as in Display 12.2.>
36
37 DigitalTime::DigitalTime(int the_hour, int the_minute)
 <The rest of the definition of this constructor is the same as in Display 12.2.>
38 void DigitalTime::advance(int minutes_added)
 <The rest of the definition of this advance function is the same as in Display 12.2.>
39
40 void DigitalTime::advance(int hours_added, int minutes_added)
 <The rest of the definition of this advance function is the same as in Display 12.2.>
41

(continued)

One grouping for the unnamed
namespace

One grouping for the namespace dtimesavitch.
Another grouping is in the file dtime.h.

Display 12.7   Placing a Class in a Namespace—Implementation File (part 2 of 2)

42 ostream& operator <<(ostream& outs, const DigitalTime& the_object)
 <The rest of the definition of << is the same as in Display 12.2.>
43
44 //Uses iostream and functions in the unnamed namespace:
45 istream& operator >>(istream& ins, DigitalTime& the_object)
46 {
47 read_hour(ins, the_object.hour);
48 read_minute(ins, the_object.minute);
49 return ins;
50 }
51 } //dtimesavitch
52
53
54 namespace
55 {
56 int digit_to_int(char c)
 <The rest of the definition of digit_to_int is the same as in Display 12.2.>
57
58 void read_minute(istream& ins, int& the_minute)
 <The rest of the definition of read_minute is the same as in Display 12.2.>
59
60 void read_hour(istream& ins, int& the_hour)
 <The rest of the definition of read_hour is the same as in Display 12.2.>
61
62 }//unnamed namespace

Functions defined in the unnamed
namespace are local to this com-
pilation unit (this file and included
files). They can be used anywhere
in this file, but have no meaning
outside this compilation unit.

Another grouping for the
unnamed namespace.

	 12.2  Namespaces	 729

If you look again at the implementation file in Display 12.8, you will see
that the helping functions digit_to_int, read_hour, and read_minute are
used outside the unnamed namespace without any namespace qualifier. Any
name defined in the unnamed namespace can be used without qualification
anywhere in the compilation unit. (Of course, this needed to be so, since the
unnamed namespace has no name to use for qualifying its names.)

It is interesting to note how unnamed namespaces interact with the C++
rule that you cannot have two definitions of a name (in the same namespace).
There is one unnamed namespace in each compilation unit. It is easily possible
for compilation units to overlap. For example, both the implementation file
for a class and an application program using the class would normally include
the header file (interface file) for the class. Thus, the header file is in two
compilation units and hence participates in two unnamed namespaces. As
dangerous as this sounds, it will normally produce no problems as long as
each compilation unit’s namespace makes sense when considered by itself.
For example, if a name is defined in the unnamed namespace in the header
file, it cannot be defined again in the unnamed namespace in either the
implementation file or the application file. So, a name conflict is avoided.

730	 Chapter 12 /  Separate Compilation and Namespaces

Display 12.8   Placing a Class in a Namespace—Application Program (part 1 of 2)

 1 //This is the application file: timedemo.cpp. This program
 2 //demonstrates hiding the helping functions in an unnamed namespace.
 3
 4 #include <iostream>
 5 #include "dtime.h"
 6
 7 void read_hour(int& the_hour);
 8
 9 int main()
10 {
11 using namespace std;
12
13 using namespace dtimesavitch;
14
15 int the_hour;
16 read_hour(the_hour);
17
18 DigitalTime clock(the_hour, 0), old_clock;
19
20 old_clock = clock;
21 clock.advance(15);
22 if (clock == old_clock)
23 cout << "Something is wrong.";
24 cout << "You entered " << old_clock << endl;
25 cout << "15 minutes later, the time will be "
26 << clock; << endl;
27
28 clock.advance(2, 15);
29 cout << "2 hours and 15 minutes after that\n"
30 << "the time will be "
31 << clock; << endl;
32
33 return 0;
34 }
35 void read_hour(int& the_hour)
36 {
37 using namespace std;
38
39 cout << "Let's play a time game.\n"
40 << "Let's pretend the hour has just changed.\n"
41 << "You may write midnight as either 0 or 24,\n"
42 << "but I will always write it as 0.\n"
43 << "Enter the hour as a number (0 to 24): ";
44 cin >> the_hour;
45 if (the_hour == 24)
46 the_hour = 0;
47 }

(continued)

This is a different function
read_hour than the one in the
implementation file dtime.cpp
(shown in Display 12.7).

If you place the using directives
here, then the program behavior
will be the same.

	 12.2  Namespaces	 731

■ P rogramming Tip  Choosing a Name for a Namespace

It is a good idea to include your last name or some other unique string in the
names of your namespaces so as to reduce the chance that somebody else will
use the same namespace name as you do. With multiple programmers writing
code for the same project, it is important that namespaces that are meant to be
distinct really do have distinct names. Otherwise, you can easily have multiple
definitions of the same names in the same scope. That is why we included
the name savitch in the namespace dtimesavitch in Display 12.7.	 ■

Unnamed Namespace

You can use the unnamed namespace to make a definition local to a
compilation unit (that is, to a file and its included files). Each compilation
unit has one unnamed namespace. All the identifiers defined in the
unnamed namespace are local to the compilation unit. You place a
definition in the unnamed namespace by placing it in a namespace
grouping with no namespace name, as shown in the following:

namespace
{
 Definition_1
 Definition_2
 .
 .
 .
 Definition_Last
}

You can use any name in the unnamed namespace without a qualifier anyplace
in the compilation unit. See Displays 12.6 and 12.7 for a complete example.

Display 12.8   Placing a Class in a Namespace—Application Program (part 2 of 2)

Sample Dialogue

Let's play a time game.

Let's pretend the hour has just changed.

You may write midnight as either 0 or 24,

but I will always write it as 0.

Enter the hour as a number (0 to 24): 11

You entered 11:00

15 minutes later the time will be 11:15

2 hours and 15 minutes after that

the time will be 13:30

732	 Chapter 12 /  Separate Compilation and Namespaces

Pitfall  �Confusing the Global Namespace and
the Unnamed Namespace

Do not confuse the global namespace with the unnamed namespace. If you
do not put a name definition in a namespace grouping, then it is in the global
namespace. To put a name definition in the unnamed namespace, you must
put it in a namespace grouping that starts as follows, without a name:

namespace
{

Both names in the global namespace and names in the unnamed namespace
may be accessed without a qualifier. However, names in the global namespace
have global scope (all the program files), while names in an unnamed
namespace are local to a compilation unit.

This confusion between the global namespace and the unnamed name-
space does not arise very much in writing code, since there is a tendency to
think of names in the global namespace as being “in no namespace,” even
though that is not technically correct. However, the confusion can easily arise
when discussing code.	 ■

Self-Test Exercises

	12.	 Would the program in Display 12.8 behave any differently if you replaced
the using directive

using namespace dtimesavitch;

with the following using declaration?

using dtimesavitch::DigitalTime;

	13.	 What is the output produced by the following program?

#include <iostream>
using namespace std;

namespace sally
{
 void message();
}

namespace
{
 void message();
}

int main()
{
 {
 message();

	 Chapter Summary	 733

 using sally::message;
 message();
 }

 message();
 return 0;
}
namespace sally
{
 void message()
 {
 cout << "Hello from Sally.\n";
 }
}
namespace
{
 void message()
 {
 cout << "Hello from unnamed.\n";
 }
}

	14.	 In Display 12.7 there are two groupings for the unnamed namespace: one
for the helping function declarations and one for the helping function
definitions. Can we eliminate the grouping for the helping function
declarations? If so, how can we do it?

Chapter Summary

■	 In C++, abstract data types (ADTs) are implemented as classes with all mem-
ber variables private and with the operations implemented as public mem-
ber and nonmember functions and overloaded operators.

■	 You can define an ADT as a class and place the definition of the class and
the implementation of its member functions in separate files. You can then
compile the ADT class separately from any program that uses it and you can
use this same ADT class in any number of different programs.

■	A namespace is a collection of name definitions, such as class definitions
and variable declarations.

■	 There are three ways to use a name from a namespace: by making all the
names in the namespace available with a using directive, by making the sin-
gle name available by a using declaration for the one name, or by qualifying
the name with the name of the namespace and the scope resolution operator.

■	 You place a definition in a namespace by placing it in a namespace grouping
for that namespace.

■	 The unnamed namespace can be used to make a name definition local to a
compilation unit.

734	 Chapter 12 /  Separate Compilation and Namespaces

Answers to Self-Test Exercises

	  1.	P arts (a), (b), and (c) go in the interface file; parts (d) through (h) go in
the implementation file. (All the definitions of ADT operations of any sort
go in the implementation file.) Part (i) (that is, the main part of your pro-
gram) goes in the application file.

	  2.	 The name of the interface file ends in .h.

	  3.	 Only the implementation file needs to be compiled. The interface file does
not need to be compiled.

	  4.	 Only the implementation file needs to be recompiled. You do, however,
need to relink the files.

	  5.	 You need to delete the private member variables hour and minute from the
interface file shown in Display 12.1 and replace them with the member
variable minutes (with an s). You do not need to make any other changes
in the interface file. In the implementation file, you need to change the def-
initions of all the constructors and other member functions, as well as the
definitions of the overloaded operators, so that they work for this new way
of recording time. (In this case, you do not need to change any of the help-
ing functions read_hour, read_minute, or digit_to_int, but that might
not be true for some other class or even some other reimplementation
of this class.) For example, the definition of the overloaded operator >>
could be changed to the following:

istream& operator >>(istream& ins, DigitalTime& the_object)
{
 int input_hour, input_minute;
 read_hour(ins, input_hour);
 read_minute(ins, input_minute);
 the_object.minutes = input_minute + (60 * input_hour);
 return ins;
}

You need not change any application files for programs that use the class.
However, since the interface file is changed (as well as the implementation
file), you will need to recompile any application files, and of course you
will need to recompile the implementation file.

	  6.	 The short answer is that an ADT is simply a class that you defined fol-
lowing good programming practices of separating the interface from the
implementation. Also, when we describe a class as an ADT, we consider
the nonmember basic operations such as overloaded operators to be part
of the ADT, even though they are not technically speaking part of the C++
class.

	 Answers to Self-Test Exercises	 735

	  7.	 No. If you replace big_greeting with greeting, then you will have a defi-
nition for the name greeting in the global namespace. There are parts of
the program where all the name definitions in the namespace savitch1
and all the name definitions in the global namespace are simultaneously
available. In those parts of the program, there would be two distinct defini-
tions for

void greeting();

	  8.	 Yes, the additional definition would cause no problems. This is because
overloading is always allowed. When, for example, the namespaces sav-
itch1 and the global namespace are available, the function name greet-
ing would be overloaded. The problem in Self-Test Exercise 7 was that
there would sometimes be two definitions of the function name greeting
with the same parameter lists.

	  9.	 Yes, a namespace can have any number of groupings. For example, the
following are two groupings for the namespace savitch1 that appear in
Display 12.5:

namespace savitch1
{
 void greeting();
}

namespace savitch1
{
 void greeting()
 {
 cout << "Hello from namespace savitch1.\n";
 }
}

	10.	 void wow(speedway::speed s1, indy500::speed s2);

	11.	 void input(std::istream& ins);

void output(std::ostream& outs) const;

	12.	 The program would behave exactly the same.

	13.	 Hello from unnamed. Hello from Sally. Hello from unnamed.

	14.	 Yes, you can eliminate the grouping for the helping function declarations,
as long as the grouping with the helping function definitions occurs be-
fore the helping functions are used. For example, you could remove the
namespace with the helping function declarations and move the grouping
with the helping function definitions to just before the namespace group-
ing for the namespace dtimesavitch.

736	 Chapter 12 /  Separate Compilation and Namespaces

PrACTICE ProGRAMS

Practice Programs can generally be solved with a short program that directly applies
the programming principles presented in this chapter.

	  1.	A dd the following member function to the ADT class DigitalTime defined
in Displays 12.1 and 12.2:

void DigitalTime::interval_since(const DigitalTime& a_previous_time,
 int& hours_in_interval, int& minutes_in_interval) const

This function computes the time interval between two values of type
DigitalTime. One of the values of type DigitalTime is the object that
calls the member function interval_since, and the other value of type
DigitalTime is given as the first argument. For example, consider the
following code:

DigitalTime current(5, 45), previous(2, 30);
int hours, minutes;
current.interval_since(previous, hours, minutes);
cout << "The time interval between " << previous
 << " and " << current << endl
 << "is " << hours << " hours and "
<< minutes << " minutes.\n";

In a program that uses your revised version of the DigitalTime ADT, this
code should produce the following output:

	 The time interval between 2:30 and 5:45
	 is 3 hours and 15 minutes.

Allow the time given by the first argument to be later in the day than the
time of the calling object. In this case, the time given as the first argument
is assumed to be on the previous day. You should also write a program to
test this revised ADT class.

	  2.	 Do Self-Test Exercise 5 in full detail. Write out the complete ADT class,
including interface and implementation files. Also write a program to test
your ADT class.

	  3.	R edo Practice Programs 1 from Chapter 11, but this time define the Money
ADT class in separate files for the interface and implementation so that
the implementation can be compiled separately from any application
program.

	  4.	R edo Practice Programs 2 from Chapter 11, but this time define the Pairs
ADT class in separate files for the interface and implementation so that
the implementation can be compiled separately from any application
program.

Solution to Practice
Program 12.3

VideoNote

	 Practice Programs	 737

	  5.	 This Practice Program explores how the unnamed namespace works.
Listed below are snippets from a program to perform input validation for
a username and password. The code to input and validate the username is
in a file separate from the code to input and validate the password.

File user.cpp:

namespace Authenticate
{
 void inputUserName()
 {
 do
 {
 cout << "Enter your username (8 letters only)" << endl;
 cin >> username;
 } while (!isValid());
 }
 string getUserName()
 {
 return username;
 }
}

Define the username variable and the isValid() function in the
unnamed namespace so the code will compile. The isValid() function
should return true if username contains exactly eight letters. Generate an
appropriate header file for this code.

Repeat the same steps for the file password.cpp, placing the password
variable and the isValid() function in the unnamed namespace. In this
case, the isValid() function should return true if the input password
has at least eight characters including at least one nonletter:

File password.cpp:
namespace Authenticate
{
 void inputPassword()
 {
 do
 {
 cout << "Enter your password (at least 8 characters " <<
 "and at least one nonletter)" << endl;
 cin >> password;
 } while (!isValid());
 }
 string getPassword()
 {
 return password;
 }
}

738	 Chapter 12 /  Separate Compilation and Namespaces

At this point you should have two functions named isValid(), each in
different unnamed namespaces. Place the following main function in an
appropriate place. The program should compile and run.

int main()
{
 inputUserName();
 inputPassword();
 cout << "Your username is " << getUserName() <<
 " and your password is: " <<
 getPassword() << endl;
 return 0;
}

Test the program with several invalid usernames and passwords.

Programming Projects

Programming Projects require more problem-solving than Practice Programs and
can usually be solved many different ways. Visit www.myprogramminglab.com to
complete many of these Programming Projects online and get instant feedback.

	  1.	R edo (or do for the first time) Practice Program 3 from Chapter 11. Define
your ADT class in separate files so that it can be compiled separately.

	  2.	R edo (or do for the first time) Programming Project 2 from Chapter 11.
Define your ADT class in separate files so that it can be compiled sepa-
rately.

	  3.	R edo (or do for the first time) Programming Project 9 from Chapter 11.
Define your ADT class in separate files so that it can be compiled sepa-
rately. Put the main function in its own file separate from the ADT files.

www.myprogramminglab.com

Pointers and
Linked Lists

13.1  Nodes and Linked Lists  740
Nodes  740
nullptr  745
Linked Lists  746
Inserting a Node at the Head of a List  747
Pitfall: Losing Nodes  750
Searching a Linked List  751
Pointers as Iterators  755
Inserting and Removing Nodes Inside a List  755
Pitfall: Using the Assignment Operator with

Dynamic Data Structures  757

Variations on Linked Lists  760
Linked Lists of Classes  762

13.2 S tacks and Queues  765
Stacks  765
Programming Examples: A Stack Class  766
Queues  771
Programming Examples: A Queue Class  772

13

Chapter Summary  776
Answers to Self-Test Exercises  776

Practice Programs  779
Programming Projects  780

Introduction

A linked list is a list constructed using pointers. A linked list is not fixed in size,
but can grow and shrink while your program is running. This chapter shows
you how to define and manipulate linked lists, which will serve to introduce
you to a new way of using pointers.

Prerequisites

This chapter uses material from Chapters 2 through 12.

13.1  Nodes and Linked Lists

Useful dynamic variables are seldom of a simple type such as int or double,
but are normally of some complex type such as an array, struct, or class
type. You saw that dynamic variables of an array type can be useful. Dynamic
variables of a struct or class type can also be useful, but in a different way.
Dynamic variables that are either structs or classes normally have one or
more member variables that are pointer variables which connect them to
other dynamic variables. For example, one such structure, which happens to
contain a shopping list, is diagrammed in Display 13.1.

Nodes

A structure like the one shown in Display 13.1 consists of items that we have
drawn as boxes connected by arrows. The boxes are called nodes and the
arrows represent pointers. Each of the nodes in Display 13.1 contains a string,
an integer, and a pointer that can point to other nodes of the same type. Note
that pointers point to the entire node, not to the individual items (such as 10
or "rolls") that are inside the node.

Nodes are implemented in C++ as structs or classes. For example, the
struct type definitions for a node of the type shown in Display 13.1, along
with the type definition for a pointer to such nodes, can be as follows:

struct ListNode
{
 string item;

740

If somebody there chanced to be
Who loved me in a manner true
My heart would point him out to me
And I would point him out to you.

Gilbert and Sullivan, Ruddigore

 int count;
 ListNode *link;
};
typedef ListNode* ListNodePtr;

The order of the type definitions is important. The definition of ListNode
must come first, since it is used in the definition of ListNodePtr.

The box labeled head in Display 13.1 is not a node, but is a pointer
variable that can point to a node. The pointer variable head is declared as
follows:

ListNodePtr head;

Even though we have ordered the type definitions to avoid some illegal
forms of circularity, the definition of the struct type ListNode is still
blatantly circular. The definition uses the type name ListNode to define the
member variable link. There is nothing wrong with this particular circularity,
and it is allowed in C++. One indication that this definition is not logically
inconsistent is the fact that you can draw pictures, like Display 13.1, that
represent such structures.

We now have pointers inside of structs and have these pointers
pointing to structs that contain pointers, and so forth. In such situations
the syntax can sometimes get involved, but in all cases the syntax
follows those few rules we have described for pointers and structs. As
an illustration, suppose the declarations are as above, the situation is as

	 13.1  Nodes and Linked Lists	 741

Display 13.1   Nodes and Pointers

head
"rolls"

10⋅

"jam"

3

"tea"

2

end marker

diagrammed in Display 13.1, and you want to change the number in the
first node from 10 to 12. One way to accomplish this is with the following
statement:

(*head).count = 12;

The expression on the left side of the assignment operator may require a bit
of explanation. The variable head is a pointer variable. So, the expression
*head is the thing it points to, namely the node (dynamic variable)
containing "rolls" and the integer 10. This node, referred to by *head,
is a struct, and the member variable of this struct, which contains a
value of type int, is called count, and so (*head).count is the name of
the int variable in the first node. The parentheses around *head are not
optional. You want the dereferencing operator * to be performed before
the dot operator. However, the dot operator has higher precedence than the
dereferencing operator *, and so without the parentheses, the dot operator
would be performed first (and that would produce an error). In the next
paragraph, we will describe a shortcut notation that can avoid this worry
about parentheses.

C++ has an operator that can be used with a pointer to simplify the
notation for specifying the members of a struct or a class. The arrow
operator -> combines the actions of a dereferencing operator * and a
dot operator to specify a member of a dynamic struct or object that is
pointed to by a given pointer. For example, the assignment statement
above for changing the number in the first node can be written more
simply as

head->count = 12;

This assignment statement and the previous one mean the same thing, but
this one is the form normally used.

The string in the first node can be changed from "rolls" to "bagels"
with the following statement:

head->item = "bagels";

The result of these changes to the first node in the list is diagrammed in
Display 13.2. Look at the pointer member in the last node in the lists shown
in Display 13.2. This last node has the word NULL written where there should
be a pointer. In Display 13.1 we filled this position with the phrase “end
marker,” but “end marker” is not a C++ expression. In C++ programs we use
the constant NULL as an end marker to signal the end of a linked list. NULL is a
special defined constant that is part of the C++ language (provided as part of
the required C++ libraries).

NULL is typically used for two different (but often coinciding) purposes.
It is used to give a value to a pointer variable that otherwise would not have
any value. This prevents an inadvertent reference to memory, since NULL is not

742	 Chapter 13 /  Pointers and Linked Lists

the address of any memory location. The second category of use is that of an
end marker. A program can step through the list of nodes as shown in Display
13.2, and when the program reaches the node that contains NULL, it knows
that it has come to the end of the list.

The constant NULL is actually the number 0, but we prefer to think
of it and spell it as NULL. That makes it clear that you mean this special-
purpose value that you can assign to pointer variables. The definition
of the identifier NULL is in a number of the standard libraries, such as
<iostream> and <cstddef>, so you should use an include directive with
either <iostream> or <cstddef> (or other suitable library) when you use
NULL. No using directive is needed in order to make NULL available to your
program code. In particular, it does not require using namespace std;,
although other things in your code are likely to require something like
using namespace std;.1

	 13.1  Nodes and Linked Lists	 743

Display 13.2   Accessing Node Data

head->count = 12;
head->item = "bagels";

 Before After

head
"rolls"

10⋅

"jam"

3

"tea"

2

NULL

head
"bagels"

12

"jam"

3

"tea"

2

NULL

NULL is 0

1 The details are as follows: The definition of NULL is handled by the C++ preprocessor,
which replaces NULL with 0. Thus, the compiler never actually sees "NULL" and so there
are no namespace issues, and no using directive is needed.

744	 Chapter 13 /  Pointers and Linked Lists

The Arrow Operator ->

The arrow operator -> specifies a member of a struct (or a member
of a class object) that is pointed to by a pointer variable. The syntax is
as follows:

Pointer_Variable->Member_Name

The above refers to a member of the struct or object pointed to by
the Pointer_Variable. Which member it refers to is given by the
Member_Name.

For example, suppose you have the following definition:

struct Record
{
 int number;
 char grade;
};

The following creates a dynamic variable of type Record and sets the
member variables of the dynamic struct variable to 2001 and 'A':

Record *p;
p = new Record;
p->number = 2001;
p->grade = 'A';

A pointer can be set to NULL using the assignment operator, as in the
following, which declares a pointer variable called there and initializes it to
NULL:

double *there = NULL;

The constant NULL can be assigned to a pointer variable of any pointer type.

NULL

NULL is a special constant value that is used to give a value to a pointer
variable that would not otherwise have a value. NULL can be assigned to
a pointer variable of any type. The identifier NULL is defined in a number
of libraries, including the library with header file <cstddef> and the
library with header file <iostream>. The constant NULL is actually the
number 0, but we prefer to think of it and spell it as NULL.

nullptr

The fact that the constant NULL is actually the number 0 leads to an ambiguity
problem. Consider the overloaded function below:

void func(int *p);
void func(int i);

Which function will be invoked if we call func(NULL)? Since NULL is the
number 0, both are equally valid. C++11 resolves this problem by introducing
a new constant, nullptr. nullptr is not the integer zero, but it is a literal
constant used to represent a null pointer. Use nullptr anywhere you would
have used NULL for a pointer. For example, we can write:

double *there = nullptr;

	 13.1  Nodes and Linked Lists	 745

nullptr

nullptr is a special constant value that is used the same way as NULL,
but it can only be assigned to a pointer. It is not the number 0. Use
nullptr to differentiate between a null pointer and the number 0.
nullptr was introduced in C++11.

Self-Test Exercises

	  1.	 Suppose your program contains the following type definitions:

struct Box
{
 string name;
 int number;
 Box *next;
};

typedef Box* BoxPtr;

What is the output produced by the following code?

BoxPtr head;
head = new Box;
head->name = "Sally";
head->number = 18;
cout << (*head).name << endl;
cout << head->name << endl;
cout << (*head).number << endl;
cout << head->number << endl;

746	 Chapter 13 /  Pointers and Linked Lists

	  2.	 Suppose that your program contains the type definitions and code
given in Self-Test Exercise 1. That code creates a node that contains
the string "Sally" and the number 18. What code would you add in
order to set the value of the member variable next of this node equal
to NULL?

	  3.	 Suppose that your program contains the type definitions and code given
in Self-Test Exercise 1. Assuming that the value of the pointer variable
head has not been changed, how can you destroy the dynamic variable
pointed to by head and return the memory it uses to the freestore so that
it can be reused to create new dynamic variables?

	  4.	 Given the following structure definition:

struct ListNode
{
 string item;
 int count;
 ListNode *link;
};
ListNode *head = new ListNode;

write code to assign the string “Wilbur’s brother Orville” to the member
item of the node pointed to by head.

Linked Lists

Lists such as those shown in Display 13.2 are called linked lists. A linked list
is a list of nodes in which each node has a member variable that is a pointer
that points to the next node in the list. The first node in a linked list is called
the head, which is why the pointer variable that points to the first node is
named head. Note that the pointer named head is not itself the head of the
list but only points to the head of the list. The last node has no special name,
but it does have a special property. The last node has NULL as the value of its
member pointer variable. To test to see whether a node is the last node, you
need only test to see if the pointer variable in the node is equal to NULL.

Our goal in this section is to write some basic functions for manipulating
linked lists. For variety, and to simplify the notation, we will use a simpler type of
node than that used in Display 13.2. These nodes will contain only an integer and
a pointer. The node and pointer type definitions that we will use are as follows:

struct Node
{
 int data;
 Node *link;
};

typedef Node* NodePtr;

	 13.1  Nodes and Linked Lists	 747

As a warm-up exercise, let’s see how we might construct the start of a
linked list with nodes of this type. We first declare a pointer variable, called
head, that will point to the head of our linked list:

NodePtr head;

To create our first node, we use the operator new to create a new dynamic
variable that will become the first node in our linked list.

head = new Node;

We then give values to the member variables of this new node:

head->data = 3;
head->link = NULL;

Notice that the pointer member of this node is set equal to NULL. That is
because this node is the last node in the list (as well as the first node in the
list). At this stage, our linked list looks like this:

3

NULL

head

Linked Lists as Arguments

You should always keep one pointer variable pointing to the head of a
linked list. This pointer variable is a way to name the linked list. When
you write a function that takes a linked list as an argument, this pointer
(which points to the head of the linked list) can be used as the linked list
argument.

Our one-node list was built in a purely ad hoc way. To have a larger
linked list, your program must be able to add nodes in a systematic way. We
next describe one simple way to insert nodes in a linked list.

Inserting a Node at the Head of a List

In this subsection we assume that our linked list already contains one or more
nodes, and we develop a function to add another node. The first parameter
for the insertion function will be a call-by-reference parameter for a pointer
variable that points to the head of the linked list, that is, a pointer variable
that points to the first node in the linked list. The other parameter will give
the number to be stored in the new node. The function declaration for our
insertion function is as follows:

void head_insert(NodePtr& head, int the_number);

748	 Chapter 13 /  Pointers and Linked Lists

To insert a new node into the linked list, our function will use the new
operator to create a new node. The data is then copied into the new node,
and the new node is inserted at the head of the list. When we insert nodes
this way, the new node will be the first node in the list (that is, the head
node) rather than the last node. Since dynamic variables have no names, we
must use a local pointer variable to point to this node. If we call the local
pointer variable temp_ptr, the new node can be referred to as *temp_ptr. The
complete process can be summarized as follows:

Pseudocode for head_insert Function

	1.	 Create a new dynamic variable pointed to by temp_ptr. (This new
dynamic variable is the new node. This new node can be referred to as
*temp_ptr.)

	2.	 Place the data in this new node.

	3.	 Make the link member of this new node point to the head node (first
node) of the original linked list.

	4.	 Make the pointer variable named head point to the new node.

Display 13.3 contains a diagram of this algorithm. Steps 2 and 3 in the
diagram can be expressed by these C++ assignment statements:

temp_ptr->link = head;
head = temp_ptr;

The complete function definition is given in Display 13.4.

Display 13.3   Adding a Node to a Linked List (part 1 of 2)

head

temp_ptr
12

?

3

NULL

15

1. Set up new node

head

temp_ptr
12

3

NULL

15

2. temp_ptr->link = head;

Added

(continued)

	 13.1  Nodes and Linked Lists	 749

temp_ptr
12

3

NULL

15

3. head = temp_ptr;

12

3

NULL

15

4. After function call

Changed
head head

Display 13.3   Adding a Node to a Linked List (part 2 of 2)

Display 13.4   Function to Add a Node at the Head of a Linked List

Function Declaration

 1 struct Node
 2 {
 3 int data;
 4 Node *link;
 5 };
 6
 7 typedef Node* NodePtr;
 8
 9 void head_insert(NodePtr& head, int the_number);
10 //Precondition: The pointer variable head points to
11 //the head of a linked list.
12 //Postcondition: A new node containing the_number
13 //has been added at the head of the linked list.

Function Definition

 1 void head_insert(NodePtr& head, int the_number)
 2 {
 3 NodePtr temp_ptr;
 4 temp_ptr = new Node;
 5
 6 temp_ptr->data = the_number;
 7
 8 temp_ptr->link = head;
 9 head = temp_ptr;
10 }

750	 Chapter 13 /  Pointers and Linked Lists

You will want to allow for the possibility that a list contains nothing. For
example, a shopping list might have nothing in it because there is nothing to buy
this week. A list with nothing in it is called an empty list. A linked list is named
by naming a pointer that points to the head of the list, but an empty list has
no head node. To specify an empty list, you use the pointer NULL. If the pointer
variable head is supposed to point to the head node of a linked list and you want
to indicate that the list is empty, then you set the value of head as follows:

head = NULL;

Whenever you design a function for manipulating a linked list, you
should always check to see if it works on the empty list. If it does not, you
may be able to add a special case for the empty list. If you cannot design the
function to apply to the empty list, then your program must be designed to
handle empty lists some other way or to avoid them completely. Fortunately,
the empty list can often be treated just like any other list. For example, the
function head_insert in Display 13.4 was designed with nonempty lists as
the model, but a check will show that it works for the empty list as well.

Pitfall  Losing Nodes

You might be tempted to write the function definition for head_insert
(Display 13.4) using the pointer variable head to construct the new node,
instead of using the local pointer variable temp_ptr. If you were to try, you
might start the function as follows:

head = new Node;
head->data = the_number;

At this point the new node is constructed, contains the correct data, and is
pointed to by the pointer head, all as it is supposed to be. All that is left to do
is to attach the rest of the list to this node by setting the pointer member given
below so that it points to what was formerly the first node of the list:

head->link

Display 13.5 shows the situation when the new data value is 12. That
illustration reveals the problem. If you were to proceed in this way, there
would be nothing pointing to the node containing 15. Since there is no named
pointer pointing to it (or to a chain of pointers ending with that node), there
is no way the program can reference this node. The node below this node is
also lost. A program cannot make a pointer point to either of these nodes, nor
can it access the data in these nodes, nor can it do anything else to the nodes.
It simply has no way to refer to the nodes.

Such a situation ties up memory for the duration of the program. A
program that loses nodes is sometimes said to have a “memory leak.” A
significant memory leak can result in the program running out of memory,
causing abnormal termination. Worse, a memory leak (lost nodes) in an

	 13.1  Nodes and Linked Lists	 751

ordinary user’s program can cause the operating system to crash. To avoid
such lost nodes, the program must always keep some pointer pointing to the
head of the list, usually the pointer in a pointer variable like head.	 ■

Searching a Linked List

Next we will design a function to search a linked list in order to locate a
particular node. We will use the same node type, called Node, that we used
in the previous subsections. (The definition of the node and pointer types is
given in Display 13.4.) The function we design will have two arguments: for
the linked list and the integer we want to locate. The function will return a
pointer that points to the first node which contains that integer. If no node
contains the integer, the function will return the pointer NULL. This way, our
program can test to see whether the integer is on the list by checking to see if
the function returns a pointer value that is not equal to NULL. The function
declaration and header comment for our function is as follows:

NodePtr search(NodePtr head, int target);
//Precondition: The pointer head points to the head of
//a linked list. The pointer variable in the last node
//is NULL. If the list is empty, then head is NULL.
//Returns a pointer that points to the first node that
//contains the target. If no node contains the target,
//the function returns NULL.

We will use a local pointer variable, called here, to move through the
list looking for the target. The only way to move around a linked list, or any
other data structure made up of nodes and pointers, is to follow the pointers.
So we will start with here pointing to the first node and move the pointer
from node to node following the pointer out of each node. This technique is

Display 13.5   Lost Nodes

head
12

?

3

NULL

15

Lost nodes

752	 Chapter 13 /  Pointers and Linked Lists

diagrammed in Display 13.6. Since empty lists present some minor problems
that would clutter our discussion, we will at first assume that the linked
list contains at least one node. Later we will come back and make sure the
algorithm works for the empty list as well. This search technique yields the
following algorithm:

Pseudocode for search Function

		 Make the pointer variable here point to the head node (that is, first node)
of the linked list.

while (here is not pointing to a node containing target
 and here is not pointing to the last node)
{
 Make here point to the next node in the list.
}
if (the node pointed to by here contains target)
 return here;
else
 return NULL;

In order to move the pointer here to the next node, we must think in terms
of the named pointers we have available. The next node is the one pointed
to by the pointer member of the node currently pointed to by here. The
pointer member of the node currently pointed to by here is given by the
expression

here->link

To move here to the next node, we want to change here so that it points to
the node that is pointed to by the above-named pointer (member) variable.
Hence, the following will move the pointer here to the next node in the list:

here = here->link;

Putting these pieces together yields the following refinement of the
algorithm pseudocode:

Preliminary Version of the Code for the search Function

here = head;

while (here->data != target && here->link != NULL)
 here = here->link;

if (here->data == target)
 return here;
else
 return NULL;

Notice the Boolean expression in the while statement. We test to see if here is
not pointing to the last node by testing to see if the member variable here->
link is not equal to NULL.

	 13.1  Nodes and Linked Lists	 753

Display 13.6   Searching a Linked List

target is 6

here

?

head
2

6

1

3

NULL

head
2

6

1

3

NULL

here

head
2

6

1

3

NULL

head
2

6

1

3

NULL

here

Not here

Found

Not here

2.1.

4.3.

here

We still must go back and take care of the empty list. If we check our code,
we find that there is a problem with the empty list. If the list is empty, then
here is equal to NULL and hence the following expressions are undefined:

here->data
here->link

754	 Chapter 13 /  Pointers and Linked Lists

When here is NULL, it is not pointing to any node, so there is no member
named data nor any member named link. Hence, we make a special
case of the empty list. The complete function definition is given in
Display 13.7.

Display 13.7   Function to Locate a Node in a Linked List

Function Declaration

 1 struct Node
 2 {
 3 int data;
 4 Node *link;
 5 };
 6
 7 typedef Node* NodePtr;
 8
 9 NodePtr search(NodePtr head, int target);
10 //Precondition: The pointer head points to the head of
11 //a linked list. The pointer variable in the last node
12 //is NULL. If the list is empty, then head is NULL.
13 //Returns a pointer that points to the first node that
14 //contains the target. If no node contains the target,
15 //the function returns NULL.

Function Definition

 1 //Uses cstddef:
 2 NodePtr search(NodePtr head, int target)
 3 {
 4 NodePtr here = head;
 5
 6 if (here == NULL)
 7 {
 8 return NULL;
 9 }
10 else
11 {
12 while (here->data != target &&
13 here->link != NULL)
14 here = here->link;
15
16 if (here->data == target)
17 return here;
18 else
19 return NULL;
20 }
21 }

Empty list case

	 13.1  Nodes and Linked Lists	 755

Pointers as Iterators

An iterator is a construct that allows you to cycle through the data items
stored in a data structure so that you can perform whatever action you want
on each data item. An iterator can be an object of some iterator class or
something simpler, such as an array index or a pointer. Pointers provide a
simple example of an iterator. In fact, a pointer is the prototypical example of
an iterator. The basic ideas can be easily seen in the context of linked lists. You
can use a pointer as an iterator by moving through the linked list one node at
a time starting at the head of the list and cycling through all the nodes in the
list. The general outline is as follows:

Node_Type *iter;
for (iter = head; iter != NULL; iter = iter->link)
 Do whatever you want with the node pointed to by iter;

where head is a pointer to the head node of the linked list and link is the
name of the member variable of a node that points to the next node in the list.

For example, to output the data in all the nodes in a linked list of the kind
we have been discussing, you could use

NodePtr iter; //Equivalent to: Node *iter;
for (iter = head; iter != NULL; iter = iter->link)
 cout << (iter->data);

The definition of Node and NodePtr are given in Display 13.7.

Inserting and Removing Nodes Inside a List

We next design a function to insert a node at a specified place in a linked
list. If you want the nodes in some particular order, such as numeric order or
alphabetical order, you cannot simply insert the node at the beginning or end
of the list. We will therefore design a function to insert a node after a specified
node in the linked list. We assume that some other function or program part
has correctly placed a pointer called after_me pointing to some node in the
linked list. We want the new node to be placed after the node pointed to by
after_me, as illustrated in Display 13.8. The same technique works for nodes
with any kind of data, but to be concrete, we are using the same type of nodes
as in previous subsections. The type definitions are given in Display 13.7. The
function declaration for the function we want to define is:

void insert(NodePtr after_me, int the_number);
//Precondition: after_me points to a node in a linked list.
//Postcondition: A new node containing the_number
//has been added after the node pointed to by after_me.

A new node is set up the same way it was in the function head_insert
in Display 13.4. The difference between this function and that one is that
we now wish to insert the node not at the head of the list, but after the node

Inserting in the
middle of a list

756	 Chapter 13 /  Pointers and Linked Lists

pointed to by after_me. The way to do the insertion is shown in Display 13.8
and is expressed as follows in C++ code:

//add a link from the new node to the list:
temp_ptr->link = after_me->link;
//add a link from the list to the new node:
after_me->link = temp_ptr;

The order of these two assignment statements is critical. In the first assign-
ment we want the pointer value after_me->link before it is changed. The
complete function is given in Display 13.9.

If you go through the code for the function insert, you will see that it
works correctly even if the node pointed to by after_me is the last node in the
list. However, insert will not work for inserting a node at the beginning of
a linked list. The function head_insert given in Display 13.4 can be used to
insert a node at the beginning of a list.

By using the function insert you can maintain a linked list in numerical
order or alphabetical order or other ordering. You can “squeeze” a new node
into the correct position by simply adjusting two pointers. This is true no matter
how long the linked list is or where in the list you want the new data to go. If
you instead used an array, much, and in extreme cases all, of the array would
have to be copied in order to make room for a new value in the correct spot.
Despite the overhead involved in positioning the pointer after_me, inserting
into a linked list is frequently more efficient than inserting into an array.

Removing a node from a linked list is also quite easy. Display 13.10
illustrates the method. Once the pointers before and discard have

Insertion at the
ends

Comparison to
arrays

Display 13.8   Inserting in the Middle of a Linked List

after_me

head
2

9

3

18

NULL

5
temp_ptr

Removing a node

	 13.1  Nodes and Linked Lists	 757

Display 13.9   Function to Add a Node in the Middle of a Linked List

Function Declaration

 1 struct Node
 2 {
 3 int data;
 4 Node *link;
 5 };
 6
 7 typedef Node* NodePtr;
 8
 9 void insert(NodePtr after_me, int the_number);
10 //Precondition: after_me points to a node in a linked
11 //list.
12 //Postcondition: A new node containing the_number
13 //has been added after the node pointed to by after_me.

Function Definition

 1 void insert(NodePtr after_me, int the_number)
 2 {
 3 NodePtr temp_ptr;
 4 temp_ptr = new Node;
 5
 6 temp_ptr->data = the_number;
 7
 8 temp_ptr->link = after_me->link;
 9 after_me->link = temp_ptr;
10 }

been positioned, all that is required to remove the node is the following
statement:

before->link = discard->link;

This is sufficient to remove the node from the linked list. However, if you are
not using this node for something else, you should destroy it and return the
memory it uses to the freestore; you can do this with a call to delete as follows:

delete discard;

Pitfall � Using the Assignment Operator with Dynamic
Data Structures

If head1 and head2 are pointer variables and head1 points to the head node of
a linked list, the following will make head2 point to the same head node and
hence the same linked list:

head2 = head1;

758	 Chapter 13 /  Pointers and Linked Lists

However, you must remember that there is only one linked list, not two. If
you change the linked list pointed to by head1, then you will also change the
linked list pointed to by head2, because they are the same linked list.

If head1 points to a linked list and you want head2 to point to a second,
identical copy of this linked list, the assignment statement above will not
work. Instead, you must copy the entire linked list node by node. Alternatively,
you can overload the assignment operator = so that it means whatever you
want it to mean. Overloading = is discussed in the subsection of Chapter 11
entitled “Overloading the Assignment Operator.”	 ■

Display 13.10   Removing a Node

 1. �Position the pointer discard so that it points to the node to be deleted, and position the
pointer before so that it points to the node before the one to be deleted.

 2. before->link = discard->link;

head

discard

before

2

6

1

5

NULL

head

discard

before

2

6

1

3

5

NULL

Recycled

3. delete discard;

	 13.1  Nodes and Linked Lists	 759

Self-Test Exercises

	  5.	 Write type definitions for the nodes and pointers in a linked list. Call the
node type NodeType and call the pointer type PointerType. The linked
lists will be lists of letters.

	  6.	 A linked list is normally given by giving a pointer that points to the first
node in the list, but an empty list has no first node. What pointer value is
normally used to represent an empty list?

	  7.	 Suppose your program contains the following type definitions and pointer
variable declarations:

struct Node
{
 double data;
 Node *next;
};

typedef Node* Pointer;
Pointer p1, p2;

Suppose p1 points to a node of this type that is on a linked list. Write
code that will make p1 point to the next node on this linked list. (The
pointer p2 is for the next exercise and has nothing to do with this
exercise.)

	  8.	 Suppose your program contains type definitions and pointer variable
declarations as in Self-Test Exercise 7. Suppose further that p2 points to a
node of type Node that is on a linked list and is not the last node on the
list. Write code that will delete the node after the node pointed to by p2.
After this code is executed, the linked list should be the same, except that
there will be one less node on the linked list. (Hint: You might want to
declare another pointer variable to use.)

	  9.	 Choose an answer and explain it.

For a large array and large list holding the same type objects, inserting a
new object at a known location into the middle of a linked list compared
with insertion in an array is

a.  More efficient

b.  Less efficient

c. About the same

d. Dependent on the size of the two lists

760	 Chapter 13 /  Pointers and Linked Lists

Variations on Linked Lists

In this subsection we give you a hint of the many data structures that can be
created using nodes and pointers. We briefly describe two additional data
structures, the doubly linked list and the binary tree.

An ordinary linked list allows you to move down the list in only one
direction (following the links). A node in a doubly linked list has two links,
one link that points to the next node and one that points to the previous node.
Diagrammatically, a doubly linked list looks like the sample list in Display 13.11.
The node class for a doubly linked list could be as follows:

struct Node
{
 int data;
 Node *forward_link;
 Node *back_link;
};

Rather than a single pointer to the head node, a doubly linked list
normally has a pointer to each of the two end nodes. You can call these
pointers front and back, although the choice of which is front and which is
back is arbitrary. The definitions of constructors and some of the functions in
the doubly linked list class will have to change (from the singly linked case) to
accommodate the extra link.

A tree is a data structure that is structured as shown in Display 13.12. In
particular, in a tree you can reach any node from the top (root) node by some
path that follows the links. Note that there are no cycles in a tree. If you follow the
links, you eventually get to an “end.” Note that each node has two links that point

Display 13.11   A Doubly Linked List

1

2

front

back
3

	 13.1  Nodes and Linked Lists	 761

to other nodes (or the value NULL). This sort of tree is called a binary tree, because
each node has exactly two links. There are other kinds of trees with different
numbers of links in the nodes, but the binary tree is the most common case.

A tree is not a form of linked list, but does use links (pointers) in ways that
are similar to how they are used in linked lists. The definition of the node type
for a binary tree is essentially the same as what it is for a doubly linked list, but
the two links are usually named using some form of the words left and right.
The following is a node type that can be used for constructing a binary tree:

struct TreeNode
{
 int data;
 TreeNode *left_link;
 TreeNode *right_link;
};

In Display 13.12, the pointer named root points to the root node
(“top node”). The root node serves a purpose similar to that of the head node
in an ordinary linked list (Display 13.10). Any node in the tree can be reached
from the root node by following the links.

The term tree may seem like a misnomer. The root is at the top of the tree
and the branching structure looks more like a root branching structure than
a tree branching structure. The secret to the terminology is to turn the picture
(Display 13.12) upside down. The picture then does resemble the branching
structure of a tree and the root node is where the tree’s root would begin. The

Display 13.12   A Binary Tree

root

20⋅

10⋅

NULL

NULL

30⋅

NULL

NULL

50⋅

NULL

60⋅

NULL

NULL

40⋅

762	 Chapter 13 /  Pointers and Linked Lists

nodes at the ends of the branches with both link instance variables set to NULL
are known as leaf nodes, a terminology that may now make some sense.

Although we do not have room to pursue the topic in this book, binary
trees can be used to efficiently store and retrieve data.

Linked Lists of Classes

In the preceding examples we created linked lists by using a struct to hold the
contents of a node within the list. It is possible to create the same data structures
using a class instead of a struct. The logic is identical except the syntax of using
and defining a class should be substituted in place of that for a struct.

Displays 13.13 and 13.14 illustrate how to define a Node class. The data
variables are declared private using the principle of information hiding, and
public methods have been created to access the data value and next node in
the link. Display 13.15 creates a short list of five nodes by inserting new nodes

Walkthrough of Linked
Lists of Classes

VideoNote

Display 13.13   Interface File for a Node Class

 1 //This is the header file for Node.h. This is the interface for
 2 //a node class that behaves similarly to the struct defined
 3 //in Display 13.4
 4 namespace linkedlistofclasses
 5 {
 6 class Node
 7 {
 8 public:
 9 Node();
10 Node(int value, Node *next);
11 //Constructors to initialize a node
12
13 int getData() const;
14 //Retrieve value for this node
15
16 Node *getLink() const;
17 //Retrieve next Node in the list
18
19 void setData(int value);
20 //Use to modify the value stored in the list
21
22 void setLink(Node *next);
23 //Use to change the reference to the next node
24
25 private:
26 int data;
27 Node *link;
28 };
29 typedef Node* NodePtr;
30 } //linkedlistofclasses
31 //Node.h

	 13.1  Nodes and Linked Lists	 763

Display 13.14   Implementation File for a Node Class

 1 //This is the implementation file Node.cpp.
 2 //It implements logic for the Node class. The interface
 3 //file is in the header file Node.h
 4 #include <iostream>
 5 #include "Node.h"
 6
 7 namespace linkedlistofclasses
 8 {
 9 Node::Node() : data(0), link(NULL)
10 {
11 //deliberately empty
12 }
13
14 Node::Node(int value, Node *next) : data(value), link(next)
15 {
16 //deliberately empty
17 }
18
19 //Accessor and Mutator methods follow
20
21 int Node::getData() const
22 {
23 return data;
24 }
25
26 Node* Node::getLink() const
27 {
28 return link;
29 }
30
31 void Node::setData(int value)
32 {
33 data = value;
34 }
35
36 void Node::setLink(Node *next)
37 {
38 link = next;
39 }
40 } //linkedlistofclasses
41 //Node.cpp

Display 13.15   Program Using the Node Class (part 1 of 3)

 1 //This program demonstrates the creation of a linked list
 2 //using the Node class. Five nodes are created, output, then
 3 //destroyed.

(continued)

764	 Chapter 13 /  Pointers and Linked Lists

Display 13.15   Program Using the Node Class (part 2 of 3)

 4 #include <iostream>
 5 #include "Node.h"
 6
 7 using namespace std;
 8 using namespace linkedlistofclasses;
 9
10 //This function inserts a new node onto the head of the list
11 //and is a class-based version of the same function defined
12 //in Display 13.4.
13 void head_insert(NodePtr& head, int the_number)
14 {
15 NodePtr temp_ptr;
16 //The constructor sets temp_ptr->link to head and
17 //sets the data value to the_number
18 temp_ptr = new Node(the_number, head);
19 head = temp_ptr;
20 }
21
22 int main()
23 {
24 NodePtr head, tmp;
25
26 //Create a list of nodes 4 -> 3 -> 2 -> 1 -> 0
27 head = new Node(0, NULL);
28 for (int i = 1; i < 5; i++)
29 {
30 head_insert(head, i);
31 }
32 //Iterate through the list and display each value
33 tmp = head;
34 while (tmp != NULL)
35 {
36 cout << tmp->getData() << endl;
37 tmp = tmp->getLink();
38 }
39 //Delete all nodes in the list before exiting
40 //the program.
41 tmp = head;
42 while (tmp != NULL)
43 {
44 NodePtr nodeToDelete = tmp;
45 tmp = tmp->getLink();
46 delete nodeToDelete;
47 }
48 return 0;
49 }

(continued)

	 13.2  Stacks and Queues	 765

onto the front of the list. The head_insert function is logically identical to
the same function defined in Display 13.4 except the constructor defined for
the Node class is used to set the data.

13.2  Stacks and Queues

But many who are first now will be last, and many who are last now will be first.

Matthew 19:30

Linked lists have many applications. In this section we give two samples of
what they can be used for. We use linked lists to give implementations of two
data structures known as a stack and a queue. In this section we always use
regular linked lists and not doubly linked lists.

Stacks

A stack is a data structure that retrieves data in the reverse of the order in which
the data is stored. Suppose you place the letters 'A', 'B', and then 'C' in a stack.
When you take these letters out of the stack, they will be removed in the order 'C',
'B', and then 'A'. This use of a stack is diagrammed in Display 13.16. As shown

Display 13.15   Program Using the Node Class (part 3 of 3)

Sample Dialogue

4

3

2

1

0

Display 13.16   A Stack

A

B

A

C

A

B

C

B

A

A

B

A

C

A

B

766	 Chapter 13 /  Pointers and Linked Lists

there, you can think of a stack as a hole in the ground. In order to get something
out of the stack, you must first remove the items on top of the one you want. For
this reason a stack is often called a last-in/first-out (LIFO) data structure.

Stacks are used for many language processing tasks. In Chapter 14 we will
discuss how the computer system uses a stack to keep track of C++ function
calls. However, here we will do only one very simple application. Our goal
in this example is to show you how you can use the linked list techniques to
implement specific data structures; a stack is one simple example of the use of
linked lists. You need not read Chapter 14 to understand this example.

  Programming Example   A Stack Class

The interface for our Stack class is given in Display 13.17. This particular stack is
used to store data of type char. You can define a similar stack to store data of any
other type. There are two basic operations you can perform on a stack: adding an
item to the stack and removing an item from the stack. Adding an item is called
pushing the item onto the stack, and so we called the member function that

Display 13.17   Interface File for a Stack Class (part 1 of 2)

 1 //This is the header file stack.h. This is the interface for the class Stack,
 2 //which is a class for a stack of symbols.
 3 #ifndef STACK_H
 4 #define STACK_H
 5 namespace stacksavitch
 6 {
 7 struct StackFrame
 8 {
 9 char data;
10 StackFrame *link;
11 };

12 typedef StackFrame* StackFramePtr;

13 class Stack
14 {
15 public:
16 Stack();
17 //Initializes the object to an empty stack.
18 Stack(const Stack& a_stack);
19 //Copy constructor.

20 ~Stack();
21 //Destroys the stack and returns all the memory to the freestore.

(continued)

	 13.2  Stacks and Queues	 767

Display 13.17   Interface File for a Stack Class (part 2 of 2)

22 void push(char the_symbol);
23 //Postcondition: the_symbol has been added to the stack.

24 char pop();
25 //Precondition: The stack is not empty.
26 //Returns the top symbol on the stack and removes that
27 //top symbol from the stack.

28 bool empty() const;
29 //Returns true if the stack is empty. Returns false otherwise.
30 private:
31 StackFramePtr top;
32 };
33 }//stacksavitch

34 #endif //STACK_H

Display 13.18   Program Using the Stack Class (part 1 of 2)

 1 //Program to demonstrate use of the Stack class.
 2 #include <iostream>
 3 #include "stack.h"
 4 using namespace std;
 5 using namespace stacksavitch;
 6
 7 int main()
 8 {

(continued)

does this push. Removing an item from a stack is called popping the item off the
stack, and so we called the member function that does this pop.

The names push and pop derive from another way of visualizing a stack. A
stack is analogous to a mechanism that is sometimes used to hold plates in a
cafeteria. The mechanism stores plates in a hole in the countertop. There is a
spring underneath the plates with its tension adjusted so that only the top plate
protrudes above the countertop. If this sort of mechanism were used as a stack
data structure, the data would be written on plates (which might violate some
health laws, but still makes a good analogy). To add a plate to the stack, you put
it on top of the other plates, and the weight of this new plate pushes down the
spring. When you remove a plate, the plate below it pops into view.

Display 13.18 shows a simple program that illustrates how the Stack class
is used. This program reads a word one letter at a time and places the letters in
a stack. The program then removes the letters one by one and writes them to

Application
program

768	 Chapter 13 /  Pointers and Linked Lists

the screen. Because data is removed from a stack in the reverse of the order in
which it enters the stack, the output shows the word written backward.

As shown in Display 13.19, our Stack class is implemented as a linked
list in which the head of the list serves as the top of the stack. The member
variable top is a pointer that points to the head of the linked list.

Display 13.18   Program Using the Stack Class (part 2 of 2)

 9 stack s;
10 char next, ans;
11
12 do
13 {
14 cout << "Enter a word: ";
15 cin.get(next);
16 while (next != '\n')
17 {
18 s.push(next);
19 cin.get(next);
20 }
21
22 cout << "Written backward that is: ";
23 while (! s.empty())
24 cout << s.pop();
25 cout << endl;
26
27 cout << "Again?(y/n): ";
28 cin >> ans;
29 cin.ignore(10000, '\n');
30 } while (ans != 'n' && ans != 'N');
31
32 return 0;
33 }

<The ignore member of cin is discussed in Chapter 8. It discards input remaining on the
current input line up to 10,000 characters or until a return is entered. It also discards the
return ('\n') at the end of the line.>

Sample Dialogue

Enter a word: straw

Written backward that is: warts

Again?(y/n): y

Enter a word: C++

Written backward that is: ++C

Again?(y/n): n

Implementation

	 13.2  Stacks and Queues	 769

Display 13.19   Implementation of the Stack Class (part 1 of 2)

 1 //This is the implementation file stack.cpp.
 2 //This is the implementation of the class Stack.
 3 //The interface for the class Stack is in the header file stack.h.
 4 #include <iostream>
 5 #include <cstddef>
 6 #include "stack.h"
 7 using namespace std;
 8
 9 namespace stacksavitch
10 {
11 //Uses cstddef:
12 Stack::Stack() : top(NULL)
13 {
14 //Body intentionally empty.
15 }
16
17 Stack::Stack(const Stack& a_stack)

 <The definition of the copy constructor is Self-Test Exercise 11.>

18 Stack::~Stack()
19 {
20 char next;
21 while (! empty())
22 next = pop(); //pop calls delete.
23 }
24

25 //Uses cstddef:
26 bool Stack::empty() const
27 {
28 return (top == NULL);
29 }
30

31 void Stack::push(char the_symbol)

 <The rest of the definition is Self-Test Exercise 10.>

32 //Uses iostream:
33 char Stack::pop()
34 {
35 if (empty())
36 {
37 cout << "Error: popping an empty stack.\n";
38 exit(1);
39 }
40

(continued)

770	 Chapter 13 /  Pointers and Linked Lists

Writing the definition of the member function push is Self-Test Exercise 10.
However, we have already given the algorithm for this task. The code for the
push member function is essentially the same as the function head_insert
shown in Display 13.4, except that in the member function push we use a
pointer named top in place of a pointer named head.

An empty stack is just an empty linked list, so an empty stack is
implemented by setting the pointer top equal to NULL. Once you realize
that NULL represents the empty stack, the implementations of the default
constructor and of the member function empty are obvious.

The definition of the copy constructor is a bit complicated but does not
use any techniques we have not already discussed. The details are left to Self-
Test Exercise 11.

The pop member function first checks to see if the stack is empty. If the
stack is not empty, it proceeds to remove the top character in the stack. It sets
the local variable result equal to the top symbol on the stack. That is done
as follows:

char result = top->data;

After the symbol in the top node is saved in the variable result, the pointer
top is moved to the next node on the linked list, effectively removing the top
node from the list. The pointer top is moved with the following statement:

top = top->link;

However, before the pointer top is moved, a temporary pointer, called
temp_ptr, is positioned so that it points to the node that is about to be removed
from the list. The node can then be removed with the following call to delete:

delete temp_ptr;

Each node that is removed from the linked list by the member function
pop is destroyed with a call to delete. Thus, all that the destructor needs to
do is remove each item from the stack with a call to pop. Each node will then
have its memory returned to the freestore.

Display 13.19   Implementation of the Stack Class (part 2 of 2)

41 char result = top->data;
42
43 StackFramePtr temp_ptr;
44 temp_ptr = top;
45 top = top->link;
46
47 delete temp_ptr;
48
49 return result;
50 }
51 }//stacksavitch

	 13.2  Stacks and Queues	 771

Self-Test Exercises

	10.	 Give the definition of the member function push of the class Stack
described in Display 13.17.

	11.	 Give the definition of the copy constructor for the class Stack described in
Display 13.17.

Queues

A stack is a last-in/first-out data structure. Another common data structure is
a queue, which handles data in a first-in/first-out (FIFO) fashion. A queue
behaves exactly the same as a line of people waiting for a bank teller or other
service. The people are served in the order they enter the line (the queue). The
operation of a queue is diagrammed in Display 13.20.

A queue can be implemented with a linked list in a manner that is similar
to our implementation of the Stack class. However, a queue needs a pointer at
both the head of the list and at the other the end of the linked list, since action
takes place in both locations. It is easier to remove a node from the head of a
linked list than from the other end of the linked list. So, our implementation
will remove a node from the head of the list (which we will now call the front
of the list) and we will add nodes to the other end of the list, which we will
now call the back of the list (or the back of the queue).

Display 13.20   A Queue

A

B

A

C

A

B

C

B

A

A

C

C

B

CB

Queue

A queue is a first-in/first-out data structure; that is, the data items are removed
from the queue in the same order that they were added to the queue.

772	 Chapter 13 /  Pointers and Linked Lists

  Programming Example   A Queue Class

The interface for our queue class is given in Display 13.21. This particular
queue is used to store data of type char. You can define a similar queue to
store data of any other type. There are two basic operations you can perform
on a queue: adding an item to the end of the queue and removing an item
from the front of the queue.

Display 13.21   Interface File for a Queue Class

 1 //This is the header file queue.h. This is the interface for the class Queue,
 2 //which is a class for a queue of symbols.
 3 #ifndef QUEUE_H
 4 #define QUEUE_H
 5 namespace queuesavitch
 6 {
 7 struct QueueNode
 8 {
 9 char data;
10 QueueNode *link;
11 };
12 typedef QueueNode* QueueNodePtr;
13
14 class Queue
15 {
16 public:
17 Queue();
18 //Initializes the object to an empty queue.
19 Queue(const Queue& aQueue);
20 ~Queue();
21 void add(char item);
22 //Postcondition: item has been added to the back of the queue.
23 char remove();
24 //Precondition: The queue is not empty.
25 //Returns the item at the front of the queue and
26 //removes that item from the queue.
27 bool empty() const;
28 //Returns true if the queue is empty. Returns false otherwise.
29 private:
30 QueueNodePtr front; //Points to the head of a linked list.
31 //Items are removed at the head
32 QueueNodePtr back; //Points to the node at the other end of the
33 //linked list. Items are added at this end.
34 };
35 }//queuesavitch
36 #endif //QUEUE_H

	 13.2  Stacks and Queues	 773

Display 13.22 shows a simple program that illustrates how the queue
class is used. This program reads a word one letter at a time and places the
letters in a queue. The program then removes the letters one by one and writes
them to the screen. Because data is removed from a queue in the order in
which it enters the queue, the output shows the letters in the word in the same
order that the user entered them. It is good to contrast this application of a
queue with a similar application using a stack that we gave in Display 13.18.

Application
program

Display 13.22   Program Using the Queue Class (part 1 of 2)

 1 //Program to demonstrate use of the Queue class.
 2 #include <iostream>
 3 #include "queue.h"
 4 using namespace std;
 5 using namespace queuesavitch;
 6
 7 int main()
 8 {
 9 Queue q;
10 char next, ans;
11
12 do
13 {
14 cout << "Enter a word: ";
15 cin.get(next);
16 while (next != '\n')
17 {
18 q.add(next);
19 cin.get(next);
20 }
21
22 cout << "You entered:: ";
23 while (! q.empty())
24 cout << q.remove();
25 cout << endl;
26
27 cout << "Again?(y/n): ";
28 cin >> ans;
29 cin.ignore(10000, '\n');
30 } while (ans !='n' && ans != 'N');
31
32 return 0;
33 }

<The ignore member of cin is discussed in Chapter 8. It discards input remaining on the
current input line up to 10,000 characters or until a return is entered. It also discards the
return ('\n') at the end of the line.>

(continued)

774	 Chapter 13 /  Pointers and Linked Lists

Display 13.22   Program Using the Queue Class (part 2 of 2)

Sample Dialogue

Enter a word: straw

You entered: straw

Again?(y/n): y

Enter a word: C++

You entered: C++

Again?(y/n): n

Display 13.23   Implementation of the Queue Class (part 1 of 3)

 1 //This is the implementation file queue.cpp.
 2 //This is the implementation of the class Queue.
 3 //The interface for the class Queue is in the header file queue.h.
 4 #include <iostream>
 5 #include <cstdlib>
 6 #include <cstddef>
 7 #include "queue.h"
 8 using namespace std;
 9
10 namespace queuesavitch
11 {
12 //Uses cstddef:
13 Queue::Queue() : front(NULL), back(NULL)
14 {
15 //Intentionally empty.
16 }
17
18 Queue::Queue(const Queue& aQueue)
19 <The definition of the copy constructor is Self-Test Exercise 12.>

(continued)

As shown in Displays 13.21 and 13.23, our queue class is implemented as
a linked list in which the head of the list serves as the front of the queue. The
member variable front is a pointer that points to the head of the linked list.
Nodes are removed at the head of the linked list. The member variable back is
a pointer that points to the node at the other end of the linked list. Nodes are
added at this end of the linked list.

An empty queue is just an empty linked list, so an empty queue is
implemented by setting the pointers front and back equal to NULL. The rest of the
details of the implementation are similar to things we have seen before.

Implementation

	 13.2  Stacks and Queues	 775

Display 13.23   Implementation of the Queue Class (part 2 of 3)

20
21 Queue::~Queue()
22 <The definition of the destructor is Self-Test Exercise 13.>
23
24 //Uses cstddef:
25 bool Queue::empty() const
26 {
27 return (back == NULL); //front == NULL would also work
28 }
29
30 //Uses cstddef:
31 void Queue::add(char item)
32 {
33 if (empty())
34 {
35 front = new QueueNode;
36 front->data = item;
37 front->link = NULL;
38 back = front;
39 }
40
41 else
42 {
43 QueueNodePtr temp_ptr;
44 temp_ptr = new QueueNode;
45 temp_ptr->data = item;
46 temp_ptr->link = NULL;
47 back->link = temp_ptr;
48 back = temp_ptr;
49 }
50 }
51
52 //Uses cstdlib and iostream:
53 char Queue::remove()
54 {
55 if (empty())
56 {
57 cout << "Error: Removing an item from an empty queue.\n";
58 exit(1);
59 }
60
61 char result = front->data;
62
63 QueueNodePtr discard;
64 discard = front;
65 front = front->link;

(continued)

776	 Chapter 13 /  Pointers and Linked Lists

Self-Test Exercises

	12.	 Give the definition of the copy constructor for the class Queue described
in Display 13.21.

	13.	 Give the definition of the destructor for the class Queue described in
Display 13.21.

Chapter Summary

■	 A node is a struct or class object that has one or more member variables
that are pointer variables. These nodes can be connected by their member
pointer variables to produce data structures that can grow and shrink in size
while your program is running.

■	 A linked list is a list of nodes in which each node contains a pointer to the
next node in the list.

■	 The end of a linked list (or other linked data structure) is indicated by setting
the pointer member variable equal to NULL or nullptr.

■	 A stack is a first-in/last-out data structure. A stack can be implemented using
a linked list.

■	 A queue is a first-in/first-out data structure. A queue can be implemented
using a linked list.

Answers to Self-Test Exercises

	  1.	 Sally
 Sally
 18
 18

Display 13.23   Implementation of the Queue Class (part 3 of 3)

66 if (front == NULL) //if you removed the last node
67 back = NULL;
68
69 delete discard;
70
71 return result;
72 }
73 }//queuesavitch

	 Answers to Self-Test Exercises	 777

Note that (*head).name and head->name mean the same thing. Similarly,
(*head).number and head->number mean the same thing

	  2.	 The best answer is

head->next = NULL;

However, the following is also correct:

(*head).next = NULL;

	  3.	 delete head;

	  4.	 head->item = "Wilbur's brother Orville";

	  5.	 struct NodeType
{
 char data;
 NodeType *link;
};

typedef NodeType* PointerType;

	  6.	 The pointer value NULL is used to indicate an empty list.

	  7.	 p1 = p1-> next;

	  8.	 Pointer discard;

discard = p2->next;
//discard now points to the node to be deleted.
p2->next = discard->next;

This is sufficient to delete the node from the linked list. However, if you
are not using this node for something else, you should destroy the node
with a call to delete as follows:

delete discard;

	  9.	 a. �Inserting a new item at a known location into a large linked list is more
efficient than inserting into a large array. If you are inserting into a list,
you have about five operations, most of which are pointer assignments,
regardless of the list size. If you insert into an array, on the average you
have to move about half the array entries to insert a data item.

For small lists, the answer is (c), about the same.

	10.	 //Uses cstddef:
void Stack::push(char the_symbol)
{
 StackFramePtr temp_ptr;
 temp_ptr = new StackFrame;

778	 Chapter 13 /  Pointers and Linked Lists

 temp_ptr->data = the_symbol;

 temp_ptr->link = top;
 top = temp_ptr;
}

	11.	 //Uses cstddef:
Stack::Stack(const Stack& a_stack)
{
 if (a_stack.top == NULL)
 top = NULL;
 else
 {
 StackFramePtr temp = a_stack.top;//temp moves
 //through the nodes from top to bottom of
 //a_stack.
 StackFramePtr end;//Points to end of the new stack.

 end = new StackFrame;
 end->data = temp->data;
 top = end;
 //First node created and filled with data.
 //New nodes are now added AFTER this first node.

 temp = temp->link;
 while (temp != NULL)
 {
 end->link = new StackFrame;
 end = end->link;
 end->data = temp->data;
 temp = temp->link;
 }
 end->link = NULL;
 }
}

	12.	 //Uses cstddef:
Queue::Queue(const Queue&aQueue)
{
 if (aQueue.empty())
 front = back = NULL;
 else
 {
 QueueNodePtr temp_ptr_old = aQueue.front;
 //temp_ptr_old moves through the nodes
 //from front to back of aQueue.
 QueueNodePtr temp_ptr_new;
 //temp_ptr_new is used to create new nodes.

 back = new QueueNode;
 back->data = temp_ptr_old->data;

	 Practice Programs	 779

 back->link = NULL;
 front = back;
 //First node created and filled with data.
 //New nodes are now added AFTER this first node.

 temp_ptr_old = temp_ptr_old->link;
 //temp_ptr_old now points to second
 //node or NULL if there is no second node.

 while (temp_ptr_old != NULL)
 {
 temp_ptr_new = new QueueNode;
 temp_ptr_new->data = temp_ptr_old->data;
 temp_ptr_new->link = NULL;
 back->link = temp_ptr_new;
 back = temp_ptr_new;
 temp_ptr_old = temp_ptr_old->link;
 }
 }
}

	13.	 Queue::~Queue()
{
 char next;
 while (! empty())
 next = remove();//remove calls delete.
}

Practice Programs

Practice Programs can generally be solved with a short program that directly applies
the programming principles presented in this chapter.

	  1.	 The following program creates a linked list with three names:

#include <iostream>
#include <string>
using namespace std;

struct Node
{
 string name;
 Node *link;
};

typedef Node* NodePtr;

int main()
{
 NodePtr listPtr, tempPtr;

780	 Chapter 13 /  Pointers and Linked Lists

 listPtr = new Node;
 listPtr->name = "Emily";

 tempPtr = new Node;
 tempPtr->name = "James";
 listPtr->link = tempPtr;

 tempPtr->link = new Node;
 tempPtr = tempPtr->link;
 tempPtr->name = "Joules";
 tempPtr->link = NULL;

 return 0;

}

Add code to the main function that:

a.  Outputs in order all names in the list.

b. �I nserts the name “Joshua” in the list after “James” then outputs the
modified list.

c.  Deletes the node with “Joules” then outputs the modified list.

d.  Deletes all nodes in the list.

	  2.	R e-do Practice Program 1, but instead of a struct, use a class named Node.
Your class should have appropriate member functions to set the name
and the link to the next node in the list. You might also consider adding a
constructor that can set the name and link.

Programming Projects

Programming Projects require more problem-solving than Practice Programs and
can usually be solved many different ways. Visit www.myprogramminglab.com to
complete many of these Programming Projects online and get instant feedback.

	  1.	 Write a void function that takes a linked list of integers and reverses the
order of its nodes. The function will have one call-by-reference parameter
that is a pointer to the head of the list. After the function is called, this
pointer will point to the head of a linked list that has the same nodes as
the original list, but in the reverse of the order they had in the original list.
Note that your function will neither create nor destroy any nodes. It will
simply rearrange nodes. Place your function in a suitable test program.

	  2.	 Write a function called merge_lists that takes two call-by-reference argu-
ments that are pointer variables that point to the heads of linked lists of
values of type int. The two linked lists are assumed to be sorted so that the
number at the head is the smallest number, the number in the next node is

www.myprogramminglab.com

	 Programming Projects	 781

the next smallest, and so forth. The function returns a pointer to the head
of a new linked list that contains all of the nodes in the original two lists.
The nodes in this longer list are also sorted from smallest to largest values.
Note that your function will neither create nor destroy any nodes. When
the function call ends, the two pointer variable arguments should have the
value NULL.

	  3.	 Design and implement a class whose objects represent polynomials. The
polynomial

a
n
xn + a

n−1x
n−1 + . . . + a0

will be implemented as a linked list. Each node will contain an int value
for the power of x and an int value for the corresponding coefficient.
The class operations should include addition, subtraction, multiplication,
and evaluation of a polynomial. Overload the operators +, -, and * for
addition, subtraction, and multiplication.

Evaluation of a polynomial is implemented as a member function with
one argument of type int. The evaluation member function returns the
value obtained by plugging in its argument for x and performing the
indicated operations. Include four constructors: a default constructor,
a copy constructor, a constructor with a single argument of type int
that produces the polynomial that has only one constant term that is
equal to the constructor argument, and a constructor with two arguments
of type int that produces the one-term polynomial whose coefficient
and exponent are given by the two arguments. (In the notation above,
the polynomial produced by the one-argument constructor is of the
simple form consisting of only a0. The polynomial produced by the two-
argument constructor is of the slightly more complicated form anx

n.)
Include a suitable destructor. Include member functions to input and
output polynomials.

When the user inputs a polynomial, the user types in the following:

anx^n + an-1x^n-1 + . . . + a0

However, if a coefficient ai is zero, the user may omit the term aix^i. For
example, the polynomial

3x4 + 7x2 + 5

can be input as

3x^4 + 7x^2 + 5

It could also be input as

3x^4 + 0x^3 + 7x^2 + 0x^1 + 5

782	 Chapter 13 /  Pointers and Linked Lists

If a coefficient is negative, a minus sign is used in place of a plus sign, as
in the following examples:

3x^5 - 7x^3 + 2x^1 - 8
-7x^4 + 5x^2 + 9

A minus sign at the front of the polynomial, as in the second of the two
examples, applies only to the first coefficient; it does not negate the entire
polynomial. Polynomials are output in the same format. In the case of
output, the terms with zero coefficients are not output.

To simplify input, you can assume that polynomials are always entered
one per line and that there will always be a constant term a0. If there is no
constant term, the user enters 0 for the constant term, as in the following:

12x^8 + 3x^2 + 0

	  4.	I n this project you will redo Programming Project 8 from Chapter 11 using
a linked list instead of an array. As noted there, this is a linked list of dou-
ble items. This fact may imply changes in some of the member functions.
The members are as follows: a default constructor; a member function
named add_item to add a double to the list; a test for a full list that is a
Boolean-valued function named full(); and a friend function overload-
ing the insertion operator <<.

	5.	 A harder version of Programming Project 4 would be to write a class named
List, similar to Project 4, but with all the following member functions:

■	 Default constructor, List();

■	 double List::front();, which returns the first item in the list

■	 double List::back();, which returns the last item in the list

■	 double List::current();, which returns the “current” item

■	� void List::advance();, which advances the item that current()
returns

■	� void List::reset(); to make current() return the first item in the
list

■	� void List::insert(double after_me, double insert_me);, which
inserts insert_me into the list after after_me and increments the
private: variable count.

■	 int size();, which returns the number of items in the list

■	 friend istream& operator <<(istream& ins, double write_me);

The private data members should include the following:

node* head;
node* current;
int count;

	 Programming Projects	 783

and possibly one more pointer.

You will need the following struct (outside the list class) for the linked
list nodes:

struct node
{
 double item;
 node *next;
};

Incremental development is essential to all projects of any size, and
this is no exception. Write the definition for the List class, but do not
implement any members yet. Place this class definition in a file list.h.
Then #include "list.h" in a file that contains int main(){}.Compile
your file. This will find syntax errors and many typographical errors that
would cause untold difficulty if you attempted to implement members
without this check. Then you should implement and compile one member
at a time, until you have enough to write test code in your main function.

	  6.	I n an ancient land, the beautiful princess Eve had many suitors. She
decided on the following procedure to determine which suitor she would
marry. First, all of the suitors would be lined up one after the other and as-
signed numbers. The first suitor would be number 1, the second number 2,
and so on up to the last suitor, number n. Starting at the first suitor she
would then count three suitors down the line (because of the three letters
in her name) and the third suitor would be eliminated from winning her
hand and removed from the line. Eve would then continue, counting three
more suitors, and eliminate every third suitor. When she reached the end
of the line she would continue counting from the beginning.

For example, if there were six suitors then the elimination process would
proceed as follows:

	 123456	 initial list of suitors, start counting from 1

	 12456	 suitor 3 eliminated, continue counting from 4

	 1245	 suitor 6 eliminated, continue counting from 1

	 125	 suitor 4 eliminated, continue counting from 5

	 15	 suitor 2 eliminated, continue counting from 5

	 1	 suitor 5 eliminated, 1 is the lucky winner

Write a program that creates a circular linked list of nodes to determine which
position you should stand in to marry the princess if there are n suitors. A
circular linked list is a linked list where the link field of the last node in the list
refers to the node that is the head of the list. Your program should simulate
the elimination process by deleting the node that corresponds to the suitor
that is eliminated for each step in the process. Consider the possibility that
you may need to delete the "head" node in the list.

Solution to Programming
Project 13.6

VideoNote

784	 Chapter 13 /  Pointers and Linked Lists

	  7.	R edo (or do for the first time) Programming Project 5 from Chapter 9.
However, instead of a dynamic array to store the list of user IDs for each
computer station, use a linked list. The node for the lists should contain
the station number and user ID of the person logged in on that station. If
nobody is logged on to a computer station, then no entry should exist in
the linked list for that computer station.

	  8.	 Modify or rewrite the Queue class (Display 13.21 through 13.23) to simu-
late customer arrivals at the Department of Motor Vehicles (DMV) coun-
ter. As customers arrive, they are given a ticket number starting at 1 and
incrementing with each new customer. When a customer service agent is
free, the customer with the next ticket number is called. This system results
in a FIFO queue of customers ordered by ticket number. Write a program
that implements the queue and simulates customers entering and leav-
ing the queue. Input into the queue should be the ticket number and a
timestamp when the ticket was entered into the queue. A ticket and its cor-
responding timestamp is removed when a customer service agent handles
the next customer. Your program should save the length of time the last
three customers spent waiting in the queue. Every time a ticket is removed
from the queue, update these times and output the average of the last three
customers as an estimate of how long it will take until the next customer is
handled. If nobody is in the queue, output that the line is empty.

Code to compute a timestamp based on the computer’s clock is given
below. The time(NULL) function returns the number of seconds since
January 1, 1970, on most implementations of C++:

#include <ctime>
...
int main()
{
 long seconds;
 seconds = static_cast<long>(time(NULL));
 cout << "Seconds since 1/1/1970: " << seconds << endl;
 return 0;
}
Sample execution is shown here:
The line is empty.
Enter '1' to simulate a customer's arrival, '2' to help the
next customer, or '3' to quit.
1
Customer 1 entered the queue at time 100000044.
Enter '1' to simulate a customer's arrival, '2' to help the
next customer, or '3' to quit.
1
Customer 2 entered the queue at time 100000049.
Enter '1' to simulate a customer's arrival, '2' to help the
next customer, or '3' to quit.
1

	 Programming Projects	 785

Customer 3 entered the queue at time 100000055.
Enter '1' to simulate a customer's arrival, '2' to help the
next customer, or '3' to quit.
2
Customer 1 is being helped at time 100000069. Wait time = 25
seconds.
The estimated wait time for customer 2 is 25 seconds.
Enter '1' to simulate a customer's arrival, '2' to help the
next customer, or '3' to quit.
2
Customer 2 is being helped at time 100000076. Wait time = 27
seconds.
The estimated wait time for customer 3 is 26 seconds.
Enter '1' to simulate a customer's arrival, '2' to help the
next customer, or '3' to quit.
1
Customer 4 entered the queue at time 100000080.
Enter '1' to simulate a customer's arrival, '2' to help the
next customer, or '3' to quit.
2
Customer 3 is being helped at time 100000099. Wait time = 44
seconds.
The estimated wait time for customer 4 is 32 seconds.

	9.	 The following figure is called a graph. The circles are called nodes, and the
lines are called edges. An edge connects two nodes. You can interpret the
graph as a maze of rooms and passages. The nodes can be thought of as
rooms, and an edge connects one room to another. Note that each node
has at most four edges in the graph.

Solution to Programming
Project 13.9

VideoNote

Start
North

FinishLKJI

HGFE

DCBA

786	 Chapter 13 /  Pointers and Linked Lists

Write a program that implements the maze using nodes and pointers.
Each node in the graph will correspond to a node in your code that is
implemented in the form of a class or struct. The edges correspond to
bidirectional links that point from one node to another. Start the user
in node A. The user’s goal is to reach the finish in node L. The program
should output possible moves in the north, south, east, or west direction.
Sample execution is shown here.

You are in room A of a maze of twisty little passages, all alike.
You can go (E)ast, (S)outh, or (Q)uit.
E
You are in room B of a maze of twisty little passages, all alike.
You can go (W)est, (S)outh, or (Q)uit.
S
You are in room F of a maze of twisty little passages, all alike.
You can go (E)ast, (N)orth, or (Q)uit.
E

	10.	R everse Polish Notation (RPN), or postfix notation, is a format to specify
mathematical expressions. In RPN, the operator comes after the operands
instead of the normal format in which the operator is between the oper-
ands (this is called infix notation). Starting with an empty stack, a RPN
calculator can be implemented with the following rules:

■	�I f a number is input, push it on the stack.

■	�I f "+" is input, then pop the last two operands off the stack, add
them, and push the result on the stack.

■	�I f "-" is input then pop value1, pop value2, then push value2-
value1 on the stack.

■	�I f "*" is input, then pop the last two operands off the stack, multiply
them, and push the result on the stack

■	�I f "/" is input them pop value1, pop value2, then push value2/
value1 on the stack

■	�I f "q" is input, then stop inputting values, print out the top of the
stack, and exit the program

Modify the Stack class given in Section 13.2 to store integers instead
of characters. Use the modified stack to implement a RPN calculator.
Output an appropriate error message if there are not two operands on the
stack when given an operator. Here is a sample input and output that is
equivalent to ((10 - (2 + 3)) * 2)/5:

10
2
3
+

(continued)

-
2
*
5
/
q
The top of the stack is: 2

	11.	 You should complete the Programming Project 10 before attempting this
one. Write a program that converts a fully parenthesized mathematical infix
expression into an equivalent postfix expression and then evaluates the post-
fix expression. A fully parenthesized expression is one in which parentheses
surround every operator and its operands. Starting with an empty stack of
strings to store operators and an empty queue of strings to store the postfix
expression, the conversion can be implemented with the following rules:

■	I f  "(" is input, then ignore it.

■	I f a number is input, then add it to the queue.

■	�I f an operator (either "*", "+", "-", or "/") is input, then push it on
the stack.

■	�I f  ")" is input, then pop the operator from the stack and add it to the
queue.

■	I f  "q" is input, then exit.

When the final operator is popped from the stack, the queue contains the
equivalent postfix expression. Use your solution from Programming Project
10 to evaluate it. You will need to convert a string object to an integer. Use
the c_str() function to convert the string to a C string, and then use the atoi
function to convert the C string into an integer. Refer to Chapter 8 for details.

Sample output is shown below for ((10 - (2 + 3)) * 2),which
translates to the postfix expression 10 2 3 + - 2 *:

(
(
10
-
(
2
+
3
)
)
*
2
)
q
The expression evaluates to 10

	 Programming Projects	 787

This page intentionally left blank

Recursion

14.1 � Recursive Functions for
Tasks  791

Case Study: Vertical Numbers  791
A Closer Look at Recursion  797
Pitfall: Infinite Recursion  799
Stacks for Recursion  800
Pitfall: Stack Overflow  802
Recursion Versus Iteration  802

14.2 � Recursive Functions for
Values  804

General Form for a Recursive Function That
Returns a Value  804

Programming Example: Another Powers
Function  804

14.3 T hinking Recursively  809
Recursive Design Techniques  809
Case Study: Binary Search—An Example of Recursive

Thinking  810
Programming Example: A Recursive Member

Function  818

14

Chapter Summary  822
Answers to Self-Test Exercises  822

Practice Programs  827
Programming Projects  827

Introduction

You have encountered a few cases of circular definitions that worked out
satisfactorily. The most prominent examples are the definitions of certain C++
statements. For example, the definition of a while statement says that it can
contain other (smaller) statements. Since one of the possibilities for these
smaller statements is another while statement, there is a kind of circularity in
that definition. The definition of the while statement, if written out in complete
detail, will contain a reference to while statements. In mathematics, this kind
of circular definition is called a recursive definition. In C++, a function may be
defined in terms of itself in the same way. To put it more precisely, a function
definition may contain a call to itself. In such cases, the function is said to be
recursive. This chapter discusses recursion in C++ and more generally discusses
recursion as a programming and problem-solving technique.

Prerequisites

Sections 14.1 and 14.2 use material only from Chapters 2 through 5. Section
14.3 uses material from Chapters 2 through 7 and 10.

790

After a lecture on cosmology and the structure of the solar system, William
James was accosted by a little old lady.

“Your theory that the sun is the center of the solar system, and the earth is a
ball which rotates around it has a very convincing ring to it, Mr. James, but
it’s wrong. I’ve got a better theory,” said the little old lady.

“And what is that, madam?” inquired James politely.

“That we live on a crust of earth which is on the back of a giant turtle.”

Not wishing to demolish this absurd little theory by bringing to bear the masses
of scientific evidence he had at his command, James decided to gently dissuade
his opponent by making her see some of the inadequacies of her position.

“If your theory is correct, madam,” he asked, “what does this turtle stand on?”

“You’re a very clever man, Mr. James, and that’s a very good question,” replied
the little old lady, “but I have an answer to it. And it is this: the first turtle
stands on the back of a second, far larger, turtle, who stands directly under
him.”

“But what does this second turtle stand on?” persisted James patiently.

To this the little old lady crowed triumphantly. “It’s no use, Mr. James—it’s
turtles all the way down.”

J. R. Ross, Constraints on Variables in Syntax

14.1  Recursive Functions for Tasks

I remembered too that night which is at the middle of the Thousand and
One Nights when Scheherazade (through a magical oversight of the copyist)
begins to relate word for word the story of the Thousand and One Nights,
establishing the risk of coming once again to the night when she must repeat
it, and thus to infinity.

Jorge Luis Borges, The Garden of Forking Paths

When you are writing a function to solve a task, one basic design technique is
to break the task into subtasks. Sometimes it turns out that at least one of the
subtasks is a smaller example of the same task. For example, if the task is to
search an array for a particular value, you might divide this into the subtask
of searching the first half of the array and the subtask of searching the second
half of the array. The subtasks of searching the halves of the array are “smaller”
versions of the original task. Whenever one subtask is a smaller version of
the original task to be accomplished, you can solve the original task using a
recursive function. It takes a little training to easily decompose problems this
way, but once you learn the technique, it can be one of the quickest ways to
design an algorithm, and, ultimately, a C++ function. We begin with a simple
case study to illustrate this technique.

	 14.1  Recursive Functions for Tasks	 791

Recursion

In C++, a function definition may contain a call to the function being
defined. In such cases, the function is said to be recursive.

Case Study   Vertical Numbers

In this case study we design a recursive void function that writes numbers to
the screen with the digits written vertically, so that, for example, 1984 would
be written as

1
9
8
4

Problem Definition

The declaration and header comment for our function is as follows:

void write_vertical(int n);
//Precondition: n >= 0.
//Postcondition: The number n is written to the screen
//vertically with each digit on a separate line.

Algorithm Design

One case is very simple. If n, the number to be written out, is only one
digit long, then just write out the number. As simple as it is, this case is still
important, so let’s keep track of it.

Simple Case: If n < 10, then write the number n to the screen.

Now let’s consider the more typical case in which the number to be
written out consists of more than one digit. Suppose you want to write the
number 1234 vertically so that the result is

1
2
3
4

One way to decompose this task into two subtasks is the following:

	  1.	O utput all the digits except the last digit like so:

1
2
3

	  2.	O utput the last digit, which in this example is 4.

Subtask 1 is a smaller version of the original task, so we can implement this
subtask with a recursive call. Subtask 2 is just the simple case we listed earlier.
Thus, an outline of our algorithm for the function write_vertical with
parameter n is given by the following pseudocode:

if (n < 10)
{
 cout << n << endl;				 Recursive subtask
}
else //n is two or more digits long:
{
 write_vertical(the number n with the last digit removed);
 cout << the last digit of n << endl;
}

In order to convert this pseudocode into the code for a C++ function, all
we need to do is translate the following two pieces of pseudocode into C++
expressions:

the number n with the last digit removed

and

the last digit of n

792	 Chapter 14 /  Recursion

These expressions can easily be translated into C++ expressions using the
integer division operators / and % as follows:

n / 10 //the number n with the last digit removed
n % 10 //the last digit of n

For example, 1234 / 10 evaluates to 123, and 1234 % 10 evaluates to 4.
Several factors influenced our selection of the two subtasks we used in this

algorithm. One was that we could easily compute the argument for the recursive
call to write_vertical (shown in color) that we used in the pseudocode.
The number n with the last digit removed is easily computed as n/10. As an
alternative, you might have been tempted to divide the subtasks as follows:

	1.	O utput the first digit of n.

	2.	O utput the number n with the first digit removed.

This is a perfectly valid decomposition of the task into subtasks, and it can
be implemented recursively. However, it is difficult to calculate the result of
removing the first digit from a number, while it is easy to calculate the result
of removing the last digit from a number.

Another reason for choosing these sorts of decompositions is that one of the
subcases does not involve a recursive call. A successful definition of a recursive
function always includes at least one case that does not involve a recursive call (as
well as one or more cases that do involve at least one recursive call). This aspect of
the recursive algorithm is discussed in the subsections that follow this case study.

Coding

We can now put all the pieces together to produce the recursive function
write_vertical shown in Display 14.1. In the next subsection we will explain
more details of how recursion works in this example.

	 14.1  Recursive Functions for Tasks	 793

Display 14.1   A Recursive Output Function (part 1 of 2)

 1 //Program to demonstrate the recursive function write_vertical.
 2 #include <iostream>
 3 using namespace std;
 4
 5 void write_vertical(int n);
 6 //Precondition: n >= 0.
 7 //Postcondition: The number n is written to the screen vertically
 8 //with each digit on a separate line.
 9
10 int main()
11 {
12 cout<< "write_vertical(3):" <<endl;
13 write_vertical(3);
14

(continued)

794	 Chapter 14 /  Recursion

Display 14.1   A Recursive Output Function (part 2 of 2)

15 cout<< "write_vertical(12):" <<endl;
16 write_vertical(12);
17
18 cout<< "write_vertical(123):" <<endl;
19 write_vertical(123);
20
21 return 0;
22 }
23
24 //uses iostream:
25 void write_vertical(int n)
26 {
27 if (n < 10)
28 {
29 cout << n << endl;
30 }
31 else //n is two or more digits long:
32 {
33 write_vertical(n / 10);
34 cout << (n % 10) << endl;
35 }
36 }

Sample Dialogue

write_vertical(3):

3

write_vertical(12):

1

2

write_vertical(123):

1

2

3

Tracing a Recursive Call

Let’s see exactly what happens when the following function call is made:

write_vertical(123);

When this function call is executed, the computer proceeds just as it would
with any function call. The argument 123 is substituted for the parameter n
in the function definition, and the body of the function is executed. After the
substitution of 123 for n, the code to be executed is as follows:

{
 write_vertical(123 / 10);
 cout << (123 % 10) << endl;
}

Since 123 is not less than 10, the logical expression in the if-else statement
is false, so the else part is executed. However, the else part begins with the
following function call:

write_vertical(n / 10);

which (since n is equal to 123) is the call

write_vertical(123 / 10);

which is equivalent to

write_vertical(12);

When execution reaches this recursive call, the current function computation
is placed in suspended animation and this recursive call is executed. When this
recursive call is finished, the execution of the suspended computation will return
to this point, and the suspended computation will continue from this point.

The recursive call

write_vertical(12);

is handled just like any other function call. The argument 12 is substituted for
the parameter n and the body of the function is executed. After substituting 12
for n, there are two computations, one suspended and one active, as follows:

if (123 < 10)
{
 cout << 123 << endl;
}
else //n is two or more digits long:

	 14.1  Recursive Functions for Tasks	 795

Computation will
stop here until the
recursive call returns.

{
 cout << 123 << endl;
}

{
 write_vertical(123/10⋅);
 cout << 123%10⋅ << endl;
}

if (123 < 10)

else //n is two or more digits long:

{
 cout << 12 << endl;
}

{
 write_vertical(12 / 10);
 cout << (12 % 10) << endl;
}

Computation will stop
here until the recursive
call returns.

if (12 < 10)

else //n is two or more digits long:

Since 12 is not less than 10, the Boolean expression in the if-else statement is
false and so the else part is executed. However, as you already saw, the else part
begins with a recursive call. The argument for the recursive call is n / 10, which

796	 Chapter 14 /  Recursion

in this case is equivalent to 12 / 10. So this second computation of the function
write_vertical is suspended and the following recursive call is executed:

write_vertical(12/ 10);

which is equivalent to

write_vertical(1);

At this point there are two suspended computations waiting to resume
and the computer begins to execute this new recursive call, which is handled
just like all the previous recursive calls. The argument 1 is substituted for
the parameter n, and the body of the function is executed. At this point, the
computation looks like the following:

{
 cout << 123 << endl;
}

{
 write_vertical(123/10⋅);
 cout << 123%10⋅ << endl;
}

if (123 < 10)

else //n is two or more digits long:

{
 cout << 12 << endl;
}

{
 write_vertical(12/10⋅);
 cout << 12%10⋅ << endl;
}

if (12 < 10)

else //n is two or more digits long:

{
 cout << 1 << endl;
}

{
 write_vertical(1 / 10);
 cout << (1 % 10) << endl;
}

No recursive call
this time

else //n is two or more digits long:

if (1 < 10)

When the body of the function is executed this time, something different
happens. Since 1 is less than 10, the Boolean expression in the if-else statement
is true, so the statement before the else is executed. That statement is simply a
cout statement that writes the argument 1 to the screen, and so the call write_
vertical(1) writes 1 to the screen and ends without any recursive call.

When the call write_vertical(1) ends, the suspended computation that
is waiting for it to end resumes where that suspended computation left off, as
shown by the following:

Output the digit 1

{
 cout << 123 << endl;
}

{
 write_vertical(123/10⋅);
 cout << 123%10⋅ << endl;
}

if (123 < 10)

else //n is two or more digits long:

{

}

{

}

Computation
resumes here.

if (12 < 10)

else //n is two or more digits long:

 write_vertical(12 / 10);
 cout << (12 % 10) << endl;

 cout << 12 << endl;

	 14.1  Recursive Functions for Tasks	 797

When this suspended computation resumes, it executes a cout statement that
outputs the value 12 % 10, which is 2. That ends that computation, but there
is yet another suspended computation waiting to resume. When this last
suspended computation resumes, the situation is as follows:

Output the
digit 2

{

}

{

}

Computation
resumes here.

if (123 < 10)

 cout << 123 << endl;

else //n is two or more digits long:

 write_vertical(123 / 10);
 cout << (123 % 10) << endl;

When this last suspended computation resumes, it outputs the value 123 % 10,
which is 3, and the execution of the original function call ends. And, sure
enough, the digits 1, 2, and 3 have been written to the screen one per line, in
that order.

A Closer Look at Recursion

The definition of the function write_vertical uses recursion. Yet we
did nothing new or different in evaluating the function call write_
vertical(123). We treated it just like any of the function calls we saw in
previous chapters. We just substituted the argument 123 for the parameter n
and then executed the code in the body of the function definition. When we
reached the recursive call

write_vertical(123 / 10);

we simply repeated this process one more time.
The computer keeps track of recursive calls in the following way. When a

function is called, the computer plugs in the arguments for the parameter(s)
and begins to execute the code. If it should encounter a recursive call, then it
temporarily stops its computation. This is because it must know the result of
the recursive call before it can proceed. It saves all the information it needs to
continue the computation later on and proceeds to evaluate the recursive call.
When the recursive call is completed, the computer returns to finish the outer
computation.

The C++ language places no restrictions on how recursive calls are used in
function definitions. However, in order for a recursive function definition to
be useful, it must be designed so that any call of the function must ultimately
terminate with some piece of code that does not depend on recursion. The
function may call itself, and that recursive call may call the function again.

Output the digit 3

How recursion
works

How recursion
ends

798	 Chapter 14 /  Recursion

The process may be repeated any number of times. However, the process will
not terminate unless eventually one of the recursive calls does not depend on
recursion. The general outline of a successful recursive function definition is
as follows:

•	One or more cases in which the function accomplishes its task by using
recursive calls to accomplish one or more smaller versions of the task.

•	One or more cases in which the function accomplishes its task without the
use of any recursive calls. These cases without any recursive calls are called
base cases or stopping cases.

Often, an if-else statement determines which of the cases will be
executed. A typical scenario is for the original function call to execute a
case that includes a recursive call. That recursive call may in turn execute
a case that requires another recursive call. For some number of times each
recursive call produces another recursive call, but eventually one of the
stopping cases should apply. Every call of the function must eventually lead
to a stopping case, or else the function call will never end because of an infinite
chain of recursive calls. (In practice, a call that includes an infinite chain
of recursive calls will usually terminate abnormally rather than actually
running forever.)

The most common way to ensure that a stopping case is eventually
reached is to write the function so that some (positive) numeric quantity
is decreased on each recursive call and to provide a stopping case for some
“small” value. This is how we designed the function write_vertical
in Display 14.1. When the function write_vertical is called, that call
produces a recursive call with a smaller argument. This continues with each
recursive call producing another recursive call until the argument is less
than 10. When the argument is less than 10, the function call ends without
producing any more recursive calls and the process works its way back to the
original call and then ends.

General Form of a Recursive Function Definition

The general outline of a successful recursive function definition is as
follows:

■	 One or more cases that include one or more recursive calls to the function
being defined. These recursive calls should solve “smaller” versions of the
task performed by the function being defined.

■	 One or more cases that include no recursive calls. These cases without any
recursive calls are called base cases or stopping cases.

	 14.1  Recursive Functions for Tasks	 799

Pitfall  Infinite Recursion

In the example of the function write_vertical discussed in the previous
subsections, the series of recursive calls eventually reached a call of the
function that did not involve recursion (that is, a stopping case was reached).
If, on the other hand, every recursive call produces another recursive call,
then a call to the function will, in theory, run forever. This is called infinite
recursion. In practice, such a function will typically run until the computer
runs out of resources and the program terminates abnormally. Phrased
another way, a recursive definition should not be “recursive all the way
down.” Otherwise, like the lady’s explanation of the universe given at the
start of this chapter, a call to the function will never end, except perhaps in
frustration.

Examples of infinite recursion are not hard to come by. The following is
a syntactically correct C++ function definition, which might result from an
attempt to define an alternative version of the function write_vertical:

void new_write_vertical(int n)
{
 new_write_vertical(n / 10);
 cout << (n % 10) << endl;
}

If you embed this definition in a program that calls this function, the
compiler will translate the function definition to machine code and you
can execute the machine code. Moreover, the definition even has a certain
reasonableness to it. It says that to output the argument to new_write_
vertical, first output all but the last digit and then output the last digit.
However, when called, this function will produce an infinite sequence of
recursive calls. If you call new_write_vertical(12), that execution will
stop to execute the recursive call new_write_vertical (12/10), which is
equivalent to new_write_vertical(1). The execution of that recursive call
will, in turn, stop to execute the recursive call

new_write_vertical(1/10);

which is equivalent to

new_write_vertical(0);

That, in turn, will stop to execute the recursive call new_write_vertical
(0/10); which is also equivalent to

new_write_vertical(0);

and that will produce another recursive call to again execute the same
recursive function call new_write_vertical(0); and so on, forever. Since
the definition of new_write_vertical has no stopping case, the process will
proceed forever (or until the computer runs out of resources).	 ■

800	 Chapter 14 /  Recursion

Self-Test Exercises

	  1.	 What is the output of the following program?

#include <iostream>
using namespace std;
void cheers(int n);

int main()
{
 cheers(3);
 return 0;
}

void cheers(int n)
{
if (n == 1)
{
 cout << "Hurray\n";
}
else
{
 cout << "Hip ";
 cheers(n - 1);
 }
}

	  2.	 Write a recursive void function that has one parameter which is a positive
integer and that writes out that number of asterisks '*' to the screen all
on one line.

	  3.	 Write a recursive void function that has one parameter, which is a positive
integer. When called, the function writes its argument to the screen backward.
That is, if the argument is 1234, it outputs the following to the screen:

4321

	  4.	 Write a recursive void function that takes a single int argument n and
writes the integers 1, 2, . . ., n.

	  5.	 Write a recursive void function that takes a single int argument n and
writes integers n, n-1, . . ., 3, 2, 1. (Hint: Notice that you can get
from the code for Self-Test Exercise 4 to that for Self-Test Exercise 5, or
vice versa, by an exchange of as little as two lines.)

Stacks for Recursion

In order to keep track of recursion, and a number of other things, most
computer systems make use of a structure called a stack. A stack is a very
specialized kind of memory structure that is analogous to a stack of paper. In

	 14.1  Recursive Functions for Tasks	 801

this analogy there is an inexhaustible supply of extra blank sheets of paper.
To place some information in the stack, it is written on one of these sheets of
paper and placed on top of the stack of papers. To place more information in
the stack, a clean sheet of paper is taken, the information is written on it, and
this new sheet of paper is placed on top of the stack. In this straightforward
way, more and more information may be placed on the stack.

Getting information out of the stack is also accomplished by a very simple
procedure. The top sheet of paper can be read, and when it is no longer needed, it is
thrown away. There is one complication: Only the top sheet of paper is accessible.
In order to read, say, the third sheet from the top, the top two sheets must be
thrown away. Since the last sheet that is put on the stack is the first sheet taken off
the stack, a stack is often called a last-in/first-out (LIFO) memory structure.

Using a stack, the computer can easily keep track of recursion. Whenever
a function is called, a new sheet of paper is taken. The function definition
is copied onto this sheet of paper, and the arguments are plugged in for
the function parameters. Then the computer starts to execute the body of
the function definition. When it encounters a recursive call, it stops the
computation it is doing on that sheet in order to compute the recursive call.
But before computing the recursive call, it saves enough information so that,
when it does finally complete the recursive call, it can continue the stopped
computation. This saved information is written on a sheet of paper and placed
on the stack. A new sheet of paper is used for the recursive call. The computer
writes a second copy of the function definition on this new sheet of paper,
plugs in the arguments for the function parameters, and starts to execute the
recursive call. When it gets to a recursive call within the recursively called
copy, it repeats the process of saving information on the stack and using a
new sheet of paper for the new recursive call. This process is illustrated in the
earlier subsection entitled “Tracing a Recursive Call.” Even though we did not
call it a stack in that section, the illustrations of computations placed one on
top of the other demonstrate the actions of the stack.

This process continues until some recursive call to the function completes
its computation without producing any more recursive calls. When that
happens, the computer turns its attention to the top sheet of paper on the
stack. This sheet contains the partially completed computation that is waiting
for the recursive computation that just ended. So, it is possible to proceed
with that suspended computation. When that suspended computation ends,
the computer discards that sheet of paper, and the suspended computation
that is below it on the stack becomes the computation on top of the stack. The
computer turns its attention to the suspended computation that is now on the
top of the stack, and so forth. The process continues until the computation
on the bottom sheet is completed. Depending on how many recursive calls
are made and how the function definition is written, the stack may grow and
shrink in any fashion. Notice that the sheets in the stack can only be accessed
in a last-in/first-out fashion, but that is exactly what is needed to keep track
of recursive calls. Each suspended version is waiting for the completion of the
version directly above it on the stack.

Recursion and the Stack
VideoNote

802	 Chapter 14 /  Recursion

Needless to say, computers do not have stacks of paper of this kind.
This is just an analogy. The computer uses portions of memory rather than
pieces of paper. The contents of one of these portions of memory (“sheets of
paper”) is called an activation frame. These activation frames are handled in
the last-in/first-out manner we just discussed. (The activation frames do not
contain a complete copy of the function definition, but merely reference a
single copy of the function definition. However, an activation frame contains
enough information to allow the computer to act as if the frame contained a
complete copy of the function definition.)

Stack

A stack is a last-in/first-out memory structure. The first item referenced
or removed from a stack is always the last item entered into the stack.
Stacks are used by computers to keep track of recursion (and for other
purposes).

Pitfall  Stack Overflow

There is always some limit to the size of the stack. If there is a long chain
in which a function makes a recursive call to itself, and that call results in
another recursive call, and that call produces yet another recursive call, and
so forth, then each recursive call in this chain will cause another activation
frame to be placed on the stack. If this chain is too long, then the stack will
attempt to grow beyond its limit. This is an error condition known as a stack
overflow. If you receive an error message that says stack overflow, it is likely
that some function call has produced an excessively long chain of recursive
calls. One common cause of stack overflow is infinite recursion. If a function
is recursing infinitely, then it will eventually try to make the stack exceed any
stack size limit.	 ■

Recursion Versus Iteration

Recursion is not absolutely necessary. In fact, some programming languages
do not allow it. Any task that can be accomplished using recursion can also be
done in some other way without using recursion. For example, Display 14.2
contains a nonrecursive version of the function given in Display 14.1. The
nonrecursive version of a function typically uses a loop (or loops) of some
sort in place of recursion. For that reason, the nonrecursive version is usually
referred to as an iterative version. If the definition of the function write_
vertical given in Display 14.1 is replaced by the version given in Display
14.2, then the output will be the same. As is true in this case, a recursive
version of a function can sometimes be much simpler than an iterative version.

	 14.1  Recursive Functions for Tasks	 803

A recursively written function will usually run slower and use more storage
than an equivalent iterative version. Although the iterative version of write_
vertical given in Display 14.2 looks like it uses more storage and does
more computing than the recursive version in Display 14.1, the two versions
of write_vertical actually use comparable storage and do comparable
amounts of computing. In fact, the recursive version may use more storage
and run somewhat slower, because the computer must do a good deal of work
manipulating the stack in order to keep track of the recursion. However, since
the system does all this for you automatically, using recursion can sometimes
make your job as a programmer easier and can sometimes produce code that is
easier to understand. As you will see in the examples in this chapter and in the
Self-Test Exercises and Programming Projects, sometimes a recursive definition
is simpler and clearer; other times, an iterative definition is simpler and clearer.

Self-Test Exercises

	6.	 If your program produces an error message that says stack overflow,
what is a likely source of the error?

	7.	 Write an iterative version of the function cheers defined in Self-Test
Exercise 1.

Display 14.2   Iterative Version of the Function in Display 14.1

 1 //Uses iostream:
 2 void write_vertical(int n)
 3 {
 4 int tens_in_n = 1;
 5 int left_end_piece = n;
 6 while (left_end_piece> 9)
 7 {
 8 left_end_piece = left_end_piece/10;
 9 tens_in_n = tens_in_n * 10;
10 }
11 //tens_in_n is a power of ten that has the same number
12 //of digits as n. For example, if n is 2345, then
13 //tens_in_n is 1000.
14
15 for (int power_of_10 = tens_in_n;
16 power_of_10 > 0; power_of_10 = power_of_10/10)
17 {
18 cout << (n/power_of_10) <<endl;
19 n = n % power_of_10;
20 }
21 }

804	 Chapter 14 /  Recursion

	  8.	 Write an iterative version of the function defined in Self-Test Exercise 2.

	  9.	 Write an iterative version of the function defined in Self-Test Exercise 3.

	10.	 Trace the recursive solution you made to Self-Test Exercise 4.

	11.	 Trace the recursive solution you made to Self-Test Exercise 5.

14.2  Recursive Functions for Values

To iterate is human, to recurse divine.

Anonymous

General Form for a Recursive Function That Returns a Value

The recursive functions you have seen thus far are all void functions, but
recursion is not limited to void functions. A recursive function can return a
value of any type. The technique for designing recursive functions that return
a value is basically the same as for void functions. An outline for a successful
recursive function definition that returns a value is as follows.

■	One or more cases in which the value returned is computed in terms
of calls to the same function (that is, using recursive calls). As was the
case with void functions, the arguments for the recursive calls should
intuitively be “smaller.”

■	One or more cases in which the value returned is computed without the
use of any recursive calls. These cases without any recursive calls are called
base cases or stopping cases (just as they were with void functions).

This technique is illustrated in the next Programming Example.

  Programming Example   Another Powers Function

In Chapter 4 we introduced the predefined function pow that computes
powers. For example, pow(2.0,3.0) returns 2.03.0, so the following sets the
variable x equal to 8.0:

double x = pow(2.0, 3.0);

The function pow takes two arguments of type double and returns a value of type
double. Display 14.3 contains a recursive definition for a function that is similar
but that works with the type int rather than double. This new function is called
power. For example, the following will set the value of y equal to 8, since 23 is 8:

int y = power(2, 3);

	 14.2  Recursive Functions for Values	 805

Our main reason for defining the function power is to have a simple
example of a recursive function, but there are situations in which the function
power would be preferable to the function pow. The function pow returns values
of type double, which are only approximate quantities. The function power
returns values of type int, which are exact quantities. In some situations, you
might need the additional accuracy provided by the function power.

Display 14.3   The Recursive Function power

 1 //Program to demonstrate the recursive function power.
 2 #include <iostream>
 3 #include <cstdlib>
 4 using namespace std;

 5 int power(int x, int n);
 6 //Precondition: n > = 0.
 7 //Returns x to the power n.

 8 int main()
 9 {
10 for (int n = 0; n < 4; n++)
11 cout << "3 to the power " << n
12 << " is " << power(3, n) << endl;

13 return 0;
14 }

15 //uses iostream and cstdlib:
16 int power(int x, int n)
17 {
18 if (n < 0)
19 {
20 cout << "Illegal argument to power.\n";
21 exit(1);
22 }

23 if (n > 0)
24 return (power(x, n - 1) * x);
25 else // n == 0
26 return (1);
27 }

Sample Dialogue

3 to the power 0 is 1

3 to the power 1 is 3

3 to the power 2 is 9

3 to the power 3 is 27

806	 Chapter 14 /  Recursion

The definition of the function power is based on the following formula:

x n is equal to x n-1 * x

Translating this formula into C++ says that the value returned by power(x,n)
should be the same as the value of the expression

power(x, n - 1) * x

The definition of the function power given in Display 14.3 does return this
value for power(x, n), provided n > 0. The case where n is equal to 0 is the
stopping case. If n is 0, then power(x,n) simply returns 1 (since x0 is 1).

Let’s see what happens when the function power is called with some
sample values. First consider the following simple expression:

power(2, 0)

When the function is called, the value of x is set equal to 2, the value of n is
set equal to 0, and the code in the body of the function definition is executed.
Since the value of n is a legal value, the if-else statement is executed. Since this
value of n is not greater than 0, the return statement after the else is used, so
the function call returns 1. Thus, the following would set the value of y equal to 1:

int y = power(2, 0);

Now let’s look at an example that involves a recursive call. Consider the
expression

power(2, 1)

When the function is called, the value of x is set equal to 2, the value of n is
set equal to 1, and the code in the body of the function definition is executed.
Since this value of n is greater than 0, the following return statement is used
to determine the value returned:

return (power(x, n - 1) * x);

which in this case is equivalent to

return (power(2, 0) * 2);

At this point the computation of power(2,1) is suspended, a copy of this
suspended computation is placed on the stack, and the computer then starts
a new function call to compute the value of power(2,0). As you have already
seen, the value of power(2,0) is 1. After determining the value of power(2,0),
the computer replaces the expression power(2,0) with its value of 1 and
resumes the suspended computation. The resumed computation determines
the final value for power(2,1) from the return statement above as follows:

power(2, 0) * 2 is 1 * 2, which is 2.

Thus, the final value returned for power(2,1) is 2. The following would
therefore set the value of z equal to 2:

	 14.2  Recursive Functions for Values	 807

int z = power(2, 1);

Larger numbers for the second argument will produce longer chains of
recursive calls. For example, consider the statement

cout << power(2, 3);

The value of power(2, 3) is calculated as follows:

power(2, 3) is power(2, 2) * 2
power(2, 2) is power(2, 1) * 2
power(2, 1) is power(2, 0) * 2
power(2, 0) is 1 (stopping case)

When the computer reaches the stopping case, power(2,0), there are three
suspended computations. After calculating the value returned for the stopping
case, it resumes the most recently suspended computation to determine
the value of power(2,1). After that, the computer completes each of the
other suspended computations, using each value computed as a value to
plug into another suspended computation, until it reaches and completes
the computation for the original call, power(2,3). The details of the entire
computation are illustrated in Display 14.4.

Display 14.4   Evaluating the Recursive Function Call power (2, 3)

Sequence of recursive calls

1

power(2, 0⋅) *2

power(2, 1) *2

power(2, 2) *2

power(2, 3)

 Start Here

How the final value is computed

1

1 *2

1*2 is 2

2 *2

4 *2

8

 power(2, 3) is 8

4*2 is 8

2*2 is 4

808	 Chapter 14 /  Recursion

Self-Test Exercises

	12.	 What is the output of the following program?

#include <iostream>
using namespace std;
int mystery(int n);
//Precondition n > = 1.

int main()
{
 cout << mystery(3);
 return 0;
}
int mystery(int n)
{
 if (n < = 1)
 return 1;
 else
 return (mystery(n - 1) + n);
}

	13.	 What is the output of the following program? What well-known
mathematical function is rose?

#include <iostream>
using namespace std;
int rose(int n);
//Precondition: n >= 0.

int main()
{
 cout << rose(4);
 return 0;
}

int rose(int n)
{
 if (n <= 0)
 return 1;
 else
 return (rose(n - 1) * n);
}

	14.	 Redefine the function power so that it also works for negative exponents.
In order to do this, you will also have to change the type of the value
returned to double. The function declaration and header comment for the
redefined version of power is as follows:

double power(int x, int n);

	 14.3  Thinking Recursively	 809

//Precondition: If n < 0, then x is not 0.
//Returns x to the power n.

(Hint: x –n is equal to 1/(xn).)

14.3  Thinking Recursively

There are two kinds of people in the world: those who divide the world into
two kinds of people and those who do not.

Anonymous

Recursive Design Techniques

When defining and using recursive functions you do not want to be continually
aware of the stack and the suspended computations. The power of recursion
comes from the fact that you can ignore that detail and let the computer do
the bookkeeping for you. Consider the example of the function power in
Display 14.3. The way to think of the definition of power is as follows:

power(x, n) returns power (x, n - 1) * x

Since x n is equal to xn–1 * x, this is the correct value to return, provided
that the computation will always reach a stopping case and will correctly
compute the stopping case. So, after checking that the recursive part of the
definition is correct, all you need check is that the chain of recursive calls
will always reach a stopping case and that the stopping case always returns
the correct value.

When you design a recursive function, you need not trace out the entire
sequence of recursive calls for the instances of that function in your program.
If the function returns a value, all that you need do is confirm that the
following three properties are satisfied:

	  1.	 There is no infinite recursion. (A recursive call may lead to another
recursive call and that may lead to another and so forth, but every such
chain of recursive calls eventually reaches a stopping case.)

	  2.	 Each stopping case returns the correct value for that case.

	  3.	 For the cases that involve recursion: If all recursive calls return the correct
value, then the final value returned by the function is the correct value.

For example, consider the function power in Display 14.3:

	1.	 There is no infinite recursion: The second argument to power(x,n) is
decreased by 1 in each recursive call, so any chain of recursive calls must
eventually reach the case power(x,0), which is the stopping case. Thus,
there is no infinite recursion.

Criteria for
functions that
return a value

810	 Chapter 14 /  Recursion

	  2.	 Each stopping case returns the correct value for that case: The only stopping
case is power(x,0). A call of the form power(x,0) always returns 1, and
the correct value for x0 is 1. So the stopping case returns the correct value.

	  3.	 For the cases that involve recursion—if all recursive calls return the correct value,
then the final value returned by the function is the correct value: The only case
that involves recursion is when n>1. When n>1, power(x,n) returns

 power(x, n – 1) * x

To see that this is the correct value to return, note that: if power(x,n-1)
returns the correct value, then power(x,n-1) returns xn-1 and so
power(x,n) returns

 xn−1 * x, which is xn

and that is the correct value for power(x,n).

That’s all you need to check in order to be sure that the definition of power is
correct. (This technique is known as mathematical induction, a concept that you
may have heard about in a mathematics class. However, you do not need to
be familiar with the term in order to use this technique.)

We gave you three criteria to use in checking the correctness of a recursive
function that returns a value. Basically, the same rules can be applied to
a recursive void function. If you show that your recursive void function
definition satisfies the following three criteria, then you will know that your
void function performs correctly:

	1.	 There is no infinite recursion.

	2.	 Each stopping case performs the correct action for that case.

	3.	 For each of the cases that involve recursion: If all recursive calls perform
their actions correctly, then the entire case performs correctly.

Case Study � Binary Search—An Example of Recursive
Thinking

In this case study we develop a recursive function that searches an array to find
out whether it contains a specified value. For example, the array may contain
a list of numbers for credit cards that are no longer valid. A store clerk needs
to search the list to see if a customer’s card is valid or invalid. In Chapter 7
(Display 7.10) we discussed a simple method for searching an array by simply
checking every array element. In this section we will develop a method that is
much faster for searching a sorted array.

The indexes of the array a are the integers 0 through final_index. In
order to make the task of searching the array easier, we assume that the array
is sorted. Hence, we know the following:

a[0] <= a[1] <= a[2] <= ... <= a[final_index]

Criteria for void
functions

	 14.3  Thinking Recursively	 811

When searching an array, you are likely to want to know both whether
the value is in the list and, if it is, where it is in the list. For example, if we are
searching for a credit card number, then the array index may serve as a record
number. Another array indexed by these same indexes may hold a phone
number or other information to use for reporting the suspicious card. Hence,
if the sought-after value is in the array, we will want our function to tell where
that value is in the array.

Problem Definition

We will design our function to use two call-by-reference parameters to return
the outcome of the search. One parameter, called found, will be of type bool.
If the value is found, then found will be set to true. If the value is found,
then another parameter, called location, will be set to the index of the value
found. If we use key to denote the value being searched for, the task to be
accomplished can be formulated precisely as follows:

Precondition: a[0] through a[final_index] are sorted in increasing
order.

Postcondition: if key is not one of the values a[0] through a[final_
index], then found == false; otherwise, a[location] == key
and found == true.

Algorithm Design

Now let us proceed to produce an algorithm to solve this task. It will help to
visualize the problem in very concrete terms. Suppose the list of numbers is so long
that it takes a book to list them all. This is in fact how invalid credit card numbers
are distributed to stores that do not have access to computers. If you are a clerk and
are handed a credit card, you must check to see if it is on the list and hence invalid.

How would you proceed? Open the book to the middle and see if the
number is there. If it is not and it is smaller than the middle number, then
work backward toward the beginning of the book. If the number is larger than
the middle number, you work your way toward the end of the book. This idea
produces our first draft of an algorithm:

found = false; //so far.
mid = approximate midpoint between 0 and final_index;
if (key == a[mid])
{
 found = true;
 location = mid;
}
else if (key < a[mid])
 search a[0] through a[mid - 1];
else if (key > a[mid])
 search a[mid + 1] through a[final_index];

Since the searchings of the shorter lists are smaller versions of the very
task we are designing the algorithm to perform, this algorithm naturally lends

Algorithm—first
version

812	 Chapter 14 /  Recursion

itself to the use of recursion. The smaller lists can be searched with recursive
calls to the algorithm itself.

Our pseudocode is a bit too imprecise to be easily translated into C++ code.
The problem has to do with the recursive calls. There are two recursive calls shown:

search a[0] through a[mid - 1];

and

search a[mid + 1] through a[final_index];

To implement these recursive calls, we need two more parameters. A
recursive call specifies that a subrange of the array is to be searched. In one
case it is the elements indexed by 0 through mid-1. In the other case it is the
elements indexed by mid+1 through final_index. The two extra parameters
will specify the first and last indexes of the search, so we will call them first
and last.Using these parameters for the lowest and highest indexes, instead of
0 and final_index, we can express the pseudocode more precisely as follows:

To search a[first] through a[last] do the following:
found = false; //so far.
mid = approximate midpoint between first and last;
if (key == a[mid])
{
 found = true;
 location = mid;
}
else if (key < a[mid])
 search a[first] through a[mid - 1];
else if (key > a[mid])
 search a[mid + 1] through a[last];

To search the entire array, the algorithm would be executed with first
set equal to 0 and last set equal to final_index. The recursive calls will use
other values for first and last. For example, the first recursive call would set
first equal to 0 and last equal to the calculated value mid-1.

As with any recursive algorithm, we must ensure that our algorithm ends
rather than producing infinite recursion. If the sought-after number is found
on the list, then there is no recursive call and the process terminates, but
we need some way to detect when the number is not on the list. On each
recursive call, the value of first is increased or the value of last is decreased.
If they ever pass each other and first actually becomes larger than last, then
we will know that there are no more indexes left to check and that the number
key is not in the array. If we add this test to our pseudocode, we obtain a
complete solution as shown in Display 14.5.

Coding

Now we can routinely translate the pseudocode into C++ code. The result
is shown in Display 14.6. The function search is an implementation of the
recursive algorithm given in Display 14.5. A diagram of how the function
performs on a sample array is given in Display 14.7.

More parameters

Algorithm—first
refinement

Stopping case
algorithm—final
version

	 14.3  Thinking Recursively	 813

Display 14.6   Recursive Function for Binary Search (part 1 of 2)

 1 //Program to demonstrate the recursive function for binary search.
 2 #include <iostream>
 3 using namespace std;
 4 const int ARRAY_SIZE = 10;
 5
 6
 7 void search(const int a[], int first, int last,
 8 int key, bool& found, int& location);
 9 //Precondition: a[first] through a[last] are sorted in increasing order.
10 //Postcondition: if key is not one of the values a[first] through a[last],
11 //then found == false; otherwise, a[location] == key and found == true.
12
13
14 int main()
15 {
16 int a[ARRAY_SIZE];
17 constint final_index = ARRAY_SIZE - 1;
18

(continued)

Display 14.5   Pseudocode for Binary Search

int a[Some_Size_Value];

Algorithm to search a[first] through a[last]

	 1 //Precondition:

 2 //a[first]<= a[first + 1] <= a[first + 2] <= ... <= a[last]

To locate the value key:

 1 if (first > last) //A stopping case
 2 found = false;
 3 else
 4 {
 5 mid = approximate midpoint between first and last;
 6 if (key == a[mid]) //A stopping case
 7 {
 8 found = true;
 9 location = mid;
10 }
11 else if key < a[mid] //A case with recursion
12 search a[first] through a[mid - 1];
13 else if key > a[mid] //A case with recursion
14 search a[mid + 1] through a[last];
15 }

814	 Chapter 14 /  Recursion

Display 14.6   Recursive Function for Binary Search (part 2 of 2)

 <�This portion of the program contains some code to fill and sort
the array a. The exact details are irrelevant to this example.>

19 int key, location;
20 bool found;
21 cout << "Enter number to be located: ";
22 cin >> key;
23 search(a, 0, final_index, key, found, location);
24
25 if (found)
26 cout << key << " is in index location "
27 << location <<endl;
28 else
29 cout << key << " is not in the array." <<endl;
30
31 return 0;
32 }
33 void search(const int a[], int first, int last,
34 int key, bool& found, int& location)
35 {
36 int mid;
37 if (first > last)
38 {
39 found = false;
40 }
41 else
42 {
43 mid = (first + last)/2;
44
45 if (key == a[mid])
46 {
47 found = true;
48 location = mid;
49 }
50 else if (key < a[mid])
51 {
52 search(a, first, mid -1, key, found, location);
53 }
54 else if (key > a[mid])
55 {
56 search(a, mid + 1, last, key, found, location);
57 }
58 }
59 }

	 14.3  Thinking Recursively	 815

Display 14.7   Execution of the Function search

key is 63

a[0⋅] 15

a[1] 20⋅

a[2] 35

a[3] 41

a[4] 57

a[5] 63

a[6] 75

a[7] 80⋅

a[8] 85

a[9] 90⋅

a[0⋅] 15

a[1] 20⋅

a[2] 35

a[3] 41

a[4] 57

a[5] 63

a[6] 75

a[7] 80⋅

a[8] 85

a[9] 90⋅

a[0⋅] 15

a[1] 20⋅

a[2] 35

a[3] 41

a[4] 57

a[5] 63

a[6] 75

a[7] 80⋅

a[8] 85

a[9] 90⋅

 first == 0⋅

mid =
(0⋅ + 9)/2

last == 9

mid =
(5 + 9)/2

first == 5

last == 9

last == 6

mid = (5 + 6)/2 which is 5
a[mid] is a[5] == 63
found = true;
location = mid;

first == 5

Next

Next

Not in
this half

Not here

816	 Chapter 14 /  Recursion

Notice that the function search solves a more general problem than the
original task. Our goal was to design a function to search an entire array.
Yet the function will let us search any interval of the array by specifying the
index bounds first and last. This is common when designing recursive
functions. Frequently, it is necessary to solve a more general problem in
order to be able to express the recursive algorithm. In this case, we only
wanted the answer in the case where first and last are set equal to 0 and
final_index. However, the recursive calls will set them to values other than
0 and final_index.

Checking the Recursion

In the subsection entitled “Recursive Design Techniques,” we gave three criteria
that you should check to ensure that a recursive void function definition is
correct. Let’s check these three things for the function search given in Display 14.6.

	1.	 There is no infinite recursion: On each recursive call, the value of first is
increased or the value of last is decreased. If the chain of recursive calls
does not end in some other way, then eventually the function will be
called with first larger than last, and that is a stopping case.

	2.	 Each stopping case performs the correct action for that case: There are two stopping
cases: when first > last and when key==a[mid]. Let’s consider each case.

		 If first > last, there are no array elements between a[first] and
a[last], and so key is not in this segment of the array. (Nothing is in this
segment of the array!) So, if first > last, the function search correctly
sets found equal to false.

		 If key==a[mid], the algorithm correctly sets found equal to true and
location equal to mid. Thus, both stopping cases are correct.

	3.	 For each of the cases that involve recursion, if all recursive calls perform their
actions correctly, then the entire case performs correctly: There are two cases in
which there are recursive calls: when key < a[mid] and when key > a[mid].
We need to check each of these two cases.

		 First suppose key < a[mid]. In this case, since the array is sorted, we
know that if key is anywhere in the array, then key is one of the elements
a[first] through a[mid-1]. Thus, the function need only search these
elements, which is exactly what the recursive call

search(a, first, mid - 1, key, found, location);

		 does. So if the recursive call is correct, then the entire action is correct.

		 Next, suppose key > a[mid]. In this case, since the array is sorted, we
know that if key is anywhere in the array, then key is one of the elements
a[mid+1] through a[last]. Thus, the function need search only these
elements, which is exactly what the recursive call

Solve a more
general problem

	 14.3  Thinking Recursively	 817

search(a, mid + 1, last, key, found, location);

		 does. So if the recursive call is correct, then the entire action is correct.
Thus, in both cases the function performs the correct action (assuming
that the recursive calls perform the correct action).

The function search passes all three of our tests, so it is a good recursive
function definition.

Efficiency

The binary search algorithm is extremely fast compared to an algorithm that
simply tries all array elements in order. In the binary search, you eliminate about
half the array from consideration right at the start. You then eliminate a quarter,
then an eighth of the array, and so forth. These savings add up to a dramatically
fast algorithm. For an array of 100 elements, the binary search will never need
to compare more than 7array elements to the key. A simple serial search could
compare as many as 100 array elements to the key and on the average will
compare about 50 array elements to the key. Moreover, the larger the array is, the
more dramatic the savings will be. On an array with 1000 elements, the binary
search will need to compare only about 10 array elements to the key value, as
compared to an average of 500 for the simple serial search algorithm.

An iterative version of the function search is given in Display 14.8. On
some systems, the iterative version will run more efficiently than the recursive
version. The algorithm for the iterative version was derived by mirroring the
recursive version. In the iterative version, the local variables first and last
mirror the roles of the parameters in the recursive version, which are also named
first and last. As this example illustrates, it often makes sense to derive a
recursive algorithm even if you expect to later convert it to an iterative algorithm.

Iterative version

Display 14.8   Iterative Version of Binary Search (part 1 of 2)

Function Declaration

 1 void search(const int a[], int low_end, int high_end,
 2 int key, bool& found, int& location);
 3 //Precondition: a[low_end] through a[high_end] are sorted in increasing
 4 //order.
 5 //Postcondition: If key is not one of the values a[low_end] through
 6 //a[high_end], then found == false; otherwise, a[location] == key and
 7 //found == true.

Function Definition

 1 void search(const int a[], int low_end, int high_end,
 2 int key, bool& found, int& location)
 3 {
 4 int first = low_end;
 5 int last = high_end;

(continued)

818	 Chapter 14 /  Recursion

  Programming Example   A Recursive Member Function

A member function of a class can be recursive. Member functions can use
recursion in the same way that ordinary functions do. Display 14.9 contains
an example of a recursive member function. The class BankAccount used in
that display is the same as the class named BankAccount that was defined
in Display 10.6, except that we have overloaded the member function name
update. The first version of update has no arguments and posts one year
of simple interest to the bank account balance. The other (new) version of
update takes an int argument that is some number of years. This member
function updates the account by posting the interest for that many years. The
new version of update is recursive;has one parameter, called years; and uses
the following algorithm:

If the number of years is 1, then //Stopping case:
 call the other function named update (the one with no arguments).
If the number of years is greater than 1, then //Recursive case:
 �make a recursive call to post years-1 worth of interest, and then call

the other function called update (the one with no arguments) to post
one more year’s worth of interest.

Display 14.8   Iterative Version of Binary Search (part 2 of 2)

 6 int mid;
 7
 8 found = false; //so far
 9 while ((first <= last) && !(found))
10 {
11 mid = (first + last)/2;
12 if (key == a[mid])
13 {
14 found = true;
15 location = mid;
16 }
17 else if (key < a[mid])
18 {
19 last = mid −1;
20 }
21 else if (key > a[mid])
22 {
23 first = mid + 1;
24 }
25 }
26 }

	 14.3  Thinking Recursively	 819

Display 14.9   A Recursive Member Function (part 1 of 2)

 1 //Program to demonstrate the recursive member function update(years).
 2 #include <iostream>
 3 using namespace std;
 4
 5 //Class for a bank account:
 6 class BankAccount
 7 {
 8 public:
 9 BankAccount(int dollars, int cents, double rate);
10 //Initializes the account balance to $dollars.cents and
11 //initializes the interest rate to rate percent.

12 BankAccount(int dollars, double rate);
13 //Initializes the account balance to $dollars.00 and
14 //initializes the interest rate to rate percent.

15 BankAccount();
16 //Initializes the account balance to $0.00 and
17 //initializes the interest rate to 0.0%.

18 void update();
19 //Postcondition: One year of simple interest
20 //has been added to the account balance.

21 void update(int years);
22 //Postcondition: Interest for the number of years given has been added to the
23 //account balance. Interest is compounded annually.

24 double get_balance();
25 //Returns the current account balance.

26 double get_rate();
27 //Returns the current account interest rate as a percentage.

28 void output(ostream& outs);
29 //Precondition: If outs is a file output stream, then outs has already
30 //been connected to a file.
31 //Postcondition: Balance & interest rate have been written to the stream outs.
32 private:
33 double balance;
34 double interest_rate;
35 double fraction(double percent); //Converts a percentage to a fraction.
36 };

37 int main()
38 {
39 BankAccount your_account(100, 5);
40 your_account.update(10);
41 cout.setf(ios::fixed);

(continued)

The class BankAccount in this program is an
improved version of the class BankAccount
given in Display 10.6.

Two different functions
with the same name

820	 Chapter 14 /  Recursion

It is easy to see that this algorithm produces the desired result by checking the
three points given in the subsection entitled “Recursive Design Techniques.”

	1.	 There is no infinite recursion: Each recursive call reduces the number of
years by 1 until the number of years eventually becomes 1, which is the
stopping case. So there is no infinite recursion.

	2.	 Each stopping case performs the correct action for that case: The one stopping
case is when years==1. This case produces the correct action, since it
simply calls the other overloaded member function called update, and we
checked the correctness of that function in Chapter 10.

Display 14.9   A Recursive Member Function (part 2 of 2)

42 cout.setf(ios::showpoint);
43 cout.precision(2);
44 cout << "If you deposit $100.00 at 5% interest, then\n"
45 << "in ten years your account will be worth $"
46 << your_account.get_balance() << endl;
47 return 0;
48 }
49
50 void BankAccount::update()
51 {
52 balance = balance + fraction(interest_rate)*balance;
53 }
54
55 void BankAccount::update(int years)
56 {
57 if (years == 1)
58 {
59 update();
60 }
61 else if (years > 1)
62 {
63 update(years − 1);
64 update();
65 }
66 }

<Definitions of the other member functions are given in Display 10.5 and Display
10.6, but you need not read those definitions in order to understand this example.>

Sample Dialogue

If you deposit $100.00 at 5% interest, then

in ten years your account will be worth $162.89

Recursive function call

Overloading (that is, calls
to another function with
the same name)

	 14.3  Thinking Recursively	 821

	3.	 For the cases that involve recursion, if all recursive calls perform correctly, then
the entire case performs correctly: The recursive case—that is, years>1—works
correctly, because if the recursive call correctly posts years-1 worth of interest,
then all that is needed is to post one additional year’s worth of interest and
the call to the overloaded zero-argument version of update will correctly post
one year’s worth of interest. Thus, if the recursive call performs the correct
action, then the entire action for the case of years>1 will be correct.

In this example, we have overloaded update so that there are two different
functions named update: one that takes no arguments and one that takes a
single argument. Do not confuse the calls to the two functions named update.
These are two different functions that, as far as the compiler is concerned, just
coincidentally happen to have the same name. When the definition of the
function update with one argument includes a call to the version of update
that takes no arguments, that is not a recursive call. Only the call to the version
of update with the exact same function declaration is a recursive call. To see
what is involved here, note that we could have named the version of update
that takes no argument post_one_year(), instead of naming it update(), and
then the definition of the recursive version of update would read as follows:

void BankAccount::update(int years)
{
 if (years == 1)
 {
 post_one_year();
 }
 else if (years > 1)
 {
 update(years - 1);
 post_one_year();
 }
}

Overloading

Recursion and Overloading

Do not confuse recursion and overloading. When you overload a function
name, you are giving two different functions the same name. If the
definition of one of these two functions includes a call to the other,
that is not recursion. In a recursive function definition, the definition of
the function includes a call to the exact same function with the exact
same definition, not to some other function that coincidentally uses the
same name. It is not too serious an error if you confuse overloading and
recursion, since they are both legal. It is simply a question of getting the
terminology straight so that you can communicate clearly with other
programmers and so that you understand the underlying processes.

822	 Chapter 14 /  Recursion

Self-Test Exercises

	15.	 Write a recursive function definition for the following function:

int squares(int n);
//Precondition: n >= 1
//Returns the sum of the squares of numbers 1 through n.

For example, squares(3) returns 14 because 12 + 22 + 32 is 14.

	16.	 Write an iterative version of the one-argument member function
BankAccount::update(int years) that is described in Display 14.9.

Chapter Summary

■	 If a problem can be reduced to smaller instances of the same problem, then
a recursive solution is likely to be easy to find and implement.

■	 A recursive algorithm for a function definition normally contains two kinds of
cases: one or more cases that include at least one recursive call and one or more
stopping cases in which the problem is solved without any recursive calls.

■	 When writing a recursive function definition, always confirm that the func-
tion will not produce infinite recursion.

■	 When you define a recursive function, use the three criteria given in the
subsection “Recursive Design Techniques” to confirm that the function is
correct.

■	 When you design a recursive function to solve a task, it is often necessary to
solve a more general problem than the given task. This may be required to
allow for the proper recursive calls, since the smaller problems may not be
exactly the same problem as the given task. For example, in the binary search
problem, the task was to search an entire array, but the recursive solution is
an algorithm to search any portion of the array (either all of it or a part of it).

Answers to Self-Test Exercises

	  1.	 Hip Hip Hurray

	  2.	 void stars(int n)
{
 cout << '*';
 if (n > 1)
 stars(n - 1);
}

	 Answers to Self-Test Exercises	 823

The following is also correct but is more complicated:

void stars(int n)
{
 if (n <= 1)
 {
 cout << '*';
 }
 else
 {
 stars(n - 1);
 cout << '*';
 }
}

	  3.	 void backward(int n)
{
 if (n < 10)
 {
 cout << n;
 }
 else
 {
 cout << (n % 10);//write last digit
 backward(n / 10);//write the other digits backward
 }
}

	  4.	 and 5. The answer to 4 is write_up(int n);. The answer to 5 is write_
down(int n);.

#include <iostream>
using namespace std;
void write_down(int n)
{
 if (n > = 1)
 {
 cout << n << " ";
 write_down(n - 1);
 }
}

void write_up(int n)
{
 if (n >= 1)
 {
 write_up(n - 1);
 cout << n << " ";
 }
}

824	 Chapter 14 /  Recursion

//testing code for both #4 and #5
int main()
{
 cout << "calling write_up(" << 10 << ")\n";
 write_up(10);
 cout << endl;
 cout << "calling write_down(" << 10 << ")\n";
 write_down(10);
 cout << endl;
 return 0;
}
/* Test results
calling write_up(10)
1 2 3 4 5 6 7 8 9 10
calling write_down(10)
10 9 8 7 6 5 4 3 2 1
*/

	  6.	 An error message that says stack overflow is telling you that the computer
has attempted to place more activation frames on the stack than are
allowed on your system. A likely cause of this error message is infinite
recursion.

	  7.	 void cheers(int n)
{
 while (n > 1)
 {
 cout << "Hip ";
 n--;
 }
 cout << "Hurray\n";
}

	  8.	 void stars(int n)
{
 for (int count = 1; count <= n; count++)
 cout << '*';
}

	  9.	 void backward(int n)
{
 while (n >= 10)
 {
 cout << (n % 10); //write last digit
 n = n / 10; //discard the last digit
 }
 cout << n;
}

	 Answers to Self-Test Exercises	 825

	10.	 Trace for Exercise 4: If n = 3, the code to be executed is

if (3 >= 1)
{
 write_up(3 - 1);
 cout << 3 << " ";
}

On the next recursion, n = 2; the code to be executed is

if (2 >= 1)
{
 write_up(2 - 1);
 cout << 2 << " ";
}

On the next recursion, n = 1 and the code to be executed is

if (1 >= 1)
{
 write_up(1 - 1);
 cout << 1 << " ";
}

On the final recursion, n = 0 and the code to be executed is

if (0 >= 1) // condition false, body skipped
{
 // skipped
}

The recursions unwind; the output (obtained while recursion was winding
up) is 1 2 3.

	11.	 Trace for Exercise 5: If n = 3, the code to be executed is

if (3 >= 1)
{
 cout << 3 << " ";
 write_down(3 - 1);
}

Next recursion, n = 2, the code to be executed is

if (2 > = 1)
{
 cout << 2 << " ";
 write_down(2 - 1)
}

Next recursion, n = 1, the code to be executed is

if (1 >= 1)

826	 Chapter 14 /  Recursion

{
 cout << 1 << " ";
 write_down(1 - 1)
}

Final recursion, n = 0, and the "true" clause is not executed:

if (0 >= 1) // condition false
{
 // this clause is skipped
}

The output is 3 2 1.

	12.	 6

13. The output is 24. The function is the factorial function, usually written n!
and defined as follows:

n! is equal to n * (n - 1) * (n - 2) *...* 1

14. //Uses iostream and cstdlib:
double power(int x, int n)
{
 if (n < 0 && x == 0)
 {
 cout << "Illegal argument to power.\n";
 exit(1);
 }

 if (n < 0)
 return (1/power(x, -n));
 else if (n > 0)
 return (power(x, n - 1)*x);
 else // n == 0
 return (1.0);
}

15. int squares(int n)
{
 if (n <= 1)
 return 1;
 else
 return (squares(n - 1) + n * n);
}

16. void BankAccount::update(int years)
{
 for (int count = 1; count <= years; count++)
 update();
}

	 Programming Projects	 827

Practice Programs

Practice Programs can generally be solved with a short program that directly applies
the programming principles presented in this chapter.

	  1.	 Write a recursive function definition for a function that has one parameter
n of type int and that returns the nth Fibonacci number. See Programming
Project 6 in Chapter 3 for the definition of Fibonacci numbers. Embed the
function in a program and test it.

	  2.	 Write a recursive version of the function index_of_smallest that was used
in the sorting program in Display 7.12 of Chapter 7. Embed the function
in a program and test it.

	  3.	 Write a recursive version of the search function in Display 7.10 of Chapter 7.

	  4.	 There are n people in a room, where n is an integer greater than or equal
to 2. Each person shakes hands once with every other person. What is the
total number of handshakes in the room? Write a recursive function to
solve this problem, with the following header:

int handshake(int n)

where handshake(n) returns the total number of handshakes for n people
in the room. To get you started, if there are only one or two people in the
room, then:

handshake(1) = 0
handshake(2) = 1

	  5.	 Write a recursive function that returns true if an input string is a palin-
drome and false if it is not. You can do this by checking if the first charac-
ter equals the last character, and if so, make a recursive call with the input
string minus the first and last characters. You will have to define a suitable
stopping condition. Test your function with several palindromes and non-
palindromes.

Programming Projects

Programming Projects require more problem-solving than Practice Programs and
can usually be solved many different ways. Visit www.myprogramminglab.com to
complete many of these Programming Projects online and get instant feedback.

	  1.	 The formula for computing the number of ways of choosing r different
things from a set of n things is the following:

C(n, r) = n!/(r! * (n – r)!)

Solution to Practice
Program 14.4

VideoNote

www.myprogramminglab.com

828	 Chapter 14 /  Recursion

The factorial function n! is defined by

n! = n* (n – 1) * (n – 2) *. . .*1

Discover a recursive version of this formula and write a recursive function
that computes the value of the formula. Embed the function in a program
and test it.

	  2.	 Write a recursive function that has an argument that is an array of char-
acters and two arguments that are bounds on array indexes. The function
should reverse the order of those entries in the array whose indexes are
between the two bounds. For example, if the array is

a[0] == 'A' a[1] == 'B' a[2] == 'C' a[3] == 'D' a[4] == 'E'

and the bounds are 1 and 4, then after the function is run the array
elements should be

a[0] == 'A' a[1] == 'E' a[2] == 'D' a[3] == 'C' a[4] == 'B'

Embed the function in a program and test it. After you have fully debugged
this function, define another function that takes a single argument which
is an array that contains a string value and that reverses the spelling of the
string value in the array argument. This function will include a call to the
recursive definition you did for the first part of this project. Embed this
second function in a program and test it.

	  3.	 Write an iterative version of the recursive function in Programming Project 1.
Embed it in a program and test it.

	  4.	 Write a recursive function to sort an array of integers into ascending order
using the following idea: Place the smallest element in the first position,
then sort the rest of the array by a recursive call. This is a recursive version
of the selection sort algorithm discussed in Chapter 7. (Note: Simply tak-
ing the program from Chapter 7 and plugging in a recursive version of
index_of_smallest will not suffice. The function to do the sorting must
itself be recursive and not merely use a recursive function.)

	  5.	 Towers of Hanoi: There is a story about Buddhist monks who are playing
this puzzle with 64 stone disks. The story claims that when the monks finish
moving the disks from one post to a second via the third post, time will end.

A stack of n disks of decreasing size is placed on one of three posts. The
task is to move the disks one at a time from the first post to the second. To
do this, any disk can be moved from any post to any other post, subject
to the rule that you can never place a larger disk over a smaller disk. The
(spare) third post is provided to make the solution possible. Your task is
to write a recursive function that describes instructions for a solution to

Solution to
Practice Program 14.4

VideoNote

	 Programming Projects	 829

this problem. We don’t have graphics available, so you should output a
sequence of instructions that will solve the problem.

(Hint: If you could move up n−1 of the disks from the first post to
the third post using the second post as a spare, the last disk could be
moved from the first post to the second post. Then by using the same
technique (whatever that may be) you can move the n−1 disks from the
third post to the second post, using the first disk as a spare. There! You
have the puzzle solved. You only have to decide what the nonrecursive
case is, what the recursive case is, and when to output instructions to
move the disks.)

	  6.	 The game of “Jump It” consists of a board with n positive integers in a row,
except for the first column, which always contains 0. These numbers represent
the cost to enter each column. Here is a sample game board where n is 6:

0 80 6 57 103

The object of the game is to move from the first column to the last column
with the lowest total cost. The number in each column represents the cost
to enter that column. You always start the game in the first column and
have two types of moves. You can either move to the adjacent column or
jump over the adjacent column to land two columns over. The cost of a
game is the sum of the costs of the columns visited.

In the board shown above, there are several ways to get to the end.
Starting in the first column, our cost so far is 0. We could jump to 80,
then jump to 57, then move to 10 for a total cost of 80 + 57 + 10 = 147.
However, a cheaper path would be to move to 3, jump to 6, then jump to
10, for a total cost of 3 + 6 + 10 = 19.

Write a recursive solution to this problem that computes the lowest cost
of the game and outputs this value for an arbitrarily large game board
represented as an array. Your program doesn’t have to output the actual
sequence of jumps, only the lowest cost of this sequence. After making sure
that your solution works on small arrays, test it on boards of larger and larger
values of n to get a feel for the scalability and efficiency of your solution.

	7.	 Suppose we can buy chocolate bars from the vending machine for $1 each.
Inside every chocolate bar is a coupon. We can redeem 7 coupons for 1 choc-
olate bar from the machine. We would like to know how many chocolate bars
can be eaten, including those redeemed via coupon, if we have n dollars.

For example, if we have $20, then we can initially buy 20 chocolate bars.
This gives us 20 coupons. We can redeem 14 coupons for 2 additional
chocolate bars. These two additional chocolate bars have 2 more coupons,

830	 Chapter 14 /  Recursion

so we now have a total of 8 coupons when added to the 6 left over from
the original purchase. This gives us enough to redeem for 1 final chocolate
bar. As a result we now have 23 chocolate bars and 2 leftover coupons.

Write a recursive solution to this problem that inputs from the user
the number of dollars to spend on chocolate bars and outputs how
many chocolate bars you can collect after spending all your money and
redeeming as many coupons as possible. Your recursive function will be
based upon the number of coupons owned.

	8.	 Some problems require finding all permutations (different orderings)
of a set of items. For a set of n items { a1, a2, a3, . . .an } there are
n! permutations. For example, given the set {1, 2, 3} there are six
permutations:

{3, 2, 1} {2, 3, 1} {2, 1, 3} {3, 1, 2} {1, 3, 2} {1, 2, 3}

Write a recursive function that generates all the permutations of a set
of numbers. The general outline of a solution is given here, but the
implementation is up to you. The program will require storing a set of
permutations of numbers that you can implement in many ways (for
example, linked lists of nodes, linked lists of vectors, arrays, etc.) Your
program should call the recursive function with sets of several different
sizes, printing the resulting set of permutations for each.

One solution is to first leave out the n th item in the set. Recursively
find all permutations using the set of (n−1) items. If we insert the nth
item into each position for all of these permutations, then we get a new
set of permutations that includes the n th item. The base case is when
there is only one item in the set, in which case the solution is simply the
permutation with the single item.

For example, consider finding all permutations of {1, 2, 3}. We leave
the 3 out and recursively find all permutations of the set {1, 2}. This
consists of the permutations:

{1, 2} {2, 1}

Next we insert the 3 into every position for these permutations. For the
first permutation, we insert the 3 in the front, between 1 and 2, and after 2.
For the second permutation, we insert the 3 in the front, between 2 and 1,
and after 1:

{3, 1, 2} {1, 3, 2} {1, 2, 3} {3, 2, 1} {2, 3, 1} {2, 1, 3}

The resulting six permutations comprise all permutations of the set
{1, 2, 3}.

	9.	 The word ladder game was invented by Lewis Carroll in 1877. The idea is
to begin with a start word and change one letter at a time until arriving at
an end word. Each word along the way must be an English word.

For example, starting from FISH you can make a word ladder to MAST
through the following ladder:

FISH, WISH, WASH, MASH, MAST

Write a program that uses recursion to find the word ladder given a start
word and an end word, or determines if no word ladder exists. Use the
file words.txt that is available online with the source code for the book
as your dictionary of valid words. This file contains 87314 words. Your
program does not need to find the shortest word ladder between words,
any word ladder will do if one exists.

	 Programming Projects	 831

This page intentionally left blank

Inheritance

15.1  Inheritance Basics   834
Derived Classes   837
Constructors in Derived Classes   845
Pitfall: Use of Private Member Variables from the

Base Class   848
Pitfall: Private Member Functions Are Effectively Not

Inherited   850
The protected Qualifier   850
Redefinition of Member Functions   853
Redefining Versus Overloading   856
Access to a Redefined Base Function   858

15.2  Inheritance Details   859
Functions That Are Not Inherited   859
Assignment Operators and Copy Constructors in

Derived Classes   860
Destructors in Derived Classes   861

15.3  Polymorphism   862
Late Binding   863
Virtual Functions in C++   864
Virtual Functions and Extended Type

Compatibility   869
Pitfall: The Slicing Problem   873
Pitfall: Not Using Virtual Member Functions   874
Pitfall: Attempting to Compile Class Definitions

Without Definitions for Every Virtual Member
Function   875

Programming Tip: Make Destructors Virtual   875

15

Chapter Summary   877
Answers to Self-Test Exercises   877

Practice Programs   881
Programming Projects   884

Introduction

Object-oriented programming is a popular and powerful programming
technique. Among other things, it provides for a new dimension of abstraction
known as inheritance. This means that a very general form of a class can be
defined and compiled. Later, more specialized versions of that class can be
defined and can inherit all the properties of the previous class. Facilities for
inheritance are available in all versions of C++.

Prerequisites

Section 15.1 uses material from Chapters 2 to 8 and 10 to 12. Sections 15.2
and 15.3 use material from Chapters 9 and 13 in addition to Chapters 2 to 8,
10 to 12, and Section 15.1.

15.1  Inheritance Basics

If there is anything that we wish to change in the child, we should first ex-
amine it and see whether it is not something that could better be changed in
ourselves.

Carl Gustav Jung, The Integration of the Personality

One of the most powerful features of C++ is the use of inheritance to derive
one class from another. Inheritance is the process by which a new class—
known as a derived class—is created from another class, called the base class.
A derived class automatically has all the member variables and functions
that the base class has and can have additional member functions and/or
additional member variables.

In Chapter 10, we noted that saying that class D is derived from another
class B means that class D has all the features of class B and some extra, added
features as well. When a class D is derived from a class B, we say that B is the
base class and D is the derived class. We also say that D is the child class and B
is the parent class.1

834

With all appliances and means to boot.

William Shakespeare, King Henry IV, Part III

1 Some authors speak of a subclass D and superclass B instead of derived class D and base
class B. However, we have found the terms derived class and base class to be less confus-
ing. We only mention this in an effort to help you to read other texts.

As an example to illustrate the usefulness of inheritance, imagine that
you’ve set up a home automation system where your garage door and furnace
thermostat are networked and accessible from your computer. You would
like to control and interrogate the status of these devices (e.g., door is open,
thermostat set to 80 degrees) from your computer. This would be much easier
to accomplish if there was a consistent interface for these disparate devices.
Inheritance lets us do this while providing a way to organize our code without
duplication.

First, consider the general concept of a device in the home automation
system. Every device must have a model and serial number. Perhaps every
device also has a way to query its status. We could model this with a Device
class that has variables for the model and serial number, and a function for
the status. The idea is that this class contains functions and properties that are
common to every possible device.

Second, consider the garage door. This is a specific type of device in the
automation system. In addition to having a model, serial number, and way
to query its status like every other device, the garage door device also has a
specific function to open or close the door. We can model the garage door
with a DoorDevice class. We will need to add an openClose() function to
this class. The DoorDevice class is also where we would know how to return
the status of the device. At the level of the generic Device class we don’t
have the needed information to return the status of a specific device because
at that level we don’t even know what kind of device we are working with.
While we need to add functions to DoorDevice for the status and to open/
close the door, it would be nice if we didn’t have to duplicate the variables
and code to manipulate the model and serial number that we wrote for
the Device class.

Similarly, the thermostat device will also have a model, serial number,
and way to query its status in addition to a function to set the temperature.
We can define a ThermostatDevice class with functions to set the temperature
and return the status of the device, but it would be nice if we didn’t again
have to duplicate the variables and code to manipulate the model and serial
number that we wrote for the Device class!

We can solve this problem with inheritance. In this case, DoorDevice
“IS-A” Device and ThermostatDevice “IS-A” Device. By defining DoorDevice
and ThermostatDevice as derived classes from Device, then these classes
(if the programmer specifies it) have access to the model and serial number
defined in Device and we don’t need to re-write any code in the Device class
that deals with these variables. At the same time we can add specific code
that is unique to our derived classes. The relationship between these classes is
illustrated in Display 15.1.

Once the inheritance relationship is defined, then if we create an object
of type DoorDevice or ThermostatDevice we will have access to functions
and variables defined in Device. For example, if thermostat is a variable of
type ThermostatDevice then we could access thermostat.model if model is a

	 15.1  Inheritance Basics	 835

836	 Chapter 15 /  Inheritance

public string variable in the Device class. This saves us the work of redefining
the code and variables from the Device class.

We can specify the status() function to behave a bit differently. When
we define the same function in both the base and derived classses then we
will see later in the chapter that we have two options: redefine the function or
override the function. In this case we want to override the function. If we had
an object thermostat of type ThermostatDevice, but then treat thermostat
instead like it is of type Device (for example, by passing thermostat to a
function where the parameter is defined to be of type Device), then invoking
status() will call the definition associated with ThermostatDevice rather
than the definition associated with Device. This behavior is important in this
case because the Device class doesn’t know what to return as the status! This
topic is explored in more detail in section 15.3.

Display 15.1  Example Inheritance Hierarchy for Home Automation Devices

Device

string model
string serialNumber
string status()

DoorDevice

void openClose()
string status()

ThermostatDevice
string status()
void setTemp(int t)

IS-A IS-A

base
or

parent class

derived or child class derived or child class

inherits status()
and openClose()
from Device class

inherits model and
serialNumber from
Device class

An object of type DoorDevice or ThermostatDevice includes functions and variables
defined in Device, such as model and serialNumber.

The status() function can be overridden. If a DoorDevice object is treated like a Device
object, then calling status() will invoke DoorDevice's status() function, not Device's
status() function. This is necessary when the Device class doesn’t know what to return
as a status and only the derived classes can return the information.

For another example where inheritance can be applied, consider the
CD account in Chapter 10. We discussed how a CD account is a more spe-
cialized version of a savings account. By deriving the class CDAccount from
SavingsAccount, we automatically inherit all of the SavingsAccount public func-
tions and variables when we create a CDAccount object. C++ uses inheritance
in predefined classes as well. In using streams for file I/O, the predefined class
ifstream is derived from the (predefined) class istream by adding member func-
tions such as open and close. The stream cin belongs to the class of all input
streams (that is, the class istream), but it does not belong to the class of input-file
streams (that is, does not belong to ifstream), partly because it lacks the member
functions open and close of the derived class ifstream.

Derived Classes

Suppose we are designing a record-keeping program that has records for
salaried employees and hourly employees. There is a natural hierarchy for
grouping these classes. These are all classes of people who share the property
of being employees.

Employees who are paid an hourly wage are one subset of employees.
Another subset consists of employees who are paid a fixed wage each month
or each week. Although the program may not need any type corresponding
to the set of all employees, thinking in terms of the more general concept of
employees can be useful. For example, all employees have names and Social
Security numbers, and the member functions for setting and changing names
and Social Security numbers will be the same for salaried and hourly employees.

Within C++ you can define a class called Employee that includes all
employees, whether salaried or hourly, and then use this class to define classes
for hourly employees and salaried employees. Displays 15.2 and 15.3 show
one possible definition for the class Employee.

You can have an (undifferentiated) Employee object, but our reason for
defining the class Employee is so that we can define derived classes for different
kinds of employees. In particular, the function print_check will always have
its definition changed in derived classes so that different kinds of employees
can have different kinds of checks. This is reflected in the definition of the
function print_check for the class Employee (Display 15.3). It makes little
sense to print a check for such an (undifferentiated) Employee. We know
nothing about this employee’s salary details. Consequently, we implemented
the function print_check of the class Employee so that the program stops with
an error message if print_check is called for a base class Employee object. As
you will see, derived classes will have enough information to redefine the
function print_check to produce meaningful employee checks.

A class that is derived from the class Employee will automatically have all
the member variables of the class Employee (name, ssn, and net_pay). A class
that is derived from the class Employee will also have all the member functions
of the class Employee, such as print_check, get_name, set_name, and the other

	 15.1  Inheritance Basics	 837

838	 Chapter 15 /  Inheritance

member functions listed in Display 15.2. This is usually expressed by saying
that the derived class inherits the member variables and member functions.

The interface files with the class definitions of two derived classes of
the class Employee are given in Displays 15.4 (HourlyEmployee) and 15.5
(SalariedEmployee). We have placed the class Employee and the two derived
classes in the same namespace. C++ does not require that they be in the same
namespace, but since they are related classes, it makes sense to put them there.
We will first discuss the derived class HourlyEmployee given in Display 15.4.

Note that the definition of a derived class begins like any other class
definition but adds a colon, the reserved word public, and the name of the

Display 15.2   Interface for the Base Class Employee

	 1 //This is the header file employee.h.
	 2 //This is the interface for the class Employee.
	 3 //This is primarily intended to be used as a base class to derive
	 4 //classes for different kinds of employees.
	 5 #ifndef EMPLOYEE_H
	 6 #define EMPLOYEE_H

	 7 #include <string>
	 8 using namespace std;

	 9 namespace employeessavitch
	10 {

	11 class Employee
	12 {
	13 public:
	14 Employee();
	15 Employee(string the_name, string the_ssn);
	16 string get_name() const;
	17 string get_ssn() const;
	18 double get_net_pay() const;
	19 void set_name(string new_name);
	20 void set_ssn(string new_ssn);
	21 void set_net_pay(double new_net_pay);
	22 void print_check() const;
	23 private:
	24 string name;
	25 string ssn;
	26 double net_pay;
	27 };

	28 }//employeessavitch

	29 #endif //EMPLOYEE_H

	 15.1  Inheritance Basics	 839

Display 15.3   Implementation for the Base Class Employee (part 1 of 2)

	 1 //This is the file: employee.cpp.
	 2 //This is the implementation for the class Employee.
	 3 //The interface for the class Employee is in the header file employee.h.
	 4 #include <string>
	 5 #include <cstdlib>
	 6 #include <iostream>
	 7 #include “employee.h”
	 8 using namespace std;

	 9 namespace employeessavitch
	10 {
	11 Employee::Employee() : name(“No name yet”), ssn(“No number yet”), net_pay(0)
	12 {
	13 //deliberately empty
	14 }

	15 Employee::Employee(string the_name, string the_number)
	16 : name(the_name), ssn(the_number), net_pay(0)
	17 {
	18 //deliberately empty
	19 }

	20 string Employee::get_name() const
	21 {
	22 return name;
	23 }

	24 string Employee::get_ssn() const
	25 {
	26 return ssn;
	27 }
	28
	29 double Employee::get_net_pay() const
	30 {
	31 return net_pay;
	32 }

	33 void Employee::set_name(string new_name)
	34 {
	35 name = new_name;
	36 }
	37 void Employee::set_ssn(string new_ssn)
	38 {
	39 ssn = new_ssn;
	40 }

(continued)

840	 Chapter 15 /  Inheritance

Display 15.4   Interface for the Derived Class HourlyEmployee (part 1 of 2)

 1 //This is the header file hourlyemployee.h.
 2 //This is the interface for the class HourlyEmployee.
 3 #ifndef HOURLYEMPLOYEE_H
 4 #define HOURLYEMPLOYEE_H

 5 #include <string>
 6 #include “employee.h”

 7 using namespace std;
 8 namespace employeessavitch
 9 {

10 class HourlyEmployee : public Employee
11 {
12 public:
13 HourlyEmployee();
14 HourlyEmployee(string the_name, string the_ssn,
15 double the_wage_rate, double the_hours);
16 void set_rate(double new_wage_rate);
17 double get_rate() const;
18 void set_hours(double hours_worked);
19 double get_hours() const;

(continued)

Display 15.3   Implementation for the Base Class Employee (part 2 of 2)

	41 void Employee::set_net_pay (double new_net_pay)
	42 {
	43 net_pay = new_net_pay;
	44 }

	45 void Employee::print_check() const
	46 {
	47 cout << “\nERROR: print_check FUNCTION CALLED FOR AN \n”
	48 << “UNDIFFERENTIATED EMPLOYEE. Aborting the program.\n”
	49 << “Check with the author of the program about this bug.\n”;
	50 exit(1);
	51 }

	52 }//employeessavitch

	 15.1  Inheritance Basics	 841

Display 15.4   Interface for the Derived Class HourlyEmployee (part 2 of 2)

20 void print_check();
21 private:
22 double wage_rate;
23 double hours;
24 };

25 }//employeessavitch

26 #endif //HOURLY EMPLOYEE_H

Display 15.5   Interface for the Derived Class SalariedEmployee

	 1 //This is the header file salariedemployee.h.
	 2 //This is the interface for the class SalariedEmployee.
	 3 #ifndef SALARIEDEMPLOYEE_H
	 4 #define SALARIEDEMPLOYEE_H

	 5 #include <string>
	 6 #include “employee.h”

	 7 using namespace std;

	 8 namespace employeessavitch
	 9 {

	10 class SalariedEmployee : public Employee
	11 {
	12 public:
	13 SalariedEmployee();
	14 SalariedEmployee (string the_name, string the_ssn,
	15 double the_weekly_salary);
	16 double get_salary() const;
	17 void set_salary(double new_salary);
	18 void print_check();
	19 private:
	20 double salary;//weekly
	21 };

	22 }//employeessavitch

	23 #endif //SALARIEDEMPLOYEE_H

You only list the declaration of an
inherited member function if you
want to change the definition of the
function.

842	 Chapter 15 /  Inheritance

base class to the first line of the class definition, as in the following (from
Display 15.4):

class HourlyEmployee : public Employee
{

By using the keyword public the derived class (such as HourlyEmployee)
automatically receives all the public member variables and member functions
of the base class (such as Employee). We can also add additional member
variables and member functions to the derived class.

The definition of the class HourlyEmployee does not mention the member
variables name, ssn, and net_pay, but every object of the class HourlyEmployee
has member variables named name, ssn, and net_pay. These member variables
are inherited from the class Employee. The class HourlyEmployee declares two
additional member variables named wage_rate and hours. Thus, every object
of the class HourlyEmployee has five member variables named name, ssn, net_
pay, wage_rate, and hours. Note that the definition of a derived class (such
as HourlyEmployee) only lists the added member variables. The member
variables defined in the base class are not mentioned. They are provided
automatically to the derived class.

Just as it inherits the member variables of the class Employee, the class
HourlyEmployee inherits all the member functions from the class Employee.
So, the class HourlyEmployee inherits the member functions get_name, get_
ssn, get_net_pay, set_name, set_ssn, set_net_pay, and print_check from
the class Employee.

In addition to the inherited member variables and member functions, a
derived class can add new member variables and new member functions. The
new member variables and the declarations for the new member functions are
listed in the class definition. For example, the derived class HourlyEmployee adds
the two member variables wage_rate and hours, and it adds the new member
functions named set_rate, get_rate, set_hours, and get_hours. This is shown
in Display 15.4. Note that you do not give the declarations of the inherited
member functions except for those whose definitions you want to change, which
is the reason we list only the member function print_check from the base class
Employee. For now, do not worry about the details of the constructor definition
for the derived class. We will discuss constructors in the next subsection.

In the implementation file for the derived class, such as the implementa
tion of HourlyEmployee in Display 15.6, you give the definitions of all the
added member functions. Note that you do not give definitions for the
inherited member functions unless the definition of the member function is
changed in the derived class, a point we discuss next.

The definition of an inherited member function can be changed in the
definition of a derived class so that it has a meaning in the derived class that is
different from what it is in the base class. This is called redefining the inherited
member function. For example, the member function print_check() is
redefined in the definition of the derived class HourlyEmployee. To redefine a

	 15.1  Inheritance Basics	 843

Display 15.6   �Implementation for the Derived Class HourlyEmployee
(part 1 of 2)

	 1 //This is the file: hourlyemployee.cpp
	 2 //This is the implementation for the class HourlyEmployee.
	 3 //The interface for the class HourlyEmployee is in
	 4 //the header file hourlyemployee.h.
	 5 #include <string>
	 6 #include <iostream>
	 7 #include “hourlyemployee.h”
	 8 using namespace std;

	 9 namespace employeessavitch
	10 {

	11 HourlyEmployee::HourlyEmployee() : Employee(), wage_rate(0), hours(0)
	12 {
	13 //deliberately empty
	14 }

	15 HourlyEmployee::HourlyEmployee(string the_name, string the_number,
	16 double the_wage_rate, double the_hours)
	17 : Employee(the_name, the_number), wage_rate(the_wage_rate), hours(the_hours)
	18 {
	19 //deliberately empty
	20 }

	21 void HourlyEmployee::set_rate(double new_wage_rate)
	22 {
	23 wage_rate = new_wage_rate;
	24 }

	25 double HourlyEmployee::get_rate() const
	26 {
	27 return wage_rate;
	28 }

	29 void HourlyEmployee::set_hours(double hours_worked)
	30 {
	31 hours = hours_worked;
	32 }

	33 double HourlyEmployee::get_hours() const
	34 {
	35 return hours;
	36 }

(continued)

844	 Chapter 15 /  Inheritance

member function definition, simply list it in the class definition and give it a
new definition, just as you would do with a member function that is added in
the derived class. This is illustrated by the redefined function print_check()
of the class HourlyEmployee (Displays 15.4 and 15.6).

SalariedEmployee is another example of a derived class of the class

Display 15.6  � Implementation for the Derived Class HourlyEmployee
(part 2 of 2)

	37 void HourlyEmployee::print_check()

We have chosen to set net_pay as
part of the print_check function
since that is the question. But note
that C++ allows us to drop the const
in the function print_check when
we redefine it in a derived class.

	38 {
	39 set_net_pay (hours * wage_rate);

	40 cout << “\n___\n”;
	41 cout << “Pay to the order of “ << get_name() << endl;
	42 cout << “The sum of “ << get_net_pay() << “ Dollars\n”;
	43 cout << “___\n”;
	44 cout << “Check Stub: NOT NEGOTIABLE\n”;
	45 cout << “Employee Number: “ << get_ssn() << endl;
	46 cout << “Hourly Employee. \nHours worked: “ << hours
	47 << “ Rate: “ << wage_rate << “ Pay: “ << get_net_pay() << endl;
	48 cout << “___\n”;
	49 }

	50 }//employeessavitch

Parent and Child Classes

When discussing derived classes, it is common to use terminology derived
from family relationships. A base class is often called a parent class.
A derived class is then called a child class. This makes the language
of inheritance very smooth. For example, we can say that a child class
inherits member variables and member functions from its parent class.
This analogy is often carried one step further. A class that is a parent of a
parent of a parent of another class (or some other number of “parent of”
iterations) is often called an ancestor class. If class A is an ancestor
of class B, then class B is often called a descendant of class A.

	 15.1  Inheritance Basics	 845

Employee. The interface for the class SalariedEmployee is given in Display
15.5. An object declared to be of type SalariedEmployee has all the member
functions and member variables of Employee and the new members given
in the definition of the class SalariedEmployee. This is true even though
the class SalariedEmployee lists none of the inherited variables and only
lists one function from the class Employee, namely, the function print_
check, which will have its definition changed in SalariedEmployee. The
class SalariedEmployee, nonetheless, has the three member variables name,
ssn, and net_pay, as well as the member variable salary. Notice that you
do not have to declare the member variables and member functions of the
class Employee, such as name and set_name, in order for a SalariedEmployee
to have these members. The class SalariedEmployee gets these inherited
members automatically without the programmer doing anything.

Note that the class Employee has all the code that is common to the two
classes HourlyEmployee and SalariedEmployee. This saves you the trouble of
writing identical code two times, once for the class HourlyEmployee and once
for the class SalariedEmployee. Inheritance allows you to reuse the code in
the class Employee.

Constructors in Derived Classes

A constructor in a base class is not inherited in the derived class, but you
can invoke a constructor of the base class within the definition of a derived
class constructor, and that is all you need or normally want. A constructor
for a derived class uses a constructor from the base class in a special way. A
constructor for the base class initializes all the data inherited from the base
class. Thus, a constructor for a derived class begins with an invocation of a
constructor for the base class.

There is a special syntax for invoking the base class constructor that is

Inherited Members

A derived class automatically has all the member variables and all
the ordinary member functions of the base class. (As discussed later
in this chapter, there are some specialized member functions, such as
constructors, that are not automatically inherited.) These members from
the base class are said to be inherited. These inherited member functions
and inherited member variables are, with one exception, not mentioned
in the definition of the derived class, but they are automatically members
of the derived class. As explained in the text, you do mention an
inherited member function in the definition of the derived class if you
want to change the definition of the inherited member function.

846	 Chapter 15 /  Inheritance

illustrated by the constructor definitions for the class HourlyEmployee given
in Display 15.6. In what follows we have reproduced (with minor changes
in the line breaks to make it fit the text column) one of the constructor
definitions for the class HourlyEmployee taken from that display:

HourlyEmployee::HourlyEmployee(string the_name,
 string the_number, double the_wage_rate,
 double the_hours)
 : Employee(the_name, the_number),
 wage_rate(the_wage_rate), hours(the_hours)
{
 //deliberately empty
}

The portion after the colon is the initialization section of the constructor
definition for the constructor HourlyEmployee::HourlyEmployee. The part
Employee(the_name, the_number) is an invocation of the two-argument
constructor for the base class Employee. Note that the syntax for invoking the
base class constructor is analogous to the syntax used to set member variables:
The entry wage_rate(the_wage_rate) sets the value of the member variable
wage_rate to the_wage_rate; the entry Employee(the_name, the_number)
invokes the base class constructor Employee with the arguments the_name and
the_number. Since all the work is done in the initialization section, the body
of the constructor definition is empty.

Here we reproduce the other constructor for the class HourlyEmployee
from Display 15.6:

HourlyEmployee::HourlyEmployee() : Employee(), wage_rate(0),
 hours(0)
{
 //deliberately empty
}

In this constructor definition the default (zero-argument) version of the base
class constructor is called to initialize the inherited member variables. You
should always include an invocation of one of the base class constructors in
the initialization section of a derived class constructor.

If a constructor definition for a derived class does not include an
invocation of a constructor for the base class, then the default (zero-argument)
version of the base class constructor will be invoked automatically. So, the
following definition of the default constructor for the class HourlyEmployee
(with Employee() omitted) is equivalent to the version we just discussed:

HourlyEmployee::HourlyEmployee() : wage_rate(0), hours(0)
{
 //deliberately empty
}

However, we prefer to always explicitly include a call to a base class

	 15.1  Inheritance Basics	 847

constructor, even if it would be invoked automatically.
A derived class object has all the member variables of the base class.

When a derived class constructor is called, these member variables need to be
allocated memory and should be initialized. This allocation of memory for
the inherited member variables must be done by a constructor for the base
class, and the base class constructor is the most convenient place to initialize
these inherited member variables. That is why you should always include a
call to one of the base class constructors when you define a constructor for
a derived class. If you do not include a call to a base class constructor (in
the initialization section of the definition of a derived class constructor),
then the default (zero-argument) constructor of the base class is called
automatically. (If there is no default constructor for the base class, that is an
error condition.)

The call to the base class constructor is the first action taken by a derived
class constructor. Thus, if class B is derived from class A and class C is derived
from class B, then when an object of the class C is created, first a constructor
for the class A is called, then a constructor for B is called, and finally the
remaining actions of the C constructor are taken.

An Object of a Derived Class Has More Than One Type

In everyday experience an hourly employee is an employee. In C++ the
same sort of thing holds. Since HourlyEmployee is a derived class of the
class Employee, every object of the class HourlyEmployee can be used
anywhere an object of the class Employee can be used. In particular,
you can use an argument of type HourlyEmployee when a function
requires an argument of type Employee. You can assign an object of
the class HourlyEmployee to a variable of type Employee. (But be
warned: You cannot assign a plain old Employee object to a variable
of type HourlyEmployee. After all, an Employee is not necessarily an
HourlyEmployee.) Of course, the same remarks apply to any base class
and its derived class. You can use an object of a derived class anywhere
that an object of its base class is allowed.

More generally, an object of a class type can be used anywhere that
an object of any of its ancestor classes can be used. If class Child
is derived from class Ancestor and class Grandchild is derived
from class Child, then an object of class Grandchild can be used
anywhere an object of class Child can be used, and the object of
class Grandchild can also be used anywhere that an object of class
Ancestor can be used.

848	 Chapter 15 /  Inheritance

Pitfall   Use of Private Member Variables from the Base Class

An object of the class HourlyEmployee (Displays 15.4 and 15.6) inherits a
member variable called name from the class Employee (Displays 15.2 and 15.3).
For example, the following code would set the value of the member variable
name of the object joe to “Josephine”. (This code also sets the member variable
ssn to “123-45-6789” and both the wage_rate and hours to 0.)

HourlyEmployee joe(“Josephine”, “123-45-6789”, 0, 0);

If you want to change joe.name to “Mighty-Joe”, you can do so as follows:

joe.set_name(“Mighty-Joe”);

But you must be a bit careful about how you manipulate inherited member
variables such as name. The member variable name of the class HourlyEmployee
was inherited from the class Employee, but the member variable name is a
private member variable in the definition of the class Employee. That means
that name can be directly accessed only within the definition of a member
function in the class Employee. A member variable (or member function)
that is private in a base class is not accessible by name in the definition of a
member function for any other class, not even in a member function definition of
a derived class. Thus, although the class HourlyEmployee does have a member
variable named name (inherited from the base class Employee), it is illegal to
directly access the member variable name in the definition of any member
function in the class definition of HourlyEmployee.

For example, the following are the first few lines from the body of the
member function HourlyEmployee::print_check (taken from Display 15.6):

void HourlyEmployee::print_check()
{
 set_net_pay(hours * wage_rate);

 cout << “\n_____________________________________\n”;
 cout << “Pay to the order of “ << get_name() << endl;
 cout << “The sum of “ << get_net_pay() << “ Dollars\n”;

Constructors in Derived Classes

A derived class does not inherit the constructors of its base class.
However, when defining a constructor for the derived class, you can
and should include a call to a constructor of the base class (within the
initialization section of the constructor definition).

If you do not include a call to a constructor of the base class, then the
default (zero-argument) constructor of the base class will automatically
be called when the derived class constructor is called.

	 15.1  Inheritance Basics	 849

You might have wondered why we needed to use the member function set_
net_pay to set the value of the net_pay member variable. You might be
tempted to rewrite the start of the member function definition as follows:

void HourlyEmployee::print_check()
{
 net_pay = hours * wage_rate;

Illegal use of net_pay

As the comment indicates, this will not work. The member variable net_pay is
a private member variable in the class Employee, and although a derived class
like HourlyEmployee inherits the variable net_pay, it cannot access it directly.
It must use some public member function to access the member variable
net_pay. The correct way to accomplish the definition of print_check in the
class HourlyEmployee is the way we did it in Display 15.6 (and part of which
was displayed earlier).

The fact that name and net_pay are inherited variables that are private
in the base class also explains why we needed to use the accessor functions
get_name and get_net_pay in the definition of HourlyEmployee::print_
check instead of simply using the variable names name and net_pay.
You cannot mention a private inherited member variable by name. You
must instead use public accessor and mutator member functions (such
as get_name and set_name) that were defined in the base class. (Recall
that an accessor function is a function that allows you to access member
variables of a class, and a mutator function is one that allows you to change
member variables of a class. Accessor and mutator functions were covered
in Chapter 10.)

The fact that a private member variable of a base class cannot be accessed
in the definition of a member function of a derived class often seems wrong
to people. After all, if you are an hourly employee and you want to change
your name, nobody says, “Sorry name is a private member variable of the
class Employee.” After all, if you are an hourly employee, you are also an
employee. In Java, this is also true; an object of the class HourlyEmployee
is also an object of the class Employee. However, the laws on the use of
private member variables and member functions must be as we described,
or else their privacy would be compromised. If private member variables
of a class were accessible in member function definitions of a derived class,
then anytime you wanted to access a private member variable, you could
simply create a derived class and access it in a member function of that class,
which would mean that all private member variables would be accessible to
anybody who wanted to put in a little extra effort. This adversarial scenario
illustrates the problem, but the big problem is unintentional errors, not
intentional subversion. If private member variables of a class were accessible
in member function definitions of a derived class, then the member variables
might be changed by mistake or in inappropriate ways. (Remember, accessor
and mutator functions can guard against inappropriate changes to member
variables.)

850	 Chapter 15 /  Inheritance

We will discuss one possible way to get around this restriction on private
member variables of the base class in the subsection entitled “The protected
Qualifier” a bit later in this chapter.	 ■

Pitfall   Private Member Functions Are Effectively Not Inherited

As we noted in the previous Pitfall section, a member variable (or member function)
that is private in a base class is not directly accessible outside of the interface and
implementation of the base class, not even in a member function definition for a derived
class. Note that private member functions are just like private variables in terms of
not being directly available. But in the case of member functions, the restriction
is more dramatic. A private variable can be accessed indirectly via an accessor or
mutator member function. A private member function is simply not available. It is
just as if the private member function were not inherited.

This should not be a problem. Private member functions should just
be used as helping functions, and so their use should be limited to the class
in which they are defined. If you want a member function to be used as a
helping member function in a number of inherited classes, then it is not just a
helping function, and you should make the member function public.	 ■

The protected Qualifier

As you have seen, you cannot access a private member variable or private
member function in the definition or implementation of a derived class.
There is a classification of member variables and functions that allows them
to be accessed by name in a derived class but not anyplace else, such as in
some class that is not a derived class. If you use the qualifier protected, rather
than private or public, before a member variable or member function of a
class, then for any class or function other than a derived class, the effect is the
same as if the member variable were labeled private; however, in a derived
class the variable can be accessed by name.

For example, consider the class HourlyEmployee that was derived from the
base class Employee. We were required to use accessor and mutator member
functions to manipulate the inherited member variables in the definition of
HourlyEmployee::print_check. If all the private member variables in the
class Employee were labeled with the keyword protected instead of private,
the definition of HourlyEmployee::print_check in the derived class Employee
could be simplified to the following:

void HourlyEmployee::print_check()
//Only works if the member variables of Employee are marked
//protected instead of private.
{
 net_pay = hours * wage_rate;

 cout << “\n_____________________________________\n”;
 cout << “Pay to the order of “ << name << endl;

	 15.1  Inheritance Basics	 851

 cout << “The sum of “ << net_pay << “ Dollars\n”;
 cout << “_____________________________________\n”;
 cout << “Check Stub: NOT NEGOTIABLE\n”;
 cout << “Employee Number: “ << ssn << endl;
 cout << “Hourly Employee. \nHours worked: “ << hours
 << “ Rate: “ << wage_rate << “ Pay: “ << net_pay
 << endl;
 cout << “_____________________________________\n”;

}

In the derived class HourlyEmployee, the inherited member variables name,
net_pay, and ssn can be accessed by name, provided they are marked as
protected (as opposed to private) in the base class Employee. However, in
any class that is not derived from the class Employee, these member variables
are treated as if they were marked private.

Member variables that are protected in the base class act as though they
were also marked protected in any derived class. For example, suppose you
define a derived class PartTimeHourlyEmployee of the class HourlyEmployee.
The class PartTimeHourlyEmployee inherits all the member variables of the
class HourlyEmployee, including the member variables that HourlyEmployee
inherits from the class Employee. So, the class PartTimeHourlyEmployee will
have the member variables net_pay, name, and ssn. If these member variables
were marked protected in the class Employee, then they can be used by name
in the definitions of functions of the class PartTimeHourlyEmployee. Except for
derived classes (and derived classes of derived classes, etc.), a member variable
that is marked protected is treated the same as if it were marked private.

We include a discussion of protected member variables primarily
because you will see them used and should be familiar with them. Many,
but not all, programming authorities say it is bad style to use protected
member variables. They say it compromises the principle of hiding the class
implementation and that all member variables should be marked private.
If all member variables are marked private, the inherited member variables
cannot be accessed by name in derived class function definitions. However,
this is not as bad as its sounds. The inherited private member variables can
be accessed indirectly by invoking inherited functions that either read or
change the private inherited variables. Since authorities differ, you will have
to make your own decision on whether or not to use protected members.

Protected Members

If you use the qualifier protected, rather than private or public,
before a member variable of a class, then for any class or function other
than a derived class (or a derived class of a derived class, etc.), the

(continued)

852	 Chapter 15 /  Inheritance

Self-Test Exercises

	  1.	 Is the following program legal (assuming appropriate #include and
using directives are added)?

void show_employee_data(const Employee object);

int main()
{
 HourlyEmployee joe(“Mighty Joe”,
 “123-45-6789”, 20.50, 40);
 SalariedEmployee boss(“Mr. Big Shot”,
 “987-65-4321”, 10500.50);
 show_employee_data(joe);
 show_employee_data(boss);

 return 0;
}

void show_employee_data(const Employee object)
{
 cout << “Name: “ << object.get_name() << endl;
 cout << “Social Security Number: “
 << object.get_ssn() << endl;
}

	  2.	 Give a definition for a class SmartBut that is a derived class of the base
class Smart, which we reproduce for you here. Do not bother with
#include directives or namespace details.

situation is the same as if the member variable were labeled private.
However, in the definition of a member function of a derived class,
the variable can be accessed by name. Similarly, if you use the qualifier
protected before a member function of a class, then for any class or
function other than a derived class (or a derived class of a derived class,
etc.), that is the same as if the member function were labeled private.
However, in the definition of a member function of a derived class the
protected function can be used.

Inherited protected members are inherited in the derived class as if they
were marked protected in the derived class. In other words, if a member
is marked as protected in a base class, then it can be accessed by name
in the definitions of all descendant classes, not just in those classes
directly derived from the base class.

	 15.1  Inheritance Basics	 853

class Smart
{
public:
 Smart();
 void print_answer() const;
protected:
 int a;
 int b;
};

This class should have an additional data field, crazy, that is of type bool,
one additional member function that takes no arguments and returns a
value of type bool, and suitable constructors. The new function is named
is_crazy. You do not need to give any implementations, just the class
definition.

 	 3.	 Is the following a legal definition of the member function is_crazy in
the derived class SmartBut discussed in Self-Test Exercise 2? Explain your
answer. (Remember, the question asks if it is legal, not if it is a sensible
definition.)

bool SmartBut::is_crazy() const
{
 if (a > b)
 return false;
 else
 return true;
}

Redefinition of Member Functions

In the definition of the derived class HourlyEmployee (Display 15.4), we
gave the declarations for the new member functions set_rate, get_rate,
set_hours, and get_hours. We also gave the function declaration for only
one of the member functions inherited from the class Employee. The inherited
member functions whose function declarations were not given (such as set_
name and set_ssn) are inherited unchanged. They have the same definition
in the class HourlyEmployee as they do in the base class Employee. When
you define a derived class like HourlyEmployee, you list only the function
declarations for the inherited member functions whose definitions you want
to change to have a different definition in the derived class. If you look at the
implementation of the class HourlyEmployee, given in Display 15.6, you will
see that we have redefined the inherited member function print_check. The
class SalariedEmployee also gives a new definition to the member function
print_check, as shown in Display 15.7. Moreover, the two classes give
different definitions from each other. The function print_check is redefined
in the derived classes.

854	 Chapter 15 /  Inheritance

Display 15.7   �Implementation for the Derived Class SalariedEmployee
(part 1 of 2)

	 1 //This is the file salariedemployee.cpp.
	 2 //This is the implementation for the class SalariedEmployee.
	 3 //The interface for the class SalariedEmployee is in
	 4 //the header file salariedemployee.h.
	 5 #include <iostream>
	 6 #include <string>
	 7 #include “salariedemployee.h”
	 8 using namespace std;

	 9 namespace employeessavitch
	10 {
	11 SalariedEmployee::SalariedEmployee() : Employee(), salary(0)
	12 {
	13 //deliberately empty
	14 }
	15 SalariedEmployee::SalariedEmployee(string the_name, string the_number,
	16 double the_weekly_salary)
	17 : Employee(the_name, the_number), salary(the_weekly_salary)
	18 {
	19 //deliberately empty
	20 }

	21 double SalariedEmployee::get_salary() const
	22 {
	23 return salary;
	24 }

	25 void SalariedEmployee::set_salary(double new_salary)
	26 {
	27 salary = new_salary;
	28 }

(continued)

Redefining an Inherited Function

A derived class inherits all the member functions (and member variables
as well) that belong to the base class. However, if a derived class requires
a different implementation for an inherited member function, the
function may be redefined in the derived class. When a member function
is redefined, you must list its declaration in the definition of the derived
class even though the declaration is the same as in the base class. If you
do not wish to redefine a member function that is inherited from the
base class, then it is not listed in the definition of the derived class.

	 15.1  Inheritance Basics	 855

Display 15.8 gives a demonstration program that illustrates the use of the
derived classes HourlyEmployee and SalariedEmployee.

Display 15.7  � Implementation for the Derived Class SalariedEmployee
(part 2 of 2)

	29 void SalariedEmployee::print_check()
	30 {
	31 set_net_pay(salary);
	32 cout << “\n__\n”;
	33 cout << “Pay to the order of “ << get_name() << endl;
	34 cout << “The sum of “ << get_net_pay() << “ Dollars\n”;
	35 cout << “__\n”;
	36 cout << “Check Stub NOT NEGOTIABLE \n”;

	37 void SalariedEmployee::print_check()
	38 {
	39 set_net_pay(salary);
	40 cout << “\n___\n”;
	41 cout << “Pay to the order of “ << get_name() << endl;
	42 cout << “The sum of “ << get_net_pay() << “ Dollars\n”;
	43 cout << “__\n”;
	44 cout << “Check Stub NOT NEGOTIABLE \n”;
	45 cout << “Employee Number: “ << get_ssn() << endl;
	46 cout << “Salaried Employee. Regular Pay: “
	47 << salary << endl;
	48 cout << “__\n”;
	49 }
	50 }//employeessavitch

Display 15.8   Using Derived Classes (part 1 of 2)

	 1 #include <iostream>
	 2 #include “hourlyemployee.h”
	 3 #include “salariedemployee.h”
	 4 using std::cout;
	 5 using std::endl;
	 6 using namespace employeessavitch;

	 7 int main()
	 8 {
	 9 HourlyEmployee joe;
	10 joe.set_name(“Mighty Joe”);
	11 joe.set_ssn(“123-45-6789”);
	12 joe.set_rate(20.50);
	13 joe.set_hours(40);

(continued)

856	 Chapter 15 /  Inheritance

Display 15.8   Using Derived Classes (part 2 of 2)

	14 cout << “Check for “ << joe.get_name()
	15 << “ for “ << joe.get_hours() << “ hours.\n”;
	16 joe.print_check();
	17 cout << endl;

	18 SalariedEmployee boss(“Mr. Big Shot”, “987-65-4321”, 10500.50);
	19 cout << “Check for “ <<boss.get_name()<< endl;
	20 boss.print_check();

The functions set_name, set_ssn, set_rate, set_hours,
and get_name are inherited unchanged from the class Employee. The
function print_check is redefined. The function get_hours was added
to the derived class HourlyEmployee.

	21 return 0;
	22 }

Sample Dialogue

Check for Mighty Joe for 40 hours.

__

Pay to the order of Mighty Joe

The sum of 820 Dollars

__

Check Stub: NOT NEGOTIABLE

Employee Number: 123-45-6789

Hourly Employee.

Hours worked: 40 Rate: 20.5 Pay: 820

__

Check for Mr. Big Shot

__

Pay to the order of Mr. Big Shot

The sum of 10500.5 Dollars

__

Check Stub NOT NEGOTIABLE

Employee Number: 987-65-4321

Salaried Employee. Regular Pay: 10500.5

__

Redefining Versus Overloading

Do not confuse redefining a function definition in a derived class with
overloading a function name. When you redefine a function definition, the
new function definition given in the derived class has the same number and

	 15.1  Inheritance Basics	 857

types of parameters. On the other hand, if the function in the derived class
were to have a different number of parameters or a parameter of a different
type from the function in the base class, then the derived class would have
both functions. That would be overloading. For example, suppose we added a
function with the following function declaration to the definition of the class
HourlyEmployee:

void set_name(string first_name, string last_name);

The class HourlyEmployee would have this two-argument function set_name,
and it would also inherit the following one-argument function set_name:

void set_name(string new_name);

The class HourlyEmployee would have two functions named set_name. This
would be overloading the function name set_name.

On the other hand, both the class Employee and the class HourlyEmployee
define a function with the following function declaration:

void print_check();

In this case, the class HourlyEmployee has only one function named
print_check, but the definition of the function print_check for the class
HourlyEmployee is different from its definition for the class Employee. In this
case, the function print_check has been redefined.

If you get redefining and overloading confused, you do have one
consolation. They are both legal. So, it is more important to learn how to use
them than it is to learn to distinguish between them. Nonetheless, you should
learn the difference.

Signature

A function’s signature is the function’s name with the sequence of types
in the parameter list, not including the const keyword and not including
the ampersand (&). When you overload a function name, the two
definitions of the function name must have different signatures using
this definition of signature.2

If a function has the same name in a derived class as in the base class but
has a different signature, that is overloading, not redefinition.

2 Some compilers may allow overloading on the basis of const versus no const, but you
cannot count on this and so should not do it. For this reason, some definitions of
signature include the const modifier, but this is a cloudy issue that is best avoided until
you become an expert.

858	 Chapter 15 /  Inheritance

Access to a Redefined Base Function

Suppose you redefine a function so that it has a different definition in the
derived class from what it had in the base class. The definition that was given
in the base class is not completely lost to the derived class objects. However,
if you want to invoke the version of the function given in the base class with
an object in the derived class, you need some way to say “use the definition
of this function as given in the base class (even though I am an object of the
derived class).” The way you say this is to use the scope resolution operator
with the name of the base class. An example should clarify the details.

Consider the base class Employee (Display 15.2) and the derived class
HourlyEmployee (Display 15.4). The function print_check() is defined in
both classes. Now suppose you have an object of each class, as in

Employee jane_e;
HourlyEmployee sally_h;

Then

jane_e.print_check();

uses the definition of print_check given in the class Employee, and

sally_h.print_check();

uses the definition of print_check given in the class HourlyEmployee.
But, suppose you want to invoke the version of print_check given in the

definition of the base class Employee with the derived class object sally_h as
the calling object for print_check. You do that as follows:

sally_h.Employee::print_check();

Of course, you are unlikely to want to use the version of print_check given in
the particular class Employee, but with other classes and other functions, you
may occasionally want to use a function definition from a base class with a
derived class object. An example is given in Self-Test Exercise 6.

Self-Test Exercises

	4.	 The class SalariedEmployee inherits both of the functions get_name
and print_check (among other things) from the base class Employee,
yet only the function declaration for the function print_check is
given in the definition of the class SalariedEmployee. Why isn’t the
function declaration for the function get_name given in the definition of
SalariedEmployee?

	5.	 Give a definition for a class TitledEmployee that is a derived class of
the base class SalariedEmployee given in Display 15.5. The class

VideoNote
Inheritance Example

	 15.2  Inheritance Details	 859

TitledEmployee has one additional member variable of type string
called title. It also has two additional member functions: get_title,
which takes no arguments and returns a string; and set_title, which
is a void function that takes one argument of type string. It also
redefines the member function set_name. You do not need to give any
implementations, just the class definition. However, do give all needed
#include directives and all using namespace directives. Place the class
TitledEmployee in the namespace employeessavitch.

	6.	 Give the definitions of the constructors for the class TitledEmployee that
you gave as the answer to Self-Test Exercise 5. Also, give the redefinition of
the member function set_name. The function set_name should insert the
title into the name. Do not bother with #include directives or namespace
details.

15.2  INHERITANCE DETAILS

The devil is in the details.

Common Saying

This section presents some of the more subtle details about inheritance. Most
of the topics are relevant only to classes that use dynamic arrays or pointers
and other dynamic data.

Functions That Are Not Inherited

As a general rule if Derived is a derived class with base class Base, then all
“normal” functions in the class Base are inherited members of the class
Derived. However, there are some special functions that are, for all practical
purposes, not inherited. We have already seen that, as a practical matter,
constructors are not inherited and that private member functions are not
inherited. Destructors are also effectively not inherited.

In the case of the copy constructor, it is not inherited, but if you do not
define a copy constructor in a derived class (or any class for that matter), C++
will automatically generate a copy constructor for you. However, this default
copy constructor simply copies the contents of member variables and does
not work correctly for classes with pointers or dynamic data in their member
variables. Thus, if your class member variables involve pointers, dynamic
arrays, or other dynamic data, then you should define a copy constructor for
the class. This applies whether or not the class is a derived class.

The assignment operator = is also not inherited. If the base class Base
defines the assignment operator, but the derived class Derived does not define
the assignment operator, then the class Derived will have an assignment
operator, but it will be the default assignment operator that C++ creates

860	 Chapter 15 /  Inheritance

(when you do not define =); it will not have anything to do with the base class
assignment operator defined in Base.

It is natural that constructors, destructors, and the assignment operator
are not inherited. To correctly perform their tasks, they need information that
the base class does not possess. To correctly perform their functions, they need
to know about the new member variables introduced in the derived class.

Assignment Operators and Copy Constructors
in Derived Classes

Overloaded assignment operators and constructors are not inherited.
However, they can be, and in almost all cases must be, used in the definitions
of overloaded assignment operators and copy constructors in derived classes.

When overloading the assignment operator in a derived class, you
normally use the overloaded assignment operator from the base class. We
will present an outline of how the code for doing this is written. To help
understand the code outline, remember that an overloaded assignment
operator must be defined as a member function of the class.

If Derived is a class derived from Base, then the definition of the
overloaded assignment operator for the class Derived would typically begin
with something like the following:

Derived& Derived::operator =(const Derived& right_side)
{
 Base::operator =(right_side);

The first line of code in the body of the definition is a call to the overloaded
assignment operator of the Base class. This takes care of the inherited member
variables and their data. The definition of the overloaded assignment operator
would then go on to set the new member variables that were introduced in the
definition of the class Derived.

A similar situation holds for defining the copy constructor in a derived
class. If Derived is a class derived from Base, then the definition of the copy
constructor for the class Derived would typically use the copy constructor for
the class Base to set up the inherited member variables and their data. The
code would typically begin with something like the following:

Derived::Derived(const Derived& object)
 : Base(object), <probably more initializations>
{

The invocation of the base class copy constructor Base(object) sets up the
inherited member variables of the Derived class object being created. Note
that since object is of type Derived, it is also of type Base; therefore, object
is a legal argument to the copy constructor for the class Base.

Of course, these techniques do not work unless you have a correctly
functioning assignment operator and a correctly functioning copy constructor

	 15.2  Inheritance Details	 861

for the base class. This means that the base class definition must include a
copy constructor and that either the default automatically created assignment
operator must work correctly for the base class or the base class must have a
suitable overloaded definition of the assignment operator.

Destructors in Derived Classes

If a base class has a correctly functioning destructor, then it is relatively easy to
define a correctly functioning destructor in a class derived from the base class.
When the destructor for the derived class is invoked, it automatically invokes the
destructor of the base class, so there is no need for the explicit writing of a call to the
base class destructor; it always happens automatically. The derived class destructor
therefore need only worry about using delete on the member variables (and any
data they point to) that are added in the derived class. It is the job of the base class
destructor to invoke delete on the inherited member variables.

If class B is derived from class A and class C is derived from class B,
then when an object of the class C goes out of scope, first the destructor for
the class C is called, then the destructor for class B is called, and finally the
destructor for class A is called. Note that the order in which destructors are
called is the reverse of the order in which constructors are called.

Self-Test Exercises

	7.	 You know that an overloaded assignment operator and a copy constructor
are not inherited. Does this mean that if you do not define an overloaded
assignment operator or a copy constructor for a derived class, then that
derived class will have no assignment operator and no copy constructor?

	8.	 Suppose Child is a class derived from the class Parent, and the class
Grandchild is a class derived from the class Child. This question is
concerned with the constructors and destructors for the three classes Parent,
Child, and Grandchild. When a constructor for the class Grandchild is
invoked, what constructors are invoked and in what order? When the
destructor for the class Grandchild is invoked, what destructors are invoked
and in what order?

	9.	 Give the definitions for the member function add_value, the copy
constructor, the overloaded assignment operator, and the destructor for
the following class. This class is intended to be a class for a partially filled
array. The member variable number_used contains the number of array
positions currently filled. The other constructor definition is given to help
you get started.

#include <iostream>
#include <cstdlib>

862	 Chapter 15 /  Inheritance

using namespace std;

class PartFilledArray
{
public:
 PartFilledArray(int array_size);
 PartFilledArray(const PartFilledArray& object);
 ~PartFilledArray();
 void operator =(const PartFilledArray& right_side);
 void add_value(double new_entry);
 //There would probably be more member functions
 //but they are irrelevant to this exercise.
protected:
 double *a;
 int max_number;
 int number_used;
};
PartFilledArray::PartFilledArray(int array_size)
 : max_number(array_size), number_used(0)
{
 a = new double[max_number];
}

(Many authorities would say that the member variables should be private
rather than protected. We tend to agree. However, using protected makes
for a better practice assignment, and you should have some experience
with protected variables because some programmers do use them.)

	10.	 Define a class called PartFilledArrayWMax that is a derived class of
the class PartFilledArray. The class PartFilledArrayWMax has one
additional member variable named max_value that holds the maximum
value stored in the array. Define a member accessor function named
get_max that returns the maximum value stored in the array. Redefine the
member function add_value and define two constructors, one of which
has an int argument for the maximum number of entries in the array.
Also define a copy constructor, an overloaded assignment operator, and
a destructor. (A real class would have more member functions, but these
will do for an exercise.)

15.3  Polymorphism

All experience is an arch, to build upon.

HENRY ADAMS, The Education of Henry Adams

Polymorphism refers to the ability to associate multiple meanings to one
function name. As it has come to be used today, polymorphism refers to a
very particular way of associating multiple meanings to a single function

	 15.3  Polymorphism	 863

name. That is, polymorphism refers to the ability to associate multiple
meanings to one function name by means of a special mechanism known as
late binding. Polymorphism is one of the key components of a programming
philosophy known as object-oriented programming. Late binding, and therefore
polymorphism, is the topic of this section.

Late Binding

A virtual function is one that, in some sense, may be used before it is defined.
For example, a graphics program may have several kinds of figures, such
as rectangles, circles, ovals, and so forth. Each figure might be an object
of a different class. For example, the Rectangle class might have member
variables for a height, width, and center point, while the Circle class might
have member variables for a center point and a radius. In a well-designed
programming project, all of them would probably be descendants of a single
parent class called, for example, Figure. Now, suppose you want a function to
draw a figure on the screen. To draw a circle, you need different instructions
from those you need to draw a rectangle. So, each class needs to have a
different function to draw its kind of figure. However, because the functions
belong to the classes, they can all be called draw. If r is a Rectangle object
and c is a Circle object, then r.draw () and c.draw () can be functions
implemented with different code. All this is not news, but now we move on to
something new: virtual functions defined in the parent class Figure.

Now, the parent class Figure may have functions that apply to all figures.
For example, it might have a function called center that moves a figure to
the center of the screen by erasing it and then redrawing it in the center of
the screen. Figure::center might use the function draw to redraw the figure
in the center of the screen. When you think of using the inherited function
center with figures of the classes Rectangle and Circle, you begin to see that
there are complications here.

To make the point clear and more dramatic, let’s suppose the class Figure
is already written and in use and at some later time we add a class for a brand-
new kind of figure, say, the class Triangle. Now, Triangle can be a derived
class of the class Figure, and so the function center will be inherited from
the class Figure; thus, the function center should apply to (and perform
correctly for!) all Triangles. But there is a complication. The function center
uses draw, and the function draw is different for each type of figure. The
inherited function center (if nothing special is done) will use the definition
of the function draw given in the class Figure, and that function draw does
not work correctly for Triangles. We want the inherited function center to
use the function Triangle::draw rather than the function Figure::draw. But
the class Triangle, and therefore the function Triangle::draw, was not even
written when the function center (defined in the class Figure) was written
and compiled! How can the function center possibly work correctly for
Triangles? The compiler did not know anything about Triangle::draw at

864	 Chapter 15 /  Inheritance

the time that center was compiled. The answer is that it can apply provided
draw is a virtual function.

When you make a function virtual, you are telling the compiler, “I do not
know how this function is implemented. Wait until it is used in a program,
and then get the implementation from the object instance.” The technique
of waiting until run-time to determine the implementation of a procedure
is called late binding or dynamic binding. Virtual functions are the way
C++ provides late binding. But enough introduction. We need an example
to make this come alive (and to teach you how to use virtual functions in
your programs). In order to explain the details of virtual functions in C++, we
will use a simplified example from an application area other than drawing
figures.

Virtual Functions in C++

Suppose you are designing a record-keeping program for an automobile parts
store. You want to make the program versatile, but you are not sure you can
account for all possible situations. For example, you want to keep track of
sales, but you cannot anticipate all types of sales. At first, there will be only
regular sales to retail customers who go to the store to buy one particular part.
However, later you may want to add sales with discounts, or mail-order sales
with a shipping charge. All these sales will be for an item with a basic price and
ultimately will produce some bill. For a simple sale, the bill is just the basic
price, but if you later add discounts, then some kinds of bills will also depend
on the size of the discount. Your program will need to compute daily gross
sales, which intuitively should just be the sum of all the individual sales bills.
You may also want to calculate the largest and smallest sales of the day or the
average sale for the day. All these can be calculated from the individual bills,
but the functions for computing the bills will not be added until later, when
you decide what types of sales you will be dealing with. To accommodate this,
we make the function for computing the bill a virtual function. (For simplicity
in this first example, we assume that each sale is for just one item, although
with derived classes and virtual functions we could, but will not here, account
for sales of multiple items.)

Displays 15.9 and 15.10 contain the interface and implementation for the
class Sale. All types of sales will be derived classes of the class Sale. The class
Sale corresponds to simple sales of a single item with no added discounts
or charges. Notice the reserved word virtual in the function declaration for
the function bill (Display 15.9). Notice (Display 15.10) that the member
function savings and the overloaded operator < both use the function bill.
Since bill is declared to be a virtual function, we can later define derived
classes of the class Sale and define their versions of the function bill, and
the definitions of the member function savings and the overloaded operator
<, which we gave with the class Sale, will use the version of the function bill
that corresponds to the object of the derived class.

	 15.3  Polymorphism	 865

Display 15.9   Interface for the Base Class Sale

	 1 //This is the header file sale.h.
	 2 //This is the interface for the class Sale.
	 3 //Sale is a class for simple sales.
	 4 #ifndef SALE_H
	 5 #define SALE_H
 6
	 7 #include <iostream>
	 8 using namespace std;
 9
	10 namespace salesavitch
	11 {
12
	13 class Sale
	14 {
	15 public:
	16 Sale();
	17 Sale(double the_price);
	18 virtual double bill() const;
	19 double savings(const Sale& other) const;
	20 //Returns the savings if you buy other instead of the calling object.
	21 protected:
	22 double price;
	23 };
24
	25 bool operator <(const Sale& first, const Sale& second);
	26 //Compares two sales to see which is larger.
	27 }//salesavitch
28
	29 #endif // SALE_H

Display 15.10   Implementation of the Base Class Sale (part 1 of 2)

	 1 //This is the implementation file: sale.cpp
	 2 //This is the implementation for the class Sale.
	 3 //The interface for the class Sale is in
	 4 //the header file sale.h.
	 5 #include “sale.h”
 6
	 7 namespace salesavitch
	 8 {
	 9 Sale::Sale() : price(0)
	10 {}
11
	12 Sale::Sale(double the_price) : price(the_price)
	13 {}
14

(continued)

866	 Chapter 15 /  Inheritance

For example, Display 15.11 shows the derived class DiscountSale. Notice
that the class DiscountSale requires a different definition for its version of
the function bill. Nonetheless, when the member function savings and the
overloaded operator < are used with an object of the class DiscountSale,
they will use the version of the function definition for bill that was given

Display 15.10   Implementation of the Base Class Sale (part 2 of 2)

	15 double Sale::bill() const
	16 {
	17 return price;
	18 }
19
	20 double Sale::savings(const Sale& other) const
	21 {
	22 return (bill() − other.bill());
	23 }
24
	25 bool operator <(const Sale& first, const Sale& second)
	26 {
	27 return (first.bill() < second.bill());
	28 }
	29 }//salesavitch

Display 15.11   The Derived Class DiscountSale (part 1of 2)

 1 //This is the interface for the class DiscountSale.
 2 #ifndef DISCOUNTSALE_H
 3 #define DISCOUNTSALE_H
 4 #include “sale.h”
 5
 6 namespace salesavitch
 7 {
 8 class DiscountSale : public Sale
 9 {
10 public:
11 DiscountSale();
12 DiscountSale(double the_price, double the_discount);
13 //Discount is expressed as a percent of the price.
14 virtual double bill() const;
15 protected:
16 double discount;
17 };
18 }//salesavitch
19 #endif //DISCOUNTSALE_H

(continued)

This is the file discountsale.h.

The keyword virtual is not
required here, but it is good style
to include it.

	 15.3  Polymorphism	 867

with the class DiscountSale. This is indeed a pretty fancy trick for C++ to
pull off. Consider the function call d1.savings(d2) for objects d1 and d2 of
the class DiscountSale. The definition of the function savings (even for an
object of the class DiscountSale) is given in the implementation file for the
base class Sale, which was compiled before we ever even thought of the class
DiscountSale. Yet, in the function call d1.savings(d2), the line that calls the
function bill knows enough to use the definition of the function bill given
for the class DiscountSale.

How does this work? In order to write C++ programs, you can just assume
it happens by magic, but the real explanation was given in the introduction
to this section. When you label a function virtual, you are telling the C++
environment, “Wait until this function is used in a program, and then get the
implementation corresponding to the calling object.”

Display 15.12 gives a sample program that illustrates how the virtual
function bill and the functions that use bill work in a complete program.

Display 15.11   The Derived Class DiscountSale (part 2 of 2)

 1 //This is the implementation for the class DiscountSale.
 2 #include “discountsale.h”

This is the file discountsale.cpp.
 3
	 4 namespace salesavitch
	 5 {
	 6 DiscountSale::DiscountSale() : Sale(), discount(0)
	 7 {}
	 8 DiscountSale::DiscountSale(double the_price, double the_discount)
 9 : Sale (the_price), discount(the_discount)
	10 {}
	11 double DiscountSale::bill () const
	12 {
	13 double fraction = discount/100;
	14 return (1 − fraction)*price;
	15 }
	16 }//salesavitch

Display 15.12   Use of a Virtual Function (part 1 of 2)

	 1 //Demonstrates the performance of the virtual function bill.
	 2 #include <iostream>
	 3 #include “sale.h” //Not really needed, but safe due to ifndef.
	 4 #include “discountsale.h”
	 5 using namespace std;
	 6 using namespace salesavitch;
 7

(continued)

868	 Chapter 15 /  Inheritance

Display 15.12   Use of a Virtual Function (part 2 of 2)

 8 int main()
	 9 {
	10 Sale simple(10.00); //One item at $10.00.
	11 DiscountSale discount(11.00, 10);//One item at $11.00 at 10% discount.
12
	13 cout.setf(ios::fixed);
	14 cout.setf(ios::showpoint);
	15 cout.precision(2);
16
	17 if (discount < simple)
	18 {
	19 cout << “Discounted item is cheaper.\n”;
	20 cout << “Savings is $” << simple.savings(discount) << endl;
	21 }
	22 else
	23 cout << “Discounted item is not cheaper.\n”;
24
	25 return 0;
	26 }

Sample Dialogue

Discounted item is cheaper.

Savings is $0.10

There are a number of technical details you need to know in order to use
virtual functions in C++. We list them here:

•	 If a function will have a different definition in a derived class than in the
base class and you want it to be a virtual function, you add the keyword
virtual to the function declaration in the base class. You do not need to
add the reserved word virtual to the function declaration in the derived
class. If a function is virtual in the base class, then it is automatically
virtual in the derived class. (However, it is a good idea to label the
function declaration in the derived class virtual, even though it is not
required.)

•	 The reserved word virtual is added to the function declaration and not to
the function definition.

•	You do not get a virtual function and the benefits of virtual functions
unless you use the keyword virtual.

Since virtual functions are so great, why not make all member functions
virtual? Almost the only reason for not always using virtual functions is

	 15.3  Polymorphism	 869

Self-Test Exercise

	11.	 Suppose you modify the definitions of the class Sale (Display 15.9) by
deleting the reserved word virtual. How would that change the output
of the program in Display 15.12?

Virtual Functions and Extended Type Compatibility

We will discuss some of the further consequences of declaring a class
member function to be virtual and do one example that uses some of these
features.

C++ is a fairly strongly typed language. This means that the types of items
are always checked and an error message is issued if there is a type mismatch,

Overriding

When a virtual function definition is changed in a derived class,
programmers often say the function definition is overridden. In the C++
literature, a distinction is sometimes made between the terms redefined
and overridden. Both terms refer to changing the definition of the
function in a derived class. If the function is a virtual function, it’s called
overriding. If the function is not a virtual function, it’s called redefining.
This may seem like a silly distinction to you, the programmer, since you
do the same thing in both cases, but the two cases are treated differently
by the compiler.

Polymorphism

The term polymorphism refers to the ability to associate multiple
meanings to one function name by means of late binding. Thus,
polymorphism, late binding, and virtual functions are really all the same
topic.

efficiency. The compiler and the run-time environment need to do much
more work for virtual functions, and so if you label more member functions
virtual than you need to, your programs will be less efficient.

870	 Chapter 15 /  Inheritance

such as a type mismatch between an argument and a formal parameter when
there is no conversion that can be automatically invoked. This also means that
normally the value assigned to a variable must match the type of the variable,
although in a few well-defined cases C++ will perform an automatic type cast
(called a coercion) so that it appears that you can assign a value of one type to a
variable of another type. For example, C++ allows you to assign a value of type
char or int to a variable of type double. However, C++ does not allow you to
assign a value of type double or float to a variable of any integer type (char,
short, int, long).

However, as important as strong typing is, this strong type checking
interferes with the very idea of inheritance in object-oriented programming.
Suppose you have defined class A and class B and have defined objects of
type class A and class B. You cannot always assign between objects of these
types. For example, suppose a program or unit contains the following type
declarations:

class Pet
{
public:
 virtual void print();
 string name;
};

class Dog : public Pet
{
public:
 virtual void print(); //Keyword virtual not needed, but is
 //put here for clarity. (It is also good style!)
 string breed;
};

Dog vdog;
Pet vpet;

Now concentrate on the data members, name and breed. (To keep this example
simple, we have made the member variables public. In a real application, they
should be private and have functions to manipulate them.)

Anything that is a Dog is also a Pet. It would seem to make sense to allow
programs to consider values of type Dog to also be values of type Pet, and
hence the following should be allowed:

vdog.name = “Tiny”;
vdog.breed = “Great Dane”;
vpet = vdog;

C++ does allow this sort of assignment. You may assign a value, such as the
value of vdog, to a variable of a parent type, such as vpet, but you are not
allowed to perform the reverse assignment. Although the assignment above
is allowed, the value that is assigned to the variable vpet loses its breed

	 15.3  Polymorphism	 871

field. This is called the slicing problem. The following attempted access will
produce an error message:

cout << vpet.breed; //Illegal: class Pet has no member named breed

You can argue that this makes sense, since once a Dog is moved to a variable
of type Pet it should be treated like any other Pet and not have properties
peculiar to Dogs. This makes for a lively philosophical debate, but it usually
just makes for a nuisance when programming. The dog named Tiny is still a
Great Dane and we would like to refer to its breed, even if we treated it as a
Pet someplace along the line.

Fortunately, C++ does offer us a way to treat a Dog as a Pet without
throwing away the name of the breed. To do this, we use pointers to dynamic
object instances. Suppose we add the following declarations:

Pet *ppet;
Dog *pdog;

If we use pointers and dynamic variables, we can treat Tiny as a Pet without
losing his breed. The following is allowed:

pdog = new Dog;
pdog->name = “Tiny”;
pdog->breed = “Great Dane”;
ppet = pdog;

Moreover, we can still access the breed field of the node pointed to by ppet.
Suppose that

Dog::print();

has been defined as follows:

//uses iostream
void Dog::print()
{
 cout << “name: “ << name << endl;
 cout << “breed: “ << breed << endl;
}

The statement

ppet->print();

will cause the following to be printed on the screen:

name: Tiny
breed: Great Dane

This is by virtue of the fact that print() is a virtual member function. (No
pun intended.) We have included test code in Display 15.13.

872	 Chapter 15 /  Inheritance

Display 15.13   More Inheritance with Virtual Functions (part 1 of 2)

	 1 //Program to illustrate use of a virtual function
	 2 //to defeat the slicing problem.

	 3 #include <string>
	 4 #include <iostream>
	 5 using namespace std;
 6
	 7 class Pet
	 8 {
	 9 public:
	10 virtual void print();
	11 string name;
	12 };
13
	14 class Dog : public Pet
	15 {
	16 public:
	17 virtual void print(); //Keyword virtual not needed, but put
	18 //here for clarity. (It is also good style!)
	19 string breed;
	20 };
21
	22 int main()
	23 {
	24 Dog vdog;
	25 Pet vpet;
26
	27 vdog.name = “Tiny”;
	28 vdog.breed = “Great Dane”;
	29 vpet = vdog;
30
	31 //vpet.breed; is illegal since class Pet has no member named breed
32
	33 Dog *pdog;
	34 pdog = new Dog;
	35 pdog->name = “Tiny”;
	36 pdog->breed = “Great Dane”;
37
	38 Pet *ppet;
39 ppet = pdog;
	40 ppet->print(); // These two print the same output:
	41 pdog->print(); // name: Tiny breed: Great Dane
42
	43 //The following, which accesses member variables directly
	44 //rather than via virtual functions, would produce an error:
	45 //cout << “name: “ << ppet->name << “ breed: “

(continued)

	 15.3  Polymorphism	 873

Pitfall   The Slicing Problem

Although it is legal to assign a derived class object to a base class variable,
assigning a derived class object to a base class object slices off data. Any data
members in the derived class object that are not also in the base class will be
lost in the assignment, and any member functions that are not defined in the
base class are similarly unavailable to the resulting base class object.

If we make the following declarations and assignments:

Dog vdog;
Pet vpet;
vdog.name = “Tiny”;
vdog.breed = “Great Dane”;
vpet = vdog;

then vpet cannot be a calling object for a member function introduced in Dog,
and the data member, Dog::breed, is lost.	 ■

Display 15.13   More Inheritance with Virtual Functions (part 2 of 2)

46 // 	 << ppet->breed << endl;
	47 //generates an error message: ‘class Pet’ has no member
	48 //named ‘breed’ .
	49 //See Pitfall section “Not Using Virtual Member Functions”
	50 //for more discussion on this.
51
	52 return 0;
	53 }
54
	55 void Dog::print()
	56 {
	57 cout << “name: “ << name << endl;
	58 cout << “breed: “ << breed << endl;
	59 }
60
	61 void Pet::print()
	62 {
	63 cout << “name: “ << endl;//Note no breed mentioned
	64 }

Sample Dialogue

name: Tiny

breed: Great Dane

name: Tiny

breed: Great Dane

874	 Chapter 15 /  Inheritance

Pitfall   Not Using Virtual Member Functions

In order to get the benefit of the extended type compatibility we discussed
earlier, you must use virtual member functions. For example, suppose we
had not used member functions in the example in Display 15.13. Suppose
that in place of

ppet->print();

we had used the following:

cout << “name: “ << ppet->name
 << “ breed: “ << ppet->breed << endl;

This code would have precipitated an error message. The reason for this is that
the expression

*ppet

has its type determined by the pointer type of ppet. It is a pointer type for the
type Pet, and the type Pet has no field named breed.

But print() was declared virtual by the base class, Pet. So, when the
compiler sees the call

ppet->print();

it checks the virtual table for classes Pet and Dog and sees that ppet points to
an object of type Dog. It therefore uses the code generated for

Dog::print(),

rather than the code for

Pet::print().

Object-oriented programming with dynamic variables is a very different way
of viewing programming. This can all be bewildering at first. It will help if you
keep two simple rules in mind:

	1.	 If the domain type of the pointer p_ancestor is a base class for the
domain type of the pointer p_descendant, then the following assignment
of pointers is allowed:

p_ancestor = p_descendant;

		M oreover, none of the data members or member functions of the dynamic
variable being pointed to by p_descendant will be lost.

	2.	 Although all the extra fields of the dynamic variable are there, you will
need virtual member functions to access them.	 ■

	 15.3  Polymorphism	 875

Pitfall   �Attempting to Compile Class Definitions Without
Definitions for Every Virtual Member Function

It is wise to develop incrementally. This means code a little, then test a little,
then code a little more, and test a little more, and so forth. However, if you
try to compile classes with virtual member functions but do not implement
each member, you may run into some very hard to understand error messages,
even if you do not call the undefined member functions!

If any virtual member functions are not implemented before compiling,
then the compilation fails with error messages similar to this: “undefined
reference to Class_Name virtual table.” Even if there is no derived class and
there is only one virtual member, this kind of message still occurs if that
function does not have a definition.

What makes the error messages very hard to decipher is that without
definitions for the functions declared virtual, there may be further error
messages complaining about an undefined reference to default constructors,
even if these constructors really are already defined.	 ■

■  Programming Tip   Make Destructors Virtual

It is a good policy to always make destructors virtual, but before we explain
why this is a good policy, we need to say a word or two about how destructors
and pointers interact and about what it means for a destructor to be virtual.

Consider the following code, where SomeClass is a class with a destructor
that is not virtual:

SomeClass *p = new SomeClass;
 . . .
delete p;

When delete is invoked with p, the destructor of the class SomeClass is
automatically invoked. Now, let’s see what happens when a destructor is
marked as virtual.

The easiest way to describe how destructors interact with the virtual function
mechanism is that destructors are treated as if all destructors had the same name
(even though they do not really have the same name). For example, suppose
Derived is a derived class of the class Base and suppose the destructor in the
class Base is marked virtual. Now consider the following code:

Base *pBase = new Derived;
 . . .
delete pBase;

When delete is invoked with pBase, a destructor is called. Since the destructor
in the class Base was marked virtual and the object pointed to is of type

876	 Chapter 15 /  Inheritance

Derived, the destructor for the class Derived is called (and it in turn calls the
destructor for the class Base). If the destructor in the class Base had not been
declared as virtual, then only the destructor in the class Base would be called.

Another point to keep in mind is that when a destructor is marked as
virtual, then all destructors of derived classes are automatically virtual
(whether or not they are marked virtual). Again, this behavior is as if all
destructors had the same name (even though they do not).

Now we are ready to explain why all destructors should be virtual. Suppose
the class Base has a member variable pB of a pointer type, the constructor for
the class Base creates a dynamic variable pointed to by pB, and the destructor
for the class Base deletes the dynamic variable pointed to by pB. And suppose
the destructor for the class Base is not marked virtual. Also suppose that the
class Derived (which is derived from Base) has a member variable pD of a
pointer type, the constructor for the class Derived creates a dynamic variable
pointed to by pD, and the destructor for the class Derived deletes the dynamic
variable pointed to by pD. Consider the following code:

Base *pBase = new Derived;
 . . .
delete pBase;

Since the destructor in the base class is not marked virtual, only the
destructor for the class Base will be invoked. This will return to the freestore
the memory for the dynamic variable pointed to by pB, but the memory for
the dynamic variable pointed to by pD will never be returned to the freestore
(until the program ends).

On the other hand, if the destructor for the base class Base were marked
virtual, then when delete is applied to pBase, the destructor for the class
Derived would be invoked (since the object pointed to is of type Derived).
The destructor for the class Derive would delete the dynamic variable pointed
to by pD and then automatically invoke the destructor for the base class Base,
and that would delete the dynamic variable pointed to by pB. So, with the
base class destructor marked as virtual, all the memory is returned to the
freestore. To prepare for eventualities such as these, it is best to always mark
destructors as virtual.	 ■

Self-Test Exercises

	12.	 Why can’t we assign a base class object to a derived class variable?

	13.	 What is the problem with the (legal) assignment of a derived class object
to a base class variable?

	14.	 Suppose the base class and the derived class each have a member function
with the same signature. When you have a pointer to a base class object

	 Answers to Self-Test Exercises	 877

and call a function member through the pointer, discuss what determines
which function is actually called—the base class member function or the
derived-class function.

Chapter Summary

■	 Inheritance provides a tool for code reuse by deriving one class from another
and by adding features to the derived class.

■	 Derived class objects inherit all the members of the base class and may add
members.

■	 Late binding means that the decision of which version of a member function
is appropriate is decided at run-time. Virtual functions are what C++ uses to
achieve late binding. Polymorphism, late binding, and virtual functions are
really all the same topic.

■	 A protected member in the base class is directly available to a publicly
derived class’s member functions.

Answers to Self-Test Exercises

	1.	 Yes. You can plug in an object of a derived class for a parameter of the base
class type. An HourlyEmployee is an Employee. A SalariedEmployee is an
Employee.

	2.	 class SmartBut : public Smart
{
public:
 SmartBut();
 SmartBut(int new_a, int new_b, bool new_crazy);
 bool is_crazy() const;
private:
 bool crazy;
};

	3.	 It is legal because a and b are marked protected in the base class Smart
and so they can be accessed by name in a derived class. If a and b had
instead been marked private, then this would be illegal.

	4.	 The declaration for the function get_name is not given in the definition
of SalariedEmployee because it is not redefined in the class Salaried
Employee. It is inherited unchanged from the base class Employee.

	5.	 #include <iostream>
#include “salariedemployee.h”
using namespace std;
namespace employeessavitch

878	 Chapter 15 /  Inheritance

{
 class TitledEmployee : public SalariedEmployee
 {
 public:
 TitledEmployee();
 TitledEmployee(string the_name, string the_title
 string the_ssn, double the_salary);
 string get_title() const;
 void set_title(string the_title);
 void set_name(string the_name);
 private:
 string title;
 };
}//employeessavitch

	6.	 namespace employeessavitch
{
 TitledEmployee::TitledEmployee()
 : SalariedEmployee(), title(“No title yet”)
 {
 //deliberately empty
 }

 TitledEmployee::TitledEmployee(string the_name,
 string the_title,
 string the_ssn, double the_salary)
 :SalariedEmployee(the_name,the_ssn,the_salary),
 title(the_title)
 {
 //deliberately empty
 }

 void TitledEmployee::set_name(string the_name)
 {
 Employee::set_name(title + the_name);
 }
}//employeessavitch

	7.	 No. If you do not define an overloaded assignment operator or a copy
constructor for a derived class, then a default assignment operator and a
default copy constructor will be defined for the derived class. However, if
the class involves pointers, dynamic arrays, or other dynamic data, then
it is almost certain that neither the default assignment operator nor the
default copy constructor will behave as you want them to.

	8.	 The constructors are called in the following order: first Parent, then Child,
and finally Grandchild. The destructors are called in the reverse order: first
Grandchild, then Child, and finally Parent.

	9.	 //Uses iostream and cstdlib:
void PartFilledArray::add_value(double new_entry)

	 Answers to Self-Test Exercises	 879

{
 if (number_used == max_number)
 {
 cout << “Adding to a full array.\n”;
 exit(1);
 }
 else
 {
 a[number_used] = new_entry;
 number_used++;
 }
}
PartFilledArray::PartFilledArray
 (const PartFilledArray& object)
 : max_number(object.max_number),
 number_used(object.number_used)
{
 a = new double[max_number];

 for (int i = 0; i < number_used; i++)
 a[i] = object.a[i];
}

void PartFilledArray::operator =
 (const PartFilledArray& right_side)
{
 if (right_side.max_number > max_number)
 {
 delete [] a;
 max_number = right_side.max_number;
 a = new double[max_number];
 }
 number_used = right_side.number_used;

 for (int i = 0; i < number_used; i++)
 a[i] = right_side.a[i];
}

PartFilledArray::~PartFilledArray()
{
 delete [] a;
}

	10.	 class PartFilledArrayWMax : public PartFilledArray
{
public:
 PartFilledArrayWMax(int array_size);
 PartFilledArrayWMax(const PartFilledArrayWMax& object);
 ~PartFilledArrayWMax();
 void operator= (const PartFilledArrayWMax& right_side);
 void add_value(double new_entry);
 double get_max();

880	 Chapter 15 /  Inheritance

private:
 double max_value;
};

PartFilledArrayWMax::PartFilledArrayWMax(int array_size)
 : PartFilledArray(array_size)
{
 //Body intentionally empty.
 //Max_value uninitialized, since there
 //is no suitable default value.
}

/*
Note that the following does not work, because it calls the
default constructor for PartFilledArray, but PartFilledArray
has no default constructor:
PartFilledArrayWMax::PartFilledArrayWMax(int array_size)
 : max_number(array_size), number_used(0)

{
 a = new double[max_number];
}
*/

PartFilledArrayWMax::PartFilledArrayWMax
 (const PartFilledArrayWMax& object)
 : PartFilledArray(object)
{
 if (object.number_used > 0)
 {
 max_value = a[0];
 for (int i = 1; i < number_used; i++)
 if (a[i] > max_value)
 max_value = a[i];
 }//else leave max_value uninitialized
}

//This is equivalent to the default destructor supplied
//by C++, and so this definition can be omitted.
//But, if you omit it, you must also omit the destructor
//declaration from the class definition.
PartFilledArrayWMax::~PartFilledArrayWMax()
{
 //Intentionally empty.
}

void PartFilledArrayWMax::operator =
 (const PartFilledArrayWMax& right_side)
{
 PartFilledArray::operator =(right_side);
 max_value = right_side.max_value;
}

	 Practice Programs	 881

//Uses iostream and cstdlib:
void PartFilledArrayWMax::add_value(double new_entry)

{
 if (number_used == max_number)
 {
 cout << “Adding to a full array.\n”;
 exit(1);
 }
 if ((number_used == 0) || (new_entry > max_value))
 max_value = new_entry;
 a[number_used] = new_entry;
 number_used++;
}

double PartFilledArrayWMax::get_max()
{
 return max_value;
}

	11.	 The output would change to

Discounted item is not cheaper.

	12.	 There would be no member to assign to the derived class’s added members.

	13.	 Although it is legal to assign a derived class object to a base class variable,
this discards the parts of the derived class object that are not members of
the base class. This situation is known as the slicing problem.

	14.	 If the base class function carries the virtual modifier, then the type of
the object to which the pointer was initialized determines whose member
function is called. If the base class member function does not have the
virtual modifier, then the type of the pointer determines whose member
function is called.

Practice Programs

Practice Programs can generally be solved with a short program that directly applies
the programming principles presented in this chapter.

	1.	 Write a program that uses the class SalariedEmployee in Display 15.5.
Your program is to define a class called Administrator, which is to be
derived from the class SalariedEmployee. You are allowed to change
private in the base class to protected. You are to supply the following
additional data and function members:

A member variable of type string that contains the administrator’s title
(such as Director or Vice President).

882	 Chapter 15 /  Inheritance

A member variable of type string that contains the company area of
responsibility (such as Production, Accounting, or Personnel).

A member variable of type string that contains the name of this
administrator’s immediate supervisor.

A protected: member variable of type double that holds the admin-
istrator’s annual salary. It is possible for you to use the existing salary
member if you did the change recommended earlier.

A member function called set_supervisor, which changes the supervi-
sor name.

A member function for reading in an administrator’s data from the
keyboard.

A member function called print, which outputs the object’s data to
the screen.

An overloading of the member function print_check() with appropri-
ate notations on the check.

	2.	 Add temporary, administrative, permanent, and other classifications of em-
ployee to the hierarchy from Displays 15.2, 15.4, and 15.5. Implement and
test this hierarchy. Test all member functions. A user interface with a menu
would be a nice touch for your test program.

	3.	 Listed below are definitions of two classes that use inheritance, code for
their implementation, and a main function. Put the code into appropriate
files with the necessary include statements and preprocessor statements so
that the program compiles and runs. It should output “Circle has radius 2
and area 12.5664”.

class Shape
{
public:
 Shape();
 Shape(string name);
 string getName();
 void setName(string newName);
 virtual double getArea() = 0;
private:
 string name;
};
Shape::Shape()
{
 name="";
}
Shape::Shape(string name)
{
 this->name = name;

VideoNote
Solution to Practice
Program 15.3

}
string Shape::getName()
{
 return this->name;
}
void Shape::setName(string newName)
{
 this->name = newName;
}
class Circle : public Shape
{
public:
 Circle();
 Circle(int theRadius);
 void setRadius(int newRadius);
 double getRadius();
 virtual double getArea();
private:
 int radius;
};
Circle::Circle() : Shape("Circle"), radius(0)
{ }
Circle::Circle(int theRadius) : Shape("Circle"),
 radius(theRadius)
{ }
void Circle::setRadius(int newRadius)
{
 this->radius = newRadius;
}
double Circle::getRadius()
{
 return radius;
}
double Circle::getArea()
{
 return 3.14159 * radius * radius;
}
int main()
{
 Circle c(2);
 cout << c.getName() << " has radius " <<
 c.getRadius() << " and area " <<
 c.getArea() << endl;
 return 0;
}

Add another class, Rectangle, that is also derived from the Shape class. Modify
the Rectangle class appropriately so it has private width and height variables,
a constructor that allows the user to set the width and height, functions to

	 Practice Programs	 883

884	 Chapter 15 /  Inheritance

retrieve the width and height, and an appropriately defined getArea function
that calculates the area of the rectangle.

The following code added to main should output “Rectangle has width 3 has
height 4 and area 12.0”.

Rectangle r(3,4);
cout << r.getName() << " has width " <<
 r.getWidth() << " has height " <<
 r.getHeight() << " and area " <<
 r.getArea() << endl;

Programming Projects

Programming Projects require more problem-solving than Practice Programs and
can usually be solved many different ways. Visit www.myprogramminglab.com to
complete many of these Programming Projects online and get instant feedback.

	1.	 Give the definition of a class named Doctor whose objects are records for
a clinic’s doctors. This class will be a derived class of the class Salaried
Employee given in Display 15.5. A Doctor record has the doctor’s specialty
(such as “Pediatrician,” “Obstetrician,” “General Practitioner,” etc., so use
type string) and office visit fee (use type double). Be sure your class has
a reasonable complement of constructors, accessor, and mutator member
functions, an overloaded assignment operator, and a copy constructor.
Write a driver program to test all your functions.

	2.	 Create a base class called Vehicle that has the manufacturer’s name (type
string), number of cylinders in the engine (type int), and owner (type Per-
son, given below). Then create a class called Truck that is derived from Vehi-
cle and has additional properties: the load capacity in tons (type double since
it may contain a fractional part) and towing capacity in pounds (type int). Be
sure your classes have a reasonable complement of constructors, accessor, and
mutator member functions, an overloaded assignment operator, and a copy
constructor. Write a driver program that tests all your member functions.

		 The definition of the class Person follows. The implementation of the class
is part of this Programming Project.

class Person
{
public:
 Person();
 Person(string the_name);
 Person(const Person& the_object);
 string get_name() const;
 Person& operator = (const Person& rt_side);
 friend istream& operator >>(istream& in_stream,
 Person& person_object);

VideoNote
Solution to Programming
Project 15.1

www.myprogramminglab.com

	 Programming Projects	 885

 friend ostream& operator <<(ostream& out_stream,
 const Person& person_object);
private:
 string name;
};

	3.	 Define a Car class that is derived from the Vehicle class given in Pro-
gramming Project 2. Define a class called SportsCar that is derived from
Car class. Be creative in choosing member variables and functions. Write a
driver program to test the Car and SportsCar classes. (No pun intended.)

	4.	 Give the definition of two classes, Patient and Billing, whose objects
are records for a clinic. Patient will be derived from the class Person
given in Programming Project 2. A Patient record has the patient’s name
(inherited from the class Person) and primary physician, of type Doctor
defined in Programming Project 2. A Billing object will contain a Patient
object, a Doctor object, and an amount due of type double. Be sure your
classes have a reasonable complement of constructors, accessor, and mu-
tator member functions, an overloaded assignment operator, and a copy
constructor. First write a driver program to test all your member functions,
and then write a test program that creates at least two patients, at least two
doctors, and at least two Billing records, then prints out the total income
from the Billing records.

	5.	 Consider a graphics system that has classes for various figures—rectangles,
squares, triangles, circles, and so on. For example, a rectangle might have
data members for height, width, and center point, while a square and circle
might have only a center point and an edge length or radius, respectively.
In a well-designed system, these would be derived from a common class,
Figure. You are to implement such a system.

The class Figure is the base class. You should add only Rectangle and
Triangle classes derived from Figure. Each class has stubs for member
functions erase and draw. Each of these member functions outputs a
message telling what function has been called and what the class of the
calling object is. Since these are just stubs, they do nothing more than
output this message. The member function center calls the erase and
draw functions to erase and redraw the figure at the center. Since you
have only stubs for erase and draw, center will not do any “centering”
but will call the member functions erase and draw. Also add an output
message in the member function center that announces that center is
being called. The member functions should take no arguments.

There are three parts to this project:

a.	 Write the class definitions using no virtual functions. Compile and test.
b.	M ake the base class member functions virtual. Compile and test.
c.	E xplain the difference in results.

886	 Chapter 15 /  Inheritance

For a real example, you would have to replace the definition of each of
these member functions with code to do the actual drawing. You will be
asked to do this in Programming Project 6.

Use the following main function for all testing:

//This program tests Programming Project 5.
#include <iostream>
#include “figure.h”
#include “rectangle.h”
#include “triangle.h”
using std::cout;

int main()
{
 Triangle tri;
 tri.draw();
 cout <<
 “\nDerived class Triangle object calling center().\n”;
 tri.center(); //Calls draw and center
 Rectangle rect;
 rect.draw();
 cout <<
 “\nDerived class Rectangle object calling center().\n”;
 rect.center(); //Calls draw and center
 return 0;
}

	6.	 Flesh out Programming Project 5. Give new definitions for the various
constructors and the member functions Figure::center, Figure::draw,
Figure::erase, Triangle::draw, Triangle::erase, Rectangle::draw, and
Rectangle::erase so that the draw functions actually draw figures on the
screen by placing the character ‘*’ at suitable locations. For the erase func-
tions, you can simply clear the screen (by outputting blank lines or by doing
something more sophisticated). There are a lot of details in this problem,
and you will have to make decisions about some of them on your own.

	  7.	 Banks have many different types of accounts, often with different rules
for fees associated with transactions such as withdrawals. Customers are
allowed to transfer funds between accounts incurring the appropriate fees
associated with withdrawal of funds from one account.

Write a program with a base class for a bank account and two derived
classes (as described below) representing accounts with different rules
for withdrawing funds. Also write a function that transfers funds from
one account (of any type) to another. A transfer is a withdrawal from one
account and a deposit into the other. Since the transfer can be done at any
time with any type of account, the withdraw function in the classes must

	 Programming Projects	 887

be virtual. Write a main program that creates three accounts (one from
each class) and tests the transfer function.

For the classes, create a base class called BankAccount that has the name
of the owner of the account (a string) and the balance in the account
(double) as data members. Include member functions deposit and
withdraw (each with a double for the amount as an argument) and
accessor functions getName and getBalance. Deposit will add the amount
to the balance (assuming the amount is nonnegative) and withdraw
will subtract the amount from the balance (assuming the amount
is nonnegative and less than or equal to the balance). Also create a
class called MoneyMarketAccount that is derived from BankAccount. In
a MoneyMarketAccount the user gets two free withdrawals in a given
period of time (don’t worry about the time for this problem). After the
free withdrawals have been used, a withdrawal fee of $1.50 is deducted
from the balance per withdrawal. Hence, the class must have a data
member to keep track of the number of withdrawals. It also must override
the withdraw definition. Finally, create a CDAccount class (to model a
Certificate of Deposit) derived from BankAccount that in addition to
having the name and balance also has an interest rate. CDs incur penalties
for early withdrawal of funds. Assume that a withdrawal of funds (any
amount) incurs a penalty of 25% of the annual interest earned on the
account. Assume the amount withdrawn plus the penalty are deducted
from the account balance. Again, the withdraw function must override the
one in the base class. For all three classes, the withdraw function should
return an integer indicating the status (either ok or insufficient funds for
the withdrawal to take place). For the purposes of this exercise, do not
worry about other functions and properties of these accounts (such as
when and how interest is paid).

	  8.	R adio Frequency IDentification (RFID) chips are small tags that can be
placed on a product. They behave like wireless barcodes and can wirelessly
broadcast an identification number to a receiver. One application of RFID
chips is to use them to aid in the logistics of shipping freight. Consider
a shipping container full of items. Without RFID chips, a human has to
manually inventory all of the items in the container to verify the contents.
With an RFID chip attached to the shipping container, the RFID chip can
electronically broadcast to a human the exact contents of the shipping
container without human intervention.

To model this application, write a base class called ShippingContainer
that has a container ID number as an integer. Include member functions to
set and access the ID number. Add a virtual function called getManifest
that returns an empty string. The purpose of this function is to return the
contents of the shipping container.

888	 Chapter 15 /  Inheritance

Create a derived class called ManualShippingContainer that represents
the manual method of inventorying the container. In this method,
a human simply attaches a textual description of all contents of the
container. For example, the description might be “4 crates of apples.
10 crates of pears.” Add a new class variable of type string to store the
manifest. Add a function called setManifest that sets this string. Override
the getManifest function so that it returns this string.

Create a second derived class called RFIDShippingContainer that represents
the RFID method of inventorying the container. To simulate what the RFID
chips would compute, create an add function to simulate adding an item
to the container. The class should store a list of all added items (as a string)
and their quantity using the data structures of your choice. For example, if
the add function were invoked three times as follows:

rfidContainer.add(“crate of pears”); // Add one crate of pears
rfidContainer.add(“crate of apples”); // Add one crate of apples
rfidContainer.add(“crate of pears”); // Add one crate of pears

At this point, the data structure should be storing a list of two items: crate
of apples and crate of pears. The quantity of apples is 1and the quantity of
pears is 2. Override the getManifest function so that it returns a string of
all items that is built by traversing the list of items. In the example above,
the return string would be “2 crate of pears. 1 crate of apples.”

Finally, write a main program that creates an array of pointers to
six ShippingContainer objects. Instantiate the array with three
ManualShippingContainer objects and three RFIDShippingContainer
objects. For the ManualShippingContainer objects, you will have to
invoke setManifest to set the contents. For the RFIDShippingContainer
objects, you will have to invoke add to set the contents (although, if this
were real, the contents of the container would “add” themselves via the
RFID chips instead of requiring a human to type them in). Finally, write
a loop that iterates through all ShippingContainer pointers and outputs
each object’s manifest along with the shipping container ID. This is the
output that the receiver of the shipping containers would like to see.

You may need to convert an integer into a string. A simple way to do this
in C++11 is: string s = to_string(intVariable);

	  9.	 The goal for this Programming Project is to create a simple two-dimensional
predator-prey simulation. In this simulation the prey are ants and the pred-
ators are doodlebugs. These critters live in a world composed of a 20 ×
20 grid of cells. Only one critter may occupy a cell at a time. The grid is
enclosed, so a critter is not allowed to move off the edges of the world.
Time is simulated in time steps. Each critter performs some action every
time step.

	 Programming Projects	 889

The ants behave according to the following model:

■	M ove. Every time step, randomly try to move up, down, left, or right. If
the neighboring cell in the selected direction is occupied or would move
the ant off the grid, then the ant stays in the current cell.

■	 Breed. If an ant survives for three time steps, then at the end of the time
step (that is; after moving) the ant will breed. This is simulated by creat-
ing a new ant in an adjacent (up, down, left, or right) cell that is empty.
If there is no empty cell available, then no breeding occurs. Once an off-
spring is produced, an ant cannot produce an offspring until three more
time steps have elapsed.

The doodlebugs behave according to the following model:

■	M ove. Every time step, if there is an adjacent ant (up, down, left, or
right), then the doodlebug will move to that cell and eat the ant. Other-
wise, the doodlebug moves according to the same rules as the ant. Note
that a doodlebug cannot eat other doodlebugs.

■	 Breed. If a doodlebug survives for eight time steps, then at the end of the
time step it will spawn off a new doodlebug in the same manner as the ant.

■	 Starve. If a doodlebug has not eaten an ant within the last three time
steps, then at the end of the third time step it will starve and die. The
doodlebug should then be removed from the grid of cells.

During one turn, all the doodlebugs should move before the ants do.

Write a program to implement this simulation and draw the world using
ASCII characters of “o” for an ant and “X” for a doodlebug. Create a class
named Organism that encapsulates basic data common to both ants and
doodlebugs. This class should have a virtual function named move that
is defined in the derived classes of Ant and Doodlebug. You may need
additional data structures to keep track of which critters have moved.

Initialize the world with 5 doodlebugs and 100 ants. After each time step,
prompt the user to press Enter to move to the next time step. You should see
a cyclical pattern between the population of predators and prey, although
random perturbations may lead to the elimination of one or both species.

	10.	 Listed below is code to play a guessing game. In the game two players
attempt to guess a number. Your task is to extend the program with objects
that represent either a human player or a computer player. The rand()
function requires you include cstdlib (see Appendix 4):

bool checkForWin(int guess, int answer)
{
 cout<< “You guessed” << guess << “.”;

VideoNote
Solution to Programming
Project 15.10

890	 Chapter 15 /  Inheritance

 if (answer == guess)
 {
 cout<< “You’re right! You win!” <<endl;
 return true;
 }
 else if (answer < guess)
 cout<< “Your guess is too high.” <<endl;
 else
 cout<< “Your guess is too low.” <<endl;
 return false;
}
void play(Player &player1, Player &player2)
{
 int answer = 0, guess = 0;
 answer = rand() % 100;
 bool win = false;
 while (!win)
 {
 cout<< “Player 1’s turn to guess.” <<endl;
 guess = player1.getGuess();
 win = checkForWin(guess, answer);
 if (win) return;
 cout<< “Player 2’s turn to guess.” <<endl;
 guess = player2.getGuess();
 win = checkForWin(guess, answer);
 }
}

The play function takes as input two Player objects. Define the Player
class with a virtual function named getGuess(). The implementation
of Player::getGuess() can simply return 0. Next, define a class
named HumanPlayer derived from Player. The implementation of
HumanPlayer::getGuess() should prompt the user to enter a number
and return the value entered from the keyboard. Next, define a class
named ComputerPlayer derived from Player. The implementation of
ComputerPlayer::getGuess() should randomly select a number between
0 and 99 (see Appendix 4 for information on random number generation).
Finally, construct a main function that invokes play(Player &player1,
Player &player2) with two instances of a HumanPlayer (human versus
human), an instance of a HumanPlayer and ComputerPlayer (human
versus computer), and two instances of ComputerPlayer (computer versus
computer).

	11.	 The computer player in Programming Project 10 does not play very well
in the number guessing game, since it only makes random guesses. Mod-
ify the program so that the computer plays a more informed game. The
specific strategy is up to you, but you must add function(s) to the Player
and ComputerPlayer classes so that the play(Player& player1, Player

&player2) function can send the results of a guess back to the computer
player. In other words, the computer must be told if its last guess was too
high or too low, and it also must be told if its opponent’s last guess was too
high or too low. The computer then can use this information to revise its
next guess. Also, add any necessary functions to allow the computer player
to play multiple consecutive games.

	12.	 Start with the definition of the Queue class given in Section 13.2 and
modify it to store integers instead of characters. A special type of queue is
a priority queue. A priority queue behaves like a regular queue except the
remove function always extracts the item with the smallest value (this is
the item with the highest priority). Create a PriorityQueue class that is
derived from the Queue class with appropriate constructors. Redefine the
remove function in the PriorityQueue class to extract the item with the
smallest value. Test the PriorityQueue class by adding several numbers
to a PriorityQueue object, then remove each one, printing the removed
numbers as they are removed from the queue.

	13.	 The following is an attempt to create a class to represent information about
pets:

class Pet
{
public:
 Pet();
 void printDescription();

 string name;
 int type;
 bool neuterSpayed;
 bool talks;
};

Pet::Pet() : type(0), neuterSpayed(false),
 talks(false)
{ }

void Pet::printDescription()
{
 switch (type)
 {
 case 0:
 cout << "Dog named " << name << endl;
 cout << "Neuter/Spayed: " <<
 neuterSpayed;
 break;
 case 1:
 cout << "Cat named " << name << endl;
 cout << "Neuter/Spayed: " <<
 neuterSpayed;

	 Programming Projects	 891

892	 Chapter 15 /  Inheritance

 break;
 case 2:
 cout << "Bird named " << name << endl;
 cout << "Talks: " << talks << endl;
 break;
 }
 cout << endl;
}

Rewrite this code using inheritance. You should have a Pet class with
subclasses for Dog, Cat, and Bird. Variables should be associated
with the appropriate classes, defined as private when appropriate,
and have appropriate functions to access the variables. Rewrite the
printDescription function as a virtual function. There should no longer
be the need for a switch statement or a type variable.

Write a main function that creates a vector or array of pets that includes at
least one bird, one dog, and one cat, and then loops through and outputs
a description of each one.

Exception Handling

16.1  Exception-Handling Basics   895
A Toy Example of Exception Handling   895
Defining Your Own Exception Classes   904
Multiple Throws and Catches   904
Pitfall: Catch the More Specific Exception First   908
Programming Tip: Exception Classes Can

Be Trivial   909
Throwing an Exception in a Function   909
Exception Specification   911
Pitfall: Exception Specification in Derived

Classes   913

16.2 �P rogramming Techniques for
Exception Handling   914

When to Throw an Exception   914
Pitfall: Uncaught Exceptions   916
Pitfall: Nested try-catch Blocks   916
Pitfall: Overuse of Exceptions   916
Exception Class Hierarchies   917
Testing for Available Memory   917
Rethrowing an Exception   918

16

Chapter Summary  918
Answers to Self-Test Exercises  918

Practice Programs  920
Programming Projects  921

Introduction

One way to write a program is to first assume that nothing unusual or
incorrect will happen. For example, if the program takes an entry off a list, you
might assume that the list is not empty. Once you have the program working
for the core situation where things always go as planned, you can then add
code to take care of the exceptional cases. In C++, there is a way to reflect
this approach in your code. Basically, you write your code as if nothing very
unusual happens. After that, you use the C++ exception-handling facilities to
add code for those unusual cases. Exception handling is commonly used to
handle error situations, but perhaps a better way to view exceptions is as a way
to handle “exceptional situations.” After all, if your code correctly handles an
“error,” then it no longer is an error.

Perhaps the most important use of exceptions is to deal with functions
that have some special case that is handled differently depending on how
the function is used. Perhaps the function will be used in many programs,
some of which will handle the special case in one way and some of which will
handle it in some other way. For example, if there is a division by zero in the
function, then it may turn out that for some invocations of the function, the
program should end, but for other invocations of the function something else
should happen. You will see that such a function can be defined to throw an
exception if the special case occurs, and that exception will allow the special
case to be handled outside of the function. That way, the special case can be
handled differently for different invocations of the function.

In C++, exception handling proceeds as follows: Either some library
software or your code provides a mechanism that signals when something
unusual happens. This is called throwing an exception. At another place in your
program, you place the code that deals with the exceptional case. This is called
handling the exception. This method of programming makes for cleaner code.
Of course, we still need to explain the details of how you do this in C++.

Prerequisites

With the exception of one subsection that can be skipped, Section 16.1 uses
material only from Chapters 2 to 6 and 10 to 11. The Pitfall subsection of Section
16.1 entitled “Exception Specification in Derived Classes” uses material from
Chapter 15. This Pitfall subsection can be skipped without loss of continuity.

894

It’s the exception that proves the rule.

Common maxim (possibly a corruption of something like: It’s the exception that tests the rule.)

	 16.1  Exception-Handling Basics	 895

With the exception of one subsection that can be skipped, Section 16.2
uses material only from Chapters 2 to 8 and 10 to 12 and Section 15.1
of Chapter 15 in addition to Section 16.1. The subsection of Section 16.2
entitled “Testing for Available Memory” uses material from Chapter 15. This
subsection can be skipped without loss of continuity.

16.1  Exception-Handling Basics

Well, the program works for most cases. I didn’t know it had to work for
that case.

Computer Science student, appealing a grade

Exception handling is meant to be used sparingly and in situations that are
more involved than what is reasonable to include in a simple introductory
example. So, we will teach you the exception-handling details of C++ by
means of simple examples that would not normally use exception handling.
This makes a lot of sense for learning about exception handling, but do not
forget that these first examples are toy examples, and in practice, you would
not use exception handling for anything that simple.

A Toy Example of Exception Handling

For this example, suppose that milk is such an important food in our culture
that people almost never run out of it, but still we would like our programs
to accommodate the very unlikely situation of running out of milk. The basic
code, which assumes we do not run out of milk, might be as follows:

cout << "Enter number of donuts:\n";
cin >> donuts;
cout << "Enter number of glasses of milk:\n";
cin >> milk;
dpg = donuts/static_cast<double>(milk);
cout << donuts << " donuts.\n"
 << milk << " glasses of milk.\n"
 << "You have " << dpg
 << " donuts for each glass of milk.\n";

If there is no milk, then this code will include a division by zero, which
is an error. To take care of the special situation in which we run out of milk,
we can add a test for this unusual situation. The complete program with this
added test for the special situation is shown in Display 16.1. The program
in Display 16.1 does not use exception handling. Now, let’s see how this
program can be rewritten using the C++ exception-handling facilities.

896	 Chapter 16 /  Exception Handling

In Display 16.2, we have rewritten the program from Display 16.1 using
an exception. This is only a toy example, and you would probably not use an
exception in this case. However, it does give us a simple example. Although
the program as a whole is not simpler, at least the part between the words try
and catch is cleaner, and this hints at the advantage of using exceptions. Look

Display 16.1   Handling a Special Case Without Exception Handling

 1 include <iostream>
 2 using namespace std;

 3 int main()
 4 {
 5 int donuts, milk;
 6 double dpg;
 7 cout << "Enter number of donuts:\n";
 8 cin >> donuts;
 9 cout << "Enter number of glasses of milk:\n";
10 cin >> milk;

11 if (milk <= 0)
12 {
13 cout << donuts << " donuts, and No Milk!\n"
14 << "Go buy some milk.\n";
15 }
16 Else
17 {
18 dpg = donuts/static_cast<double>(milk);
19 cout << donuts << " donuts.\n"
20 << milk << " glasses of milk.\n"
21 << "You have " << dpg
22 << " donuts for each glass of milk.\n";
23 }

24 cout << "End of program.\n";
25 return 0;
26 }

Sample Dialogue

Enter number of donuts:

12

Enter number of glasses of milk:

0

12 donuts, and No Milk!

Go buy some milk.

End of program.

	 16.1  Exception-Handling Basics	 897

Display 16.2   Same Thing Using Exception Handling (part 1 of 2)

 1 #include <iostream>
 2 using namespace std;
 3
 4 int main()
 5 {
 6 int donuts, milk;
 7 double dpg;
 8
 9 try
10 {
11 cout << "Enter number of donuts:\n";
12 cin >> donuts;
13 cout << "Enter number of glasses of milk:\n";
14 cin >> milk;
15
16 if (milk <= 0)
17 throw donuts;
18
19 dpg = donuts/static_cast<double>(milk);
20 cout << donuts << " donuts.\n"
21 << milk << " glasses of milk.\n"
22 << "You have " << dpg
23 << " donuts for each glass of milk.\n";
24 }
25 catch(int e)
26 {
27 cout << e << " donuts, and No Milk!\n"
28 << "Go buy some milk.\n";
29 }
30
31 cout << "End of program.\n";
32 return 0;
33 }

Sample Dialogue 1

Enter number of donuts:

12

Enter number of glasses of milk:

6

12 donuts.

6 glasses of milk.

You have 2 donuts for each glass of milk.

(continued)

898	 Chapter 16 /  Exception Handling

Display 16.2   Same Thing Using Exception Handling (part 2 of 2)

Sample Dialogue 2

Enter number of donuts:

12

Enter number of glasses of milk:

0

12 donuts, and No Milk!

Go buy some milk.

End of program.

at the code between the words try and catch. That code is basically the same
as the code in Display 16.1, but rather than the big if-else statement (shown
in color in Display 16.1) this new program has the following smaller if
statement (plus some simple nonbranching statements):

if (milk <= 0)
 throw donuts;

This if statement says that if there is no milk, then do something
exceptional. That something exceptional is given after the word catch. The
idea is that the normal situation is handled by the code following the word
try, and that the code following the word catch is used only in exceptional
circumstances. We have thus separated the normal case from the exceptional
case. In this toy example, this separation does not really buy us too much, but
in other situations it will prove to be very helpful. Let’s look at the details.

The basic way of handling exceptions in C++ consists of the try-throw-
catch threesome. A try block has the syntax

try
{
 Some_Code
}

This try block contains the code for the basic algorithm that tells the computer
what to do when everything goes smoothly. It is called a try block because
you are not 100 percent sure that all will go smoothly, but you want to “give
it a try.”

Now if something does go wrong, you want to throw an exception, which
is a way of indicating that something went wrong. The basic outline, when we
add a throw, is as follows:

try
{

	 16.1  Exception-Handling Basics	 899

 Code_To_Try
 Possibly_Throw_An_Exception
 More_Code
}

The following is an example of a try block with a throw statement included
(copied from Display 16.2):

try
{
 cout << "Enter number of donuts:\n";
 cin >> donuts;
 cout << "Enter number of glasses of milk:\n";
 cin >> milk;
 if (milk <= 0)
 throw donuts;
 dpg = donuts/static_cast<double>(milk);
 cout << donuts << " donuts.\n"
 << milk << " glasses of milk.\n"
 << "You have " << dpg
 << " donuts for each glass of milk.\n";
}

The following statement throws the int value donuts:

throw donuts;

The value thrown, in this case donuts, is sometimes called an exception,
and the execution of a throw statement is called throwing an exception. You
can throw a value of any type. In this case, an int value is thrown.

throw Statement

Syntax

throw Expression_for_Value_to_Be_Thrown;

When the throw statement is executed, the execution of the enclosing
try block is stopped. If the try block is followed by a suitable catch
block, then flow of control is transferred to the catch block. A throw
statement is almost always embedded in a branching statement, such as
anif statement. The value thrown can be of any type.

Example

if (milk <= 0)
 throw donuts;

900	 Chapter 16 /  Exception Handling

As the name suggests, when something is “thrown,” something goes from
one place to another place. In C++, what goes from one place to another
is the flow of control (as well as the value thrown). When an exception is
thrown, the code in the surrounding try block stops executing and another
portion of code, known as a catch block, begins execution. This executing
of the catch block is called catching the exception or handling the exception.
When an exception is thrown, it should ultimately be handled by (caught by)
some catch block. In Display 16.2, the appropriate catch block immediately
follows the try block. We repeat the catch block here:

catch(int e)
{
 cout << e << " donuts, and No Milk!\n"
 << "Go buy some milk.\n";
}

This catch block looks very much like a function definition that has a
parameter of a type int. It is not a function definition, but in some ways, a
catch block is like a function. It is a separate piece of code that is executed
when your program encounters (and executes) the following (within the
preceding try block):

throw Some_int;

So, this throw statement is similar to a function call, but instead of calling a
function, it calls the catch block and says to execute the code in the catch
block. A catch block is often referred to as an exception handler, which is a
term that suggests that a catch block has a function-like nature.

What is that identifier e in the following line from a catch block?

catch(int e)

That identifier e looks like a parameter and acts very much like a parameter.
So, we will call this e the catch-block parameter. (But remember, this does
not mean that the catch block is a function.) The catch-block parameter does
two things:

	1.	 The catch-block parameter is preceded by a type name that specifies what
kind of thrown value the catch block can catch.

	2.	 The catch-block parameter gives you a name for the thrown value that is
caught, so you can write code in the catch block that does things with the
thrown value that is caught.

We will discuss these two functions of the catch-block parameter in reverse
order. In this subsection, we will discuss using the catch-block parameter as a
name for the value that was thrown and is caught. In the subsection entitled
“Multiple Throws and Catches,” later in this chapter, we will discuss which
catch block (which exception handler) will process a value that is thrown. Our

	 16.1  Exception-Handling Basics	 901

current example has only one catch block. A common name for a catch-block
parameter is e, but you can use any legal identifier in place of e.

Let’s see how the catch block in Display 16.2 works. When a value is
thrown, execution of the code in the try block ends and control passes to the
catch block (or blocks) that are placed right after the try block. The catch
block from Display 16.2 is reproduced here:

catch(int e)
{
 cout << e << " donuts, and No Milk!\n"
 << "Go buy some milk.\n";
}

When a value is thrown, the thrown value must be of type int in order for
this particular catch block to apply. In Display 16.2, the value thrown is given
by the variable donuts, and since donuts is of type int, this catch block can
catch the value thrown.

Suppose the value of donuts is 12 and the value of milk is 0, as in
the second sample dialogue in Display 16.2. Since the value of milk is not
positive, the throw statement within the if statement is executed. In that
case, the value of the variable donuts is thrown. When the catch block in
Display 16.2 catches the value of donuts, the value of donuts is plugged in
for the catch-block parameter e and the code in the catch block is executed,
producing the following output:

12 donuts, and No Milk!
Go buy some milk.

If the value of donuts is positive, the throw statement is not executed. In this
case, the entire try block is executed. After the last statement in the try block
is executed, the statement after the catch block is executed. Note that if no
exception is thrown, then the catch block is ignored.

This makes it sound like a try-throw-catch setup is equivalent to an if-
else statement. It almost is equivalent, except for the value thrown. A try-
throw-catch setup is similar to an if-else statement with the added ability to
send a message to one of the branches. This does not sound much different from
an if-else statement, but it turns out to be a big difference in practice.

To summarize in a more formal tone, a try block contains some code that
we are assuming includes a throw statement. The throw statement is normally
executed only in exceptional circumstances, but when it is executed, it throws
a value of some type. When an exception (a value like donuts in Display
16.2) is thrown, that is the end of the try block. All the rest of the code in
the try block is ignored and control passes to a suitable catch block. A catch
block applies only to an immediately preceding try block. If the exception is
thrown, then that exception object is plugged in for the catch-block param-
eter, and the statements in the catch block are executed. For example, if you
look at the dialogues in Display 16.2, you will see that as soon as the user

902	 Chapter 16 /  Exception Handling

enters a nonpositive number, the try block stops and the catch block is
executed. For now, we will assume that every try block is followed by an ap-
propriate catch block. We will later discuss what happens when there is no
appropriate catch block.

Next, we summarize what happens when no exception is thrown in a try
block. If no exception (no value) is thrown in the try block, then after the
try block is completed, program execution continues with the code after the
catch block. In other words, if no exception is thrown, then the catch block is
ignored. Most of the time when the program is executed, the throw statement
will not be executed, and so in most cases, the code in the try block will run
to completion and the code in the catch block will be ignored completely.

catch -Block Parameter

The catch-block parameter is an identifier in the heading of a catch
block that serves as a placeholder for an exception (a value) that might
be thrown. When a (suitable) value is thrown in the preceding try block,
that value is plugged in for the catch-block parameter. You can use any
legal (nonreserved word) identifier for a catch-block parameter.

Example

catch(int e)
{
 cout << e << " donuts, and No Milk!\n"
 << "Go buy some milk.\n";
}

e is the catch-block parameter.

try-throw-catch

This is the basic mechanism for throwing and catching exceptions.
The throw statement throws the exception (a value). The catch block
catches the exception (the value). When an exception is thrown, the try
block ends and then the code in the catch block is executed. After the
catch block is completed, the code after the catch block(s) is executed
(provided the catch block has not ended the program or performed
some other special action).

If no exception is thrown in the try block, then after the try block is
completed, program execution continues with the code after the catch
block(s). (In other words, if no exception is thrown, then the catch
block(s) are ignored.)

	 16.1  Exception-Handling Basics	 903

Self-Test Exercises

	1.	 What output is produced by the following code?

int wait_time = 46;
try
{
 cout << "Try block entered.\n";
 if (wait_time > 30)
 throw wait_time;
 cout << "Leaving try block.\n";
}
catch(int thrown_value)
{
 cout << "Exception thrown with\n"
 << "wait_time equal to " << thrown_value << endl;
}
cout << "After catch block." << endl;

	2.	 What would be the output produced by the code in Self-Test Exercise 1 if
we make the following change? Change the line

int wait_time = 46;

		 to

int wait_time = 12;

Syntax

try
{
 Some_Statements
 < Either some code with a throw statement or a
 function invocation that might throw an
 exception>
 Some_More_Statements
}
catch(Type_Name e)
{
 < Code to be performed if a value of the
 catch-block parameter type is thrown in the
 try block>
}

Example

See Display 16.2.

904	 Chapter 16 /  Exception Handling

	3.	 In the code given in Self-Test Exercise 1, what is the throw statement?

	4.	 What happens when a throw statement is executed? This is a general
question. Tell what happens in general, not simply what happens in the
code in Self-Test Question 1 or some other sample code.

	5.	 In the code given in Self-Test Exercise 1, what is the try block?

	6.	 In the code given in Self-Test Exercise 1, what is the catch block?

	7.	 In the code given in Self-Test Exercise 1, what is the catch-block
parameter?

Defining Your Own Exception Classes

A throw statement can throw a value of any type. A common thing to do is
to define a class whose objects can carry the precise kind of information you
want thrown to the catch block. An even more important reason for defining
a specialized exception class is so that you can have a different type to identify
each possible kind of exceptional situation.

An exception class is just a class. What makes it an exception class is
how it’s used. Still, it pays to take some care in choosing an exception class’s
name and other details. Display 16.3 contains an example of a program
with a programmer-defined exception class. This is just a toy program to
illustrate some C++ details about exception handling. It uses much too much
machinery for such a simple task, but it is an otherwise uncluttered example
of some C++ details.

Notice the throw statement, reproduced in what follows:

throw NoMilk(donuts);

The part NoMilk(donuts) is an invocation of a constructor for the class NoMilk.
The constructor takes one int argument (in this case donuts) and creates an
object of the class NoMilk. That object is then “thrown.”

Multiple Throws and Catches

A try block can potentially throw any number of exception values, and they
can be of differing types. In any one execution of the try block, only one
exception will be thrown (since a thrown exception ends the execution of the
try block), but different types of exception values can be thrown on different
occasions when the try block is executed. Each catch block can only catch
values of one type, but you can catch exception values of differing types
by placing more than one catch block after a try block. For example, the
program in Display 16.4 has two catch blocks after its try block.

Note that there is no parameter in the catch block for DivideByZero. If
you do not need a parameter, you can simply list the type with no parameter.

	 16.1  Exception-Handling Basics	 905

Display 16.3   Defining Your Own Exception Class

 1 #include <iostream>
 2 using namespace std;

 3 class NoMilk
 4 {
 5 public:
 6 NoMilk();
 7 NoMilk(int how_many);
 8 int get_donuts();
 9 private:
10 int count;
11 };

12 int main()
13 {
14 int donuts, milk;
15 double dpg;
16 try
17 {
18 cout << "Enter number of donuts:\n";
19 cin >> donuts;
20 cout << "Enter number of glasses of milk:\n";
21 cin >> milk;
22 if (milk <= 0)
23 throw NoMilk(donuts);
24 dpg = donuts/static_cast<double>(milk);
25 cout << donuts << " donuts.\n"
26 << milk << " glasses of milk.\n"
27 << "You have " << dpg
28 << " donuts for each glass of milk.\n";
29 }
30 catch(NoMilk e)
31 {
32 cout << e.get_donuts() << " donuts, and No Milk!\n"
33 << "Go buy some milk.\n";
34 }
35 cout << "End of program.";
36 return 0;
37 }
38
39 NoMilk::NoMilk()
40 {}
41 NoMilk::NoMilk(int how_many) : count(how_many)
42 {}
43
44 int NoMilk::get_donuts()
45 {
46 return count;
47 }

This is just a toy example to learn C++ syntax.
Do not take it as an example of good typical use
of exception handling.

The sample dialogues are the same as in
Display 16.2.

906	 Chapter 16 /  Exception Handling

Display 16.4   Catching Multiple Exceptions (part 1 of 2)

 1 #include <iostream>
 2 #include <string>
 3 using namespace std;
 4
 5 class NegativeNumber
 6 {
 7 public:
 8 NegativeNumber();
 9 NegativeNumber(string take_me_to_your_catch_block);
10 string get_message();
11 private:
12 string message;
13 };
14
15 class DivideByZero
16 {};
17
18 int main()
19 {
20 int jem_hadar, klingons;
21 double portion;
22
23 try
24 {
25 cout << "Enter number of JemHadar warriors:\n";
26 cin >> jem_hadar;
27 if (jem_hadar< 0)
28 throw NegativeNumber("JemHadar");
29
30 cout << "How many Klingon warriors do you have?\n";
31 cin >> klingons;
32 if (klingons< 0)
33 throw NegativeNumber("Klingons");
34 if (klingons != 0)
35 portion = jem_hadar/static_cast<double>(klingons);
36 else
37 throw DivideByZero();
38 cout << "Each Klingon must fight "
39 << portion << " JemHadar.\n";
40 }
41 catch(NegativeNumber e)
42 {
43 cout << "Cannot have a negative number of "
44 << e.get_message() << endl;
45 }

(continued)

Although not done here, exception classes can
have their own interface and implementation
files and can be put in a namespace.
This is another toy example.

	 16.1  Exception-Handling Basics	 907

Display 16.4   Catching Multiple Exceptions (part 2 of 2)

46 catch (DivideByZero)
47 {
48 cout << "Send for help.\n";
49 }
50
51 cout << "End of program.\n";
52 return 0;
53 }
54
55
56 NegativeNumber::NegativeNumber()
57 {}
58
59 NegativeNumber::NegativeNumber(string take_me_to_your_catch_block)
60 : message(take_me_to_your_catch_block)
61 {}
62
63 string NegativeNumber::get_message()
64 {
65 return message;
66 }

Sample Dialogue 1

Enter number of JemHadar warriors:

1000

How many Klingon warriors do you have?

500

Each Klingon must fight 2.0 JemHadar.

End of program

Sample Dialogue 2

Enter number of JemHadar warriors:

–10

Cannot have a negative number of JemHadar

End of program.

Sample Dialogue 3

Enter number of JemHadar warriors:

1000

How many Klingon warriors do you have?

0

Send for help.

End of program.

908	 Chapter 16 /  Exception Handling

This case is discussed a bit more in the Programming Tip section entitled
“Exception Classes Can Be Trivial.”

Pitfall  Catch the More Specific Exception First

When catching multiple exceptions, the order of the catch blocks can be
important. When an exception value is thrown in a try block, the following
catch blocks are tried in order, and the first one that matches the type of the
exception thrown is the one that is executed.

For example, the following is a special kind of catch block that will catch
a thrown value of any type:

catch(...)
{
 <Place whatever you want in here>
}

The three dots do not stand for something omitted. You actually type in those
three dots in your program. This makes a good default catch block to place
after all other catch blocks. For example, we could add it to the catch blocks
in Display 16.4 as follows:

catch(NegativeNumber e)
{
 cout << "Cannot have a negative number of "
 << e.get_message() <<endl;
}
catch(DivideByZero)
{
 cout<< "Send for help.\n";
}
catch(...)
{
 cout << "Unexplained exception.\n";
}

However, it only makes sense to place this default catch block at the end of a
list of catch blocks. For example, suppose we instead used:

catch(NegativeNumber e)
{
 cout << "Cannot have a negative number of "
 << e.get_message() <<endl;
}
catch(...)
{
 cout << "Unexplained exception.\n";
}
catch(DivideByZero)

	 16.1  Exception-Handling Basics	 909

{
 cout << "Send for help.\n";
}

With this second ordering, an exception (a thrown value) of type
NegativeNumber will be caught by the NegativeNumber catch block, as it
should be. However, if a value of type DivideByZero were thrown, it would be
caught by the block that starts catch(...). So, the DivideByZero catch block
could never be reached. Fortunately, most compilers tell you if you make this
sort of mistake.	 ■

■ P rogramming Tip  Exception Classes Can Be Trivial

Here we reproduce the definition of the exception class DivideByZero from
Display 16.4:

class DivideByZero
{};

This exception class has no member variables and no member functions
(other than the default constructor). It has nothing but its name, but that is
useful enough. Throwing an object of the class DivideByZero can activate the
appropriate catch block, as it does in Display 16.4.

When using a trivial exception class, you normally do not have anything
you can do with the exception (the thrown value) once it gets to the catch
block. The exception is just being used to get you to the catch block. Thus, you
can omit the catch-block parameter. (You can omit the catch-block parameter
anytime you do not need it, whether the exception type is trivial or not.)	 ■

Throwing an Exception in a Function

Sometimes it makes sense to delay handling an exception. For example, you
might have a function with code that throws an exception if there is an
attempt to divide by zero, but you may not want to catch the exception in that
function. Perhaps some programs that use that function should simply end
if the exception is thrown, and other programs that use the function should
do something else. So you would not know what to do with the exception if
you caught it inside the function. In these cases, it makes sense to not catch
the exception in the function definition, but instead to have any program (or
other code) that uses the function place the function invocation in a try block
and catch the exception in a catch block that follows that try block.

Look at the program in Display 16.5. It has a try block, but there is no
throw statement visible in the try block. The statement that does the throwing
in that program is

if (bottom == 0)
 throw DivideByZero();

910	 Chapter 16 /  Exception Handling

Display 16.5   Throwing an Exception Inside a Function (part 1 of 2)

 1 #include <iostream>
 2 #include <cstdlib>
 3 using namespace std;
 4
 5 class DivideByZero
 6 {};
 7
 8 double safe_divide(int top, int bottom) throw (DivideByZero);
 9
10 int main()
11 {
12 int numerator;
13 int denominator;
14 double quotient;
15 cout << "Enter numerator:\n";
16 cin >> numerator;
17 cout << "Enter denominator:\n";
18 cin >> denominator;
19
20 try
21 {
22 quotient = safe_divide(numerator, denominator);
23 }
24 catch(DivideByZero)
25 {
26 cout << "Error: Division by zero!\n"
27 << "Program aborting.\n";
28 exit(0);
29 }
30
31 cout << numerator << "/" << denominator
32 << " = " << quotient <<endl;
33
34 cout << "End of program.\n";
35 return 0;
36 }
37
38
39 double safe_divide(int top, int bottom) throw (DivideByZero)
40 {
41 if (bottom == 0)
42 throw DivideByZero();
43
44 return top/static_cast<double>(bottom);
45 }

(continued)

	 16.1  Exception-Handling Basics	 911

This statement is not visible in the try block. However, it is in the try block
in terms of program execution, because it is in the definition of the function
safe_divide and there is an invocation of safe_divide in the try block.

Exception Specification

If a function does not catch an exception, it should at least warn programmers
that any invocation of the function might possibly throw an exception. If there
are exceptions that might be thrown, but not caught, in the function definition,
then those exception types should be listed in an exception specification,
which is illustrated by the following function declaration from Display 16.5:

double safe_divide(int top, int bottom) throw (DivideByZero);

As illustrated in Display 16.5, the exception specification should appear in
both the function declaration and the function definition. If a function has
more than one function declaration, then all the function declarations must
have identical exception specifications. The exception specification for a
function is also sometimes called the throw list.

If there is more than one possible exception that can be thrown in the
function definition, then the exception types are separated by commas, as
illustrated here:

void some_function() throw (DivideByZero, OtherException);

Display 16.5   Throwing an Exception Inside a Function (part 2 of 2)

Sample Dialogue 1

Enter numerator:

5

Enter denominator:

10

5/10 = 0.5

End of Program.

Sample Dialogue 2

Enter numerator:

5

Enter denominator:

0

Error: Division by zero!

Program aborting.

912	 Chapter 16 /  Exception Handling

All exception types listed in the exception specification are treated normally.
When we say the exception is treated normally, we mean it is treated as
we have described before this subsection. In particular, you can place the
function invocation in a try block followed by a catch block to catch that
type of exception, and if the function throws the exception (and does not
catch it inside the function), then the catch block following the try block will
catch the exception. If there is no exception specification (no throw list) at all
(not even an empty one), then it is the same as if all possible exception types
were listed in the exception specification; that is, any exception that is thrown
is treated normally.

What happens when an exception is thrown in a function but is not listed
in the exception specification (and not caught inside the function)? In that
case, the program ends. In particular, notice that if an exception is thrown
in a function but is not listed in the exception specification (and not caught
inside the function), then it will not be caught by any catch block, but instead
your program will end. Remember, if there is no specification list at all, not
even an empty one, then it is the same as if all exceptions were listed in the
specification list, and so throwing an exception will not end the program in
the way described in this paragraph.

Keep in mind that the exception specification is for exceptions that “get
outside” the function. If they do not get outside the function, they do not
belong in the exception specification. If they get outside the function, they
belong in the exception specification no matter where they originate. If an
exception is thrown in a try block that is inside a function definition and
is caught in a catch block inside the function definition, then its type need
not be listed in the exception specification. If a function definition includes
an invocation of another function and that other function can throw an
exception that is not caught, then the type of the exception should be placed
in the exception specification.

To say that a function should not throw any exceptions that are not
caught inside the function, you use an empty exception specification like so:

void some_function() throw ();

By way of summary:

void some_function() throw (DivideByZero, OtherException);
//Exceptions of type DivideByZero or OtherException are
//treated normally. All other exceptions end the program
//if not caught in the function body.

void some_function() throw ();
//Empty exception list; all exceptions end the
//program if thrown but not caught in the function body.

void some_function();
//All exceptions of all types treated normally.

	 16.1  Exception-Handling Basics	 913

Keep in mind that an object of a derived class1 is also an object of its base
class. So, if D is a derived class of class B and B is in the exception specification,
then a thrown object of class D will be treated normally, since it is an object
of class B and B is in the exception specification. However, no automatic type
conversions are done. If double is in the exception specification, that does not
account for throwing an int value. You would need to include both int and
double in the exception specification.

One final warning: Not all compilers treat the exception specification as
they are supposed to. Some compilers essentially treat the exception specifica-
tion as a comment, and so with those compilers, the exception specification
has no effect on your code. This is another reason to place all exceptions that
might be thrown by your functions in the exception specification. This way
all compilers will treat your exceptions the same way. Of course, you could
get the same compiler consistency by not having any exception specification
at all, but then your program would not be as well documented and you
would not get the extra error checking provided by compilers that do use
the exception specification. With a compiler that does process the exception
specification, your program will terminate as soon as it throws an exception
that you did not anticipate. (Note that this is a run-time behavior, but which
run-time behavior you get depends on your compiler.)

Pitfall  Exception Specification in Derived Classes

When you redefine or override a function definition in a derived class, it
should have the same exception specification as it had in the base class, or
it should have an exception specification whose exceptions are a subset of
those in the base class exception specification. Put another way, when you
redefine or override a function definition, you cannot add any exceptions to
the exception specification (but you can delete some exceptions if you want).
This makes sense, since an object of the derived class can be used anyplace an
object of the base class can be used, and so a redefined or overwritten function
must fit any code written for an object of the base class.	 ■

Self-Test Exercises

	8.	 What is the output produced by the following program?

#include <iostream>
using namespace std;
void sample_function(double test) throw (int);

1 If you have not yet learned about derived classes, you can safely ignore the remarks
about them.

Warning!

914	 Chapter 16 /  Exception Handling

int main()
{
 try
 {
 cout << "Trying.\n";
 sample_function(98.6);
 cout << "Trying after call.\n";
 }
 catch(int)
 {
 cout << "Catching.\n";
 }
 cout << "End of program.\n";
 return 0;
}
void sample_function(double test) throw (int)
{
 cout << "Starting sample_function.\n";
 if (test < 100)
 throw 42;
}

	9.	 What is the output produced by the program in Self-Test Exercise 8 if the
following change were made to the program? Change

sample_function(98.6);

		 in the try block to

sample_function(212);

16.2 � Programming Techniques for
Exception Handling

Only use this in exceptional circumstances.

Warren Peace, The Lieutenant’s Tools

So far, we have shown you lots of code that explains how exception handling
works in C++, but we have not yet shown even one example of a program that
makes good and realistic use of exception handling. However, now that you
know the mechanics of exception handling, this section can go on to explain
exception-handling techniques.

When to Throw an Exception

We have given some very simple code in order to illustrate the basic concepts
of exception handling. However, our examples were unrealistically simple. A
more complicated but better guideline is to separate throwing an exception

	 16.2 P rogramming Techniques for Exception Handling	 915

and catching the exception into separate functions. In most cases, you should
include any throw statement within a function definition, list the exception
in the exception specification for that function, and place the catch clause in
a different function. Thus, the preferred use of the try-throw-catch triad is as
illustrated here:

void functionA() throw (MyException)
{
 .
 .
 .
 throw MyException(<Maybe an argument>);
 .
 .
 .
}

Then, in some other function (perhaps even some other function in some other
file), you have

void functionB()
{
 .
 .
 .
 try
 {
 .
 .
 .
 functionA();
 .
 .
 .
 }
 catch(MyException e)
 {
 <Handle exception.>
 }
 .
 .
 .
}

Moreover, even this kind of use of a throw statement should be reserved
for cases in which it is unavoidable. If you can easily handle a problem in
some other way, do not throw an exception. Reserve throw statements for
situations in which the way the exceptional condition is handled depends on
how and where the function is used. If the way that the exceptional condition
is handled depends on how and where the function is invoked, then the

916	 Chapter 16 /  Exception Handling

best thing to do is to let the programmer who invokes the function handle
the exception. In all other situations, it is almost always preferable to avoid
throwing exceptions.

Pitfall  Uncaught Exceptions

Every exception that is thrown by your code should be caught someplace in
your code. If an exception is thrown but not caught anywhere, your program
will end.	 ■

Pitfall  Nested try-catch Blocks

You can place a try block and following catch blocks inside a larger try block
or inside a larger catch block. In rare cases, this may be useful, but if you are
tempted to do this, you should suspect that there is a nicer way to organize your
program. It is almost always better to place the inner try-catch blocks inside a
function definition and place an invocation of the function in the outer try or
catch block (or maybe just eliminate one or more try blocks completely).

If you place a try block and following catch blocks inside a larger try
block, and an exception is thrown in the inner try block but not caught in the
inner try-catch blocks, then the exception is thrown to the outer try block
for processing and might be caught there.	 ■

Pitfall  Overuse of Exceptions

Exceptions allow you to write programs whose flow of control is so involved
that it is almost impossible to understand the program. Moreover, this is not
hard to do. Throwing an exception allows you to transfer flow of control

When to Throw an Exception

For the most part, throw statements should be used within functions
and listed in an exception specification for the function. Moreover,
they should be reserved for situations in which the way the exceptional
condition is handled depends on how and where the function is used.
If the way that the exceptional condition is handled depends on how
and where the function is invoked, then the best thing to do is to let the
programmer who invokes the function handle the exception. In all other
situations, it is almost always preferable to avoid throwing an exception.

	 16.2 P rogramming Techniques for Exception Handling	 917

from anyplace in your program to almost anyplace else in your program. In
the early days of programming, this sort of unrestricted flow of control was
allowed via a construct known as a goto. Programming experts now agree that
such unrestricted flow of control is very poor programming style. Exceptions
allow you to revert to these bad old days of unrestricted flow of control.
Exceptions should be used sparingly and only in certain ways. A good rule
is the following: If you are tempted to include a throw statement, then think
about how you might write your program or class definition without this
throw statement. If you think of an alternative that produces reasonable code,
then you probably do not want to include the throw statement.	 ■

Exception Class Hierarchies

It can be very useful to define a hierarchy of exception classes. For
example, you might have an ArithmeticError exception class and then
define an exception class DivideByZeroError that is a derived class of
ArithmeticError. Since a DivideByZeroError is an ArithmeticError, every
catch block for an ArithmeticError will catch a DivideByZeroError. If you
list ArithmeticError in an exception specification, then you have, in effect,
also added DivideByZeroError to the exception specification, whether or not
you list DivideByZeroError by name in the exception specification.

Testing for Available Memory

In Chapter 13, we created new dynamic variables with code such as the
following:

struct Node
{
 int data;
 Node *link;
};
typedef Node* NodePtr;
 . . .
NodePtr pointer = new Node;

This works fine as long as there is sufficient memory available to create the
new node. But, what happens if there is not sufficient memory? If there is not
sufficient memory to create the node, then a bad_alloc exception is thrown.
The type bad_alloc is part of the C++ language. You do not need to define it.

Since new will throw a bad_alloc exception when there is not enough
memory to create the node, you can check for running out of memory as follows:

try
{
 NodePtr pointer = new Node;
}

VideoNote
The STL Exception Class

918	 Chapter 16 /  Exception Handling

catch (bad_alloc)
{
 cout << "Ran out of memory!";
}

Of course, you can do other things besides simply giving a warning message, but
the details of what you do will depend on your particular programming task.

Rethrowing an Exception

It is legal to throw an exception within a catch block. In rare cases, you may
want to catch an exception and then, depending on the details, decide to
throw the same or a different exception for handling farther up the chain of
exception-handling blocks.

Self-Test Exercises

	10.	 What happens when an exception is never caught?

	11.	 Can you nest a try block inside another try block?

Chapter Summary

■	 Exception handling allows you to design and code the normal case for your
program separately from the code that handles exceptional situations.

■	 An exception can be thrown in a try block. Alternatively, an exception can
be thrown in a function definition that does not include a try block (or
does not include a catch block to catch that type of exception). In this case,
an invocation of the function can be placed in a try block.

■	 An exception is caught in a catch block.

■	 A try block may be followed by more than one catch block. In this case,
always list the catch block for a more specific exception class before the
catch block for a more general exception class.

■	 Do not overuse exceptions.

Answers to Self-Test Exercises

	1.	 Try block entered.
Exception thrown with
wait_time equal to 46
After catch block.

	 Answers to Self-Test Exercises	 919

	2.	 Try block entered.
Leaving try block.
After catch block.

	3.	 throw wait_time;

		N ote that the following is an if statement, not a throw statement, even
though it contains a throw statement:

if (wait_time> 30)
 throw wait_time;

	4.	 When a throw statement is executed, that is the end of the enclosing try
block. No other statements in the try block are executed, and control passes
to the following catch block(s). When we say control passes to the follow-
ing catch block, we mean that the value thrown is plugged in for the catch-
block parameter (if any), and the code in the catch block is executed.

	5.	 try
{
 cout << "Try block entered.";
 if (wait_time > 30)
 throw (wait_time);
 cout << "Leaving try block.";
}

	6.	 catch(int thrown_value)
{
 cout << "Exception thrown with\n"
 << "wait_time equal to" << thrown_value << endl;
}

	7.	 thrown_value is the catch-block parameter.

	8.	 Trying.
Starting sample_function.
Catching.
End of program.

	9.	 Trying.
Starting sample_function.
Trying after call.
End of program.

	10.	 If an exception is not caught anywhere, then your program ends.

	11.	 Yes, you can have a try block and corresponding catch blocks inside an-
other larger try block. However, it would probably be better to place the
inner try and catch blocks in a function definition and place an invoca-
tion of the function in the larger try block.

920	 Chapter 16 /  Exception Handling

Practice Programs

Practice Programs can generally be solved with a short program that directly applies
the programming principles presented in this chapter.

	1.	 A function that returns a special error code is often better implemented
by throwing an exception instead. This way, the error code cannot be
ignored or mistaken for valid data. The following class maintains an
account balance.

class Account
{
private:
 double balance;
public:
 Account()
 {
 balance = 0;
 }
 Account(double initialDeposit)
 {
 balance = initialDeposit;
 }
 double getBalance()
 {
 return balance;
 }
 // returns new balance or -1 if error
 double deposit(double amount)
 {
 if (amount > 0)
 balance += amount;
 else
 return −1; // Code indicating error
 return balance;
 }
 // returns new balance or −1 if invalid amount
 double withdraw(double amount)
 {
 if ((amount > balance) || (amount < 0))
 return −1;
 else
 balance -= amount;
 return balance;
 }
};

Rewrite the class so that it throws appropriate exceptions instead of
returning −1 as an error code. Write test code that attempts to withdraw
and deposit invalid amounts and catches the exceptions that are thrown.

VideoNote
Solution to Practice
Program 16.1

	P rogramming Projects	 921

	2.	 The Standard Template Library includes a class named exception that is
the parent class for any exception thrown by an STL function. Therefore,
any exception can be caught by this class. The following code sets up a
try-catch block for STL exceptions:

#include <iostream>
#include <string>
#include <exception>
using namespace std;

int main()
{
 string s = "hello";
 try
 {
 cout << "No exception thrown." << endl;
 }
 catch (exception& e)
 {
 cout << "Exception caught: " <<
 e.what() << endl;
 }
 return 0;
}

Modify the code so that an exception is thrown in the try block. You could
try accessing an invalid index in a string using the at member function.

Programming Projects

Programming Projects require more problem-solving than Practice Programs and
can usually be solved many different ways. Visit www.myprogramminglab.com to
complete many of these Programming Projects online and get instant feedback.

	1.	 Write a program that converts 24-hour time to 12-hour time. The following
is a sample dialogue:

Enter time in 24-hour notation:
13:07
That is the same as
1:07 PM
Again?(y/n)
y
Enter time in 24-hour notation:
10:15
That is the same as
10:15 AM
Again?(y/n)
y

www.myprogramminglab.com

922	 Chapter 16 /  Exception Handling

Enter time in 24-hour notation:
10:65
There is no such time as 10:65
Try again:
Enter time in 24-hour notation:
16:05
That is the same as
4:05 PM
Again?(y/n)
n
End of program

You will define an exception class called TimeFormatMistake. If the user
enters an illegal time, like 10:65 or even gibberish like 8&*68, then your
program will throw and catch a TimeFormatMistake.

	2.	 Write a program that converts dates from numerical month/day format to
alphabetic month/day (for example, 1/31 or 01/31 corresponds to Janu-
ary 31). The dialogue should be similar to that in Programming Project 1.
You will define two exception classes, one called MonthError and another
called DayError. If the user enters anything other than a legal month num-
ber (integers from 1 to 12), then your program will throw and catch a
MonthError. Similarly, if the user enters anything other than a valid day
number (integers from 1 to either 29, 30, or 31, depending on the month),
then your program will throw and catch a DayError. To keep things simple,
always allow 29 days for February.

	3.	 Write a program that inputs numeric values from 1 through 10 and outputs a
textual histogram of the values using *’s to count the number of occurrences
of each value. The program should first ask the user how many numbers to
enter. If the user enters a value that does not consist of all digits or a num-
ber outside the range 1 to 10, then an exception should be caught. (Hint:
Input each number as a string, and then scan through the string to see if it
contains all digits. If not, throw an exception. To convert a string str to an
integer, use the following code:

atoi(str.c_str());

The atoi function is described in Chapter 8.) Here is a sample dialogue:

How many numbers to enter?
5
Enter number 1L
one
Please enter your number using digits only. Try again.
Enter number 1:
9
Enter number 2:

VideoNote
Solution to Programming
Project 16.3

	P rogramming Projects	 923

3
Enter number 3:
3
Enter number 4:
33
The number must be between 1-10. Try again.
Enter number 4:
3
Enter number 5:
7

Here is the histogram of values:
1 :
2 :
3 : ***
4 :
5 :
6 :
7 : *
8 :
9 : *
10:

	4.	 Define a class named CheckedArray. The objects of this class are like regular
arrays but have range checking. If a is an object of the class CheckedArray
and i is an illegal index, then use of a[i] will cause your program to throw
an exception (an object) of the class ArrayOutOfRangeError. Defining the
class ArrayOutOfRangeError is part of this project. Note that, among other
things, your CheckedArray class must have a suitable overloading of the[]
operators, as discussed in Appendix 6.

	5.	 Stacks were introduced in Chapters 13 and 14. Define a stack class for stor-
ing a stack of elements of type char. A stack object should be of fixed size;
the size is a parameter to the constructor that creates the stack object. When
used in a program, an object of the stack class will throw exceptions in the
following situations:

■	� Throw a StackOverflowException if the application program tries to
push data onto a stack that is already full

■	� Throw a StackEmptyException if the application program tries to
pop data off an empty stack

Defining the classes StackOverflowException and StackEmptyException
is part of this project. Write a suitable test program.

	6.	 (Based on a problem in Stroustrup, The C++ Programming Language, 3rd
edition) Write a program consisting of functions calling one another to a
calling depth of 10. Give each function an argument that specifies the level

924	 Chapter 16 /  Exception Handling

at which it is to throw an exception. The main function prompts for and
receives input that specifies the calling depth (level) at which an exception
will be thrown. The main function then calls the first function. The main
function catches the exception and displays the level at which the excep-
tion was thrown. Don’t forget the case where the depth is 0, where main
must both throw and catch the exception.

(Hints: You could use 10 different functions or 10 copies of the same
function that call one another, but don’t. Rather, for compact code, use
a main function that calls another function that calls itself recursively.
Suppose you do this; is the restriction on the calling depth necessary?
This can be done without giving the function any additional argu-
ments, but if you cannot do it that way, try adding an additional argu-
ment to the function.)

	7.	 Programming Project 7 in Chapter 9 described a technique to emulate a
two-dimensional array with wrapper functions around a one-dimensional
array. If the indices of a desired entry in the two-dimensional array were
invalid (for example, out of range), you were asked to print an error mes-
sage and exit the program. Modify this program (or do it for the first time)
to instead throw an ArrayOutOfRangeError exception if either the row
or column indices are invalid. Your program should define the
ArrayOutOfRangeError exception class.

Templates

17.1 � Templates for Algorithm
Abstraction   926

Templates for Functions   927
Pitfall: Compiler Complications   931
Programming Example: A Generic Sorting

Function   933
Programming Tip: How to Define Templates   937
Pitfall: Using a Template with an Inappropriate

Type   938

17.2 � Templates for Data
Abstraction   939

Syntax for Class Templates   939
Programming Example: An Array Class   942

17

Chapter Summary   949
Answers to Self-Test Exercises   949

Practice Programs   953
Programming Projects   953

Introduction

This chapter discusses C++ templates. Templates allow you to define functions
and classes that have parameters for type names. This will allow you to design
functions that can be used with arguments of different types and to define
classes that are much more general than those you have seen before this
chapter.

Prerequisites

Section 17.1 uses material from Chapters 2 through 5 and Sections 7.1, 7.2,
and 7.3 of Chapter 7. It does not use any material on classes. Section 17.2 uses
material from Chapters 2 through 7 and 10 through 12.

17.1  Templates for Algorithm Abstraction

Many of our previous C++ function definitions have an underlying
algorithm that is much more general than the algorithm we gave in the
function definition. For example, consider the function swap_values,
which we first discussed in Chapter 5. For reference, we now repeat the
function definition:

void swap_values(int& variable1, int& variable2)
{
 int temp;

 temp = variable1;
 variable1 = variable2;
 variable2 = temp;
}

Notice that the function swap_values applies only to variables of type int. Yet
the algorithm given in the function body could just as well be used to swap
the values in two variables of type char. If we want to also use the function

926

All men are mortal.
Aristotle is a man.
Therefore, Aristotle is mortal.
All X’s are Y.
Z is an X.
Therefore, Z is Y.
All cats are mischievous.
Garfield is a cat.
Therefore, Garfield is mischievous.
A Short Lesson on Syllogisms

	 17.1  Templates for Algorithm Abstraction	 927

swap_values with variables of type char, we can overload the function name
by adding the following definition:

void swap_values(char& variable1, char& variable2)
{

 char temp;

 temp = variable1;
 variable1 = variable2;
 variable2 = temp;
}

But there is something inefficient and unsatisfying about these two
definitions of the swap_values function: They are almost identical. The only
difference is that one definition uses the type int in three places and the other
uses the type char in the same three places. Proceeding in this way, if we
wanted to have the function swap_values apply to pairs of variables of type
double, we would have to write a third almost identical function definition.
If we wanted to apply swap_values to still more types, the number of almost
identical function definitions would be even larger. This would require a good
deal of typing and would clutter up our code with lots of definitions that look
identical. We should be able to say that the following function definition
applies to variables of any type:

void swap_values(Type_Of_The_Variables& variable1,
 Type_Of_The_Variables& variable2)
{
 Type_Of_The_Variables temp;

 temp = variable1;
 variable1 = variable2;
 variable2 = temp;
}

As we will see, something like this is possible. We can define one function
that applies to all types of variables, although the syntax is a bit different from
what we have shown above. That syntax is described in the next subsection.

Templates for Functions

Display 17.1 shows a C++ template for the function swap_values. This
function template allows you to swap the values of any two variables, of any
type, as long as the two variables have the same type. The definition and the
function declaration begin with the line

template<class T>

This is often called the template prefix, and it tells the compiler that the
definition or function declaration that follows is a template and that T is a

type parameter. In this context, the word class actually means type.1 As we will
see, the type parameter T can be replaced by any type, whether the type is a
class or not. Within the body of the function definition, the type parameter T
is used just like any other type.

The function template definition is, in effect, a large collection of function
definitions. For the function template for swap_values shown in Display
17.1, there is, in effect, one function definition for each possible type name.
Each of these definitions is obtained by replacing the type parameter T with
a type name. For example, the function definition that follows is obtained by
replacing T with the type name double:

void swap_values(double& variable1, double& variable2)
{

 double temp;

 temp = variable1;
 variable1 = variable2;
 variable2 = temp;
}

Another definition for swap_values is obtained by replacing the type parameter
T in the function template with the type name int. Yet another definition is
obtained by replacing the type parameter T with char. The one function template
shown in Display 17.1 overloads the function name swap_values so that there is a
slightly different function definition for every possible type.

The compiler will not literally produce definitions for every possible
type for the function name swap_values, but it will behave exactly as if it
had produced all those function definitions. A separate definition will be
produced for each different type for which you use the template, but not for
any types you do not use. Only one definition is generated for a single type
regardless of the number of times you use the template for that type. Notice
that the function swap_values is called twice in Display 17.1: One time the
arguments are of type int and the other time the arguments are of type char.

Consider the following function call from Display 17.1:

swap_values(integer1, integer2);

When the C++ compiler gets to this function call, it notices the types of the
arguments—in this case int—and then it uses the template to produce a
function definition with the type parameter T replaced with the type name
int. Similarly, when the compiler sees the function call

swap_values(symbol1, symbol2);

928	 Chapter 17 /  Templates

1 In fact, the ANSI standard provides that you may use the keyword typename instead of
class in the template prefix. Although we agree that using typename makes more sense
than using class, the use of class is a firmly established tradition, and so we use class
for the sake of consistency with most other programmers and authors.

A template
overloads the
function name

	 17.1  Templates for Algorithm Abstraction	 929

Display 17.1  A Function Template

 1 //Program to demonstrate a function template.
 2 #include <iostream>
 3 using namespace std;

 4 //Interchanges the values of variable1 and variable2.
 5 template<class T>
 6 void swap_values(T& variable1, T& variable2)
 7 {
 8 T temp;
 9
10 temp = variable1;
11 variable1 = variable2;
12 variable2 = temp;
13 }

14 int main()
15 {
16 int integer1 = 1, integer2 = 2;
17 cout << "Original integer values are "
18 << integer1 << " " << integer2 <<endl;
19 swap_values(integer1, integer2);
20 cout << "Swapped integer values are "
21 << integer1 << " " << integer2 <<endl;

22 char symbol1 = 'A', symbol2 = 'B';
23 cout << "Original character values are "
24 << symbol1 << " " << symbol2 <<endl;
25 swap_values(symbol1, symbol2);
26 cout << "Swapped character values are "
27 << symbol1 << " " << symbol2 <<endl;

28 return 0;
29 }

Output

Original integer values are 1 2

Swapped integer values are 2 1

Original character values are A B

Swapped character values are B A

it notices the types of the arguments—in this case char—and then it uses the
template to produce a function definition with the type parameter T replaced
with the type name char.

Notice that you need not do anything special when you call a function
that is defined with a function template; you call it just as you would any

Calling a
function
template

other function. The compiler does all the work of producing the function
definition from the function template.

Notice that in Display 17.1 we placed the function template definition
before the main part of the program, and we used no template function
declaration. A function template may have a function declaration, just like an
ordinary function. You may (or may not) be able to place the function declara-
tion and definition for a function template in the same locations that you place
function declarations and definitions for ordinary functions. However, many
compilers do not support template function declarations and do not support
separate compilation of template functions. When these are supported, the
details can be messy and can vary from one compiler to another. Your safest
strategy is to not use template function declarations and to be sure the function
template definition appears in the same file in which it is used and appears
before the function template is used.

We said that a function template definition should appear in the same
file as the file that uses the template function (that is, the same file as the
file that has an invocation of the template function). However, the function
template definition can appear via a #include directive. You can give the
function template definition in one file and then #include that file in a file
that uses the template function. That is the cleanest and safest general strategy.
However, even that may not work on some compilers. If it does not work,
consult a local expert.

Although we will not be using template function declarations in our code,
we will describe them and give examples of them for the benefit of readers
whose compilers support the use of these function declarations.

In the function template in Display 17.1, we used the letter T as the
parameter for the type. This is traditional but is not required by the C++
language. The type parameter can be any identifier (other than a keyword).
T is a good name for the type parameter, but sometimes other names may
work better. For example, the function template for swap_values given in
Display 17.1 is equivalent to the following:

template<class VariableType>
void swap_values(VariableType& variable1,
 VariableType& variable2)
{
 VariableType temp;

 temp = variable1;
 variable1 = variable2;
 variable2 = temp;
}

It is possible to have function templates that have more than one type
parameter. For example, a function template with two type parameters named
T1 and T2 would begin as follows:

template<class T1, class T2>

930	 Chapter 17 /  Templates

More than one
type parameter

	 17.1  Templates for Algorithm Abstraction	 931

However, most function templates require only one type parameter. You
cannot have unused template parameters; that is, each template parameter
must be used in your template function.

Pitfall  Compiler Complications

Many compilers do not allow separate compilation of templates, so you may
need to include your template definition with your code that uses it. As usual,
at least the function declaration must precede any use of the template function.

Your safest strategy is not to use template function declarations and to
be sure the function template definition appears in the same file in which
it is used and appears before the function template is called. However, the
function template definition can appear via a #include directive. You can give
the function template definition in one file and then #include that file in a
file that uses the template function.

Another common technique is to put your definition and implementation,
all in the header file. If you use this technique, then you would only have
a header (.h) file and no implementation (.cpp) file. Finally, an alternate
approach is to include the implementation (.cpp) file for your template class
instead of the header file (.h).

Some C++ compilers have additional special requirements for using templates.
If you have trouble compiling your templates, check your manuals or check with a
local expert. You may need to set special options or rearrange the way you order the
template definitions and the other items in your files.	 ■

Issues Compiling Programs
with Templates

VideoNote

Function Template

The function definition and the function declaration for a function
template are each prefaced with the following:

template<class Type_Parameter>

The function declaration (if used) and definition are the same as any
ordinary function declaration and definition, except that the Type_
Parameter can be used in place of a type.

For example, the following is a function declaration for a function
template:

template<class T>
void show_stuff(int stuff1, T stuff2, T stuff3);

The definition for this function template might be as follows:

template<class T>
void show_stuff(int stuff1, T stuff2, T stuff3)

(continued)

932	 Chapter 17 /  Templates

Self-Test Exercises

	1.	 Write a function template named maximum. The function takes two values
of the same type as its arguments and returns the larger of the two
arguments (or either value if they are equal). Give both the function
declaration and the function definition for the template. You will use the
operator < in your definition. Therefore, this function template will apply
only to types for which < is defined. Write a comment for the function
declaration that explains this restriction.

	2.	 We have used three kinds of absolute value function: abs, labs, and fabs.
These functions differ only in the type of their argument. It might be better
to have a function template for the absolute value function. Give a function
template for an absolute value function called absolute. The template will
apply only to types for which < is defined, for which the unary negation
operator is defined, and for which the constant 0 can be used in a comparison
with a value of that type. Thus, the function absolute can be called with any
of the number types, such as int, long, and double. Give both the function
declaration and the function definition for the template.

	3.	 Define or characterize the template facility for C++.

	4.	 In the template prefix

template<class T>

what kind of variable is the parameter T?

{
 cout << stuff1 << endl
 << stuff2 << endl
 << stuff3 << endl;
}

The function template given in this example is equivalent to having one
function declaration and one function definition for each possible type
name. The type name is substituted for the type parameter (which is T in
the example above). For instance, consider the following function call:

show_stuff(2, 3.3, 4.4);

When this function call is executed, the compiler uses the function definition
obtained by replacing T with the type name double. A separate definition
will be produced for each different type for which you use the template
but not for any types you do not use. Only one definition is generated for a
specific type regardless of the number of times you use the template.

	 17.1  Templates for Algorithm Abstraction	 933

 P rogramming Example   A Generic Sorting Function

In Chapter 7 we gave a simple sorting algorithm to sort an array of values of
type int. The algorithm was realized in C++ code as the function sort, which
we gave in Display 7.12. Here we repeat the definition of this function sort:

void sort(int a[], int number_used)
{
 int index_of_next_smallest;
 for (int index = 0; index < number_used - 1; index++)
 {//Place the correct value in a[index]:
 index_of_next_smallest =
 index_of_smallest(a, index, number_used);
 swap_values(a[index], a[index_of_next_smallest]);
 //a[0] <= a[1] <=...<= a[index] are the smallest of
 //the original array elements. The rest of the
 //elements are in the remaining positions.
 }
}

If you study this definition of the function sort, you will see that the base
type of the array is never used in any significant way. If we replace the base
type of the array in the function header with the type double, then we would
obtain a sorting function that applies to arrays of values of type double. Of

Algorithm Abstraction

As we saw in our discussion of the swap_values function, there is a very
general algorithm for interchanging the value of two variables, and
this more general algorithm applies to variables of any type. Using a
function template, we were able to express this more general algorithm
in C++. This is a very simple example of algorithm abstraction. When we
say we are using algorithm abstraction, we mean that we are expressing
our algorithms in a very general way so that we can ignore incidental
detail and concentrate on the substantive part of the algorithm.
Function templates are one feature of C++ that supports algorithm
abstraction.

		 a.  T must be a class.
		 b.  T must not be a class.
		 c.  T can be only types built into the C++ language.
		 d. � T can be any type, whether built into C++ or defined by the

programmer.

934	 Chapter 17 /  Templates

course, we also must adjust the helping functions so they apply to arrays of
elements of type double. So let’s consider the helping functions that are called
inside the body of the function sort. The two helping functions are swap_
values and index_of_smallest.

We already saw that swap_values can apply to variables of any type,
provided we define it as a function template (as in Display 17.1). Let’s see if
index_of_smallest depends in any significant way on the base type of the
array being sorted. The definition of index_of_smallest is repeated next so
you can study its details.

int index_of_smallest(const int a[], int start_index,
 int number_used)
{
 int min = a[start_index];
 int index_of_min = start_index;
 for (int index = start_index + 1;
 index < number_used; index++)
 {
 if (a[index] < min)
 {
 min = a[index];
 index_of_min = index;
 //min is the smallest of a[start_index] through
 //a[index]
 }
 }
 return index_of_min;
}

The function index_of_smallest also does not depend in any significant
way on the base type of the array. If we replaced the two highlighted instances
of the type int with the type double, then we will have changed the function
index_of_smallest so that it applies to arrays whose base type is double.

To change the function sort so that it can be used to sort arrays with the
base type double, we only needed to replace a few instances of the type name
int with the type name double. Moreover, there is nothing special about
the type double. We can do a similar replacement for many other types. The
only thing we need to know about the type is that the operator < is defined
for that type. This is the perfect situation for function templates. If we replace
a few instances of the type name int (in the functions sort and index_of_
smallest) with a type parameter, then the function sort can sort an array of
values of any type provided that the values of that type can be compared using
the < operator. In Display 17.2 we have written just such a function template.

Notice that the function template sort shown in Display 17.2 can be used
with arrays of values that are not numbers. In the demonstration program in
Display 17.3, the function template sort is called to sort an array of characters.
Characters can be compared using the < operator. Although the exact meaning
of the < operator applied to character values may vary somewhat from one

Helping functions

	 17.1  Templates for Algorithm Abstraction	 935

Display 17.2  A Generic Sorting Function

 1 //This is file sortfunc.cpp

 2 template<class T>
 3 void swap_values(T& variable1, T& variable2)
 <The rest of the definition of swap_values is given in Display 17.1.>
 4
 5 template<class BaseType>
 6 int index_of_smallest(const BaseType a[], int start_index, int number_used)
 7 {
 8 BaseType min = a[start_index];
 9 int index_of_min = start_index;
10
11 for (int index = start_index + 1; index < number_used; index++)
12. if (a[index] < min)
13 {
14 min = a[index];
15 Index_of_min = index;
16 //min is the smallest of a[start_index] through a[index]
17 }
18
19 return index_of_min;
20 }
21
22 template<class BaseType>
23 void sort(BaseType a[], int number_used)
24 {
25 int index_of_next_smallest;
26 for (int index = 0; index < number_used - 1; index++)
27 {//Place the correct value in a[index]:
28 index_of_next_smallest =
29 index_of_smallest(a, index, number_used);
30 swap_values(a[index], a[index_of_next_smallest]);
31 //a[0] <= a[1] <=...<= a[index] are the smallest of the original array
32 //elements. The rest of the elements are in the remaining positions.
33 }
34 }

implementation to another, some things are always true about how < orders
the letters of the alphabet. When applied to two uppercase letters, the operator
< tests to see if the first comes before the second in alphabetic order. Also,
when applied to two lowercase letters, the operator < tests to see if the first
comes before the second in alphabetic order. When you mix uppercase and
lowercase letters, the situation is not so well behaved, but the program shown
in Display 17.3 deals only with uppercase letters. In that program, an array of

936	 Chapter 17 /  Templates

Display 17.3  Using a Generic Sorting Function (part 1 of 2)

 1 //Demonstrates a generic sorting function.
 2 #include <iostream>
 3 using namespace std;
 4
 5 //The file sortfunc.cpp defines the following function:
 6 //template<class BaseType>
 7 //void sort(BaseType a[], int number_used);
 8 //Precondition: number_used <= declared size of the array a.
 9 //The array elements a[0] through a[number_used - 1] have values.
10 //Postcondition: The values of a[0] through a[number_used - 1] have
11 //been rearranged so that a[0] <= a[1] <= ... <= a[number_used - 1].
12
13 #include "sortfunc.cpp"
14
15 int main()
16 {
17 int i;
18 int a[10] = {9, 8, 7, 6, 5, 1, 2, 3, 0, 4};
19 cout << "Unsorted integers:\n";
20 for (i = 0; i < 10; i++)
21 cout << a[i] << " ";
22 cout << endl;
23 sort(a, 10);
24 cout << "In sorted order the integers are:\n";
25 for (i = 0; i < 10; i++)
26 cout << a[i] << " ";
27 cout << endl;

28 double b[5] = {5.5, 4.4, 1.1, 3.3, 2.2};
29 cout << "Unsorted doubles:\n";
30 for (i = 0; i < 5; i++)
31 cout << b[i] << " ";
32 cout << endl;
33 sort(b, 5);
34 cout << "In sorted order the doubles are:\n";
35 for (i = 0; i < 5; i++)
36 cout << b[i] << " ";
37 cout << endl;

38 char c[7] = {'G', 'E', 'N', 'E', 'R', 'I', 'C'};
39 cout << "Unsorted characters:\n";
40 for (i = 0; i < 7; i++)
41 cout << c[i] << " ";
42 cout << endl;

(continued)

Many compilers will allow this function
declaration to appear as a function
declaration and not merely as a
comment. However, including the function
declaration is not needed, since the
definition of the function is in the file
sortfunc.cpp, and so the definition
effectively appears before main.

	 17.1  Templates for Algorithm Abstraction	 937

Display 17.3   Using a Generic Sorting Function (part 2 of 2)

43 sort(c, 7);
44 cout << "In sorted order the characters are:\n";
45 for (i = 0; i < 7; i++)
46 cout << c[i] << " ";
47 cout << endl;
48 return 0;
49 }

Output

Unsorted integers:

9 8 7 6 5 1 2 3 0 4

In sorted order the integers are:

0 1 2 3 4 5 6 7 8 9

Unsorted doubles:

5.5 4.4 1.1 3.3 2.2

In sorted order the doubles are:

1.1 2.2 3.3 4.4 5.5

Unsorted characters:

G E N E R I C

In sorted order the characters are:

C E E G I N R

uppercase letters is sorted into alphabetical order with a call to the function
template sort. (The function template sort will even sort an array of objects
of a class that you define, provided you overload the < operator to apply to
objects of that class.)

■ P rogramming Tip  How to Define Templates

When we defined the function template in Display 17.2, we started with a
function that sorts an array of elements of type int. We then created a
template by replacing the base type of the array with the type parameter T. This
is a good general strategy for writing templates. If you want to write a function
template, first write a version that is not a template at all but is just an ordinary
function. Completely debug the ordinary function and then convert the ordinary

938	 Chapter 17 /  Templates

function to a template by replacing some type names with a type parameter.
There are two advantages to this method. First, when you are defining the
ordinary function you are dealing with a much more concrete case, which
makes the problem easier to visualize. Second, you have fewer details to check
at each stage; when worrying about the algorithm itself, you need not concern
yourself with template syntax rules.	 ■

Pitfall  Using a Template with an Inappropriate Type2

You can use a template function with any type for which the code in the
function definition makes sense. However, all the code in the template
function must make sense and must behave in an appropriate way. For
example, you cannot use the swap_values template (Display 17.1) with the
type parameter replaced by a type for which the assignment operator does not
work at all or does not work “correctly.”

As a more concrete example, suppose that your program defines the
template function swap_values as in Display 17.1. You cannot add the
following to your program:

int a[10], b[10];
<some code to fill arrays>
swap_values(a, b);

This code will not work, because assignment does not work with array types.	 ■

Self-Test Exercises

	5.	 Display 7.10 shows a function called search, which searches an array
for a specified integer. Give a function template version of search that
can be used to search an array of elements of any type. Give both the
function declaration and the function definition for the template. (Hint: It
is almost identical to the function given in Display 7.10.)

	6.	 In Practice Program 8 of Chapter 4 you were asked to overload the abs
function so that the name abs would work with several of the built-in
types that had been studied at the time. Compare and contrast function
overloading of the abs function with the use of templates for this purpose
in Self-Test Exercise 2.

2 The example in this Pitfall section uses arrays. If you have not yet covered arrays
(Chapter 7), you should skip this Pitfall section and return after covering arrays.

	 17.2  Templates for Data Abstraction	 939

17.2  Templates for Data Abstraction

Equal wealth and equal opportunities of culture . . . have simply made us all
members of one class.

Edward Bellamy, Looking Backward: 2000–1887

As you saw in the previous section, function definitions can be made more
general by using templates. In this section, you will see that templates can also
make class definitions more general.

Syntax for Class Templates

The syntax for class templates is basically the same as that for function
templates. The following is placed before the template definition:

template<class T>

The type parameter T is used in the class definition just like any other type.
As with function templates, the type parameter T represents a type that can be
any type at all; the type parameter does not have to be replaced with a class
type. As with function templates, you may use any (nonkeyword) identifier
instead of T.

For example, the following is a class template. An object of this class
contains a pair of values of type T; if T is int, the object values are pairs of
integers, if T is char, the object values are pairs of characters, and so on.

//Class for a pair of values of type T:
template<class T>
class Pair
{
public:
 Pair();

 Pair(T first_value, T second_value);

 void set_element(int position, T value);
 //Precondition: position is 1 or 2.
 //Postcondition:
 //The position indicated has been set to value.

 T get_element(int position) const;
 //Precondition: position is 1 or 2.
 //Returns the value in the position indicated.
private:
 T first;
 T second;
};

Once the class template is defined, you can declare objects of this class.
The declaration must specify what type is to be filled in for T. For example, the

Type parameter

Declaring objects

940	 Chapter 17 /  Templates

following code declares the object score so it can record a pair of integers and
declares the object seats so it can record a pair of characters:

Pair<int> score;
Pair<char> seats;

The objects are then used just like any other objects. For example, the
following sets the score to be 3 for the first team and 0 for the second team:

score.set_element(1, 3);
score.set_element(2, 0);

The member functions for a class template are defined the same way as
member functions for ordinary classes. The only difference is that the member
function definitions are themselves templates. For example, the following are
appropriate definitions for the member function set_element and for the
constructor with two arguments:

//Uses iostream and cstdlib:
template<class T>
void Pair<T>::set_element(int position, T value)
{

 if (position == 1)
 first = value;
 else if (position == 2)
 second = value;
 else
 {

 cout << "Error: Illegal pair position.\n";
 exit(1);
 }
}

template<class T>
Pair<T>::Pair(T first_value, T second_value)
 : first(first_value), second(second_value)
{
 //Body intentionally empty.
}

Notice that the class name before the scope resolution operator is Pair<T>,
not simply Pair.

The name of a class template may be used as the type for a function
parameter. For example, the following is a possible declaration for a function
with a parameter for a pair of integers:

int add_up(const Pair<int>& the_pair);
//Returns the sum of the two integers in the_pair.

Defining member
functions

	 17.2  Templates for Data Abstraction	 941

Class Template Syntax

The class definition and the definitions of the member functions are
prefaced with the following:

template<class Type_Parameter>

The class and member function definitions are then the same as for any
ordinary class, except that the Type_Parameter can be used in place of a
type.

For example, the following is the beginning of a class template
definition:

template<class T>
class Pair
{
public:
 Pair();
 Pair(T first_value, T second_value);
 void set_element(int position, T value);
 . . .

Member functions and overloaded operators are then defined as
function templates. For example, the definition of a function definition
for the sample class template above could begin as follows:

template<class T>
void Pair<T>::set_element(int position, T value)
{
 . . .

Note that we specified the type, in this case int, that is to be filled in for the
type parameter T.

You can even use a class template within a function template. For example,
rather than defining the specialized function add_up given above, you could
instead define a function template as follows so that the function applies to
all kinds of numbers:

template<class T>
T add_up(const Pair<T>& the_pair);
//Precondition: The operator + is defined for values of type T.
//Returns the sum of the two values in the_pair.

942	 Chapter 17 /  Templates

Type Definitions

You can specialize a class template by giving a type argument to the class
name, as in the following example:

Pair<int>

The specialized class name, like Pair<int>, can then be used just like any
class name. It can be used to declare objects or to specify the type of a
formal parameter.

You can define a new class type name that has the same meaning as a
specialized class template name, such as Pair<int>. The syntax for such a
defined class type name is as follows:

typedef Class_Name<Type_Argument> New_Type_Name;

For example:

typedef Pair<int> PairOfInt;

The type name PairOfInt can then be used to declare objects of type
Pair<int>, as in the following example:

PairOfInt pair1, pair2;

The type name PairOfInt can also be used to specify the type of a
formal parameter.

 P rogramming Example	   An Array Class

Display 17.4 contains the interface for a class template whose objects are lists.
Since this class definition is a class template, the lists can be lists of items of
any type whatsoever. You can have objects that are lists of values of type int,
or lists of values of type double, or lists of objects of type string, or lists of
items of any other type.

Display 17.5 contains a demonstration program that uses this class
template. Although this program does not really do anything much,
it does illustrate how the class template is used. Once you understand
the syntax details, you can use the class template in any program that
needs a list of values. Display 17.6 gives the implementation of the class
template.

	 17.2  Templates for Data Abstraction	 943

Display 17.4  Interface for the Class Template GenericList (part 1 of 2)

 1 //This is the header file genericlist.h. This is the interface for the
 2 //class GenericList. Objects of type GenericList can be a list of items
 3 //of any type for which the operators << and = are defined.
 4 //All the items on any one list must be of the same type. A list that
 5 //can hold up to max items all of type Type_Name is declared as follows:
 6 //GenericList<Type_Name> the_object(max);
 7 #ifndef GENERICLIST_H
 8 #define GENERICLIST_H
 9 #include <iostream>
10 using namespace std;
11
12 namespace listsavitch
13 {
14 template<class ItemType>
15 class GenericList
16 {
17 public:
18 GenericList(int max);
19 //Initializes the object to an empty list that can hold up to
20 //max items of type ItemType.
21 ~GenericList();
22 //Returns all the dynamic memory used by the object to the freestore.
23
24 int length() const;
25 //Returns the number of items on the list.
26
27 void add(ItemType new_item);
28 //Precondition: The list is not full.
29 //Postcondition: The new_item has been added to the list.

(continued)

Notice that we have overloaded the insertion operator << so it can be used
to output an object of the class template GenericList. To do this, we made
the operator << a friend of the class. In order to have a parameter that is of the
same type as the class, we used the expression GenericList<ItemType> for
the parameter type. When the type parameter is replaced by, for example, the
type int, this list parameter will be of type GenericList<int>.

Also note that that the implementation of the overloaded insertion operator
<< has been placed in the header file rather than the implementation file. This
may seem unusual, but it is quite common when using friend functions or
operators within a template. Although we are defining << like it is a member
of GenericList, recall that friend functions really exist outside the class and
are part of the namespace. The compiler will have an easy time finding the
implementation of << this way when the class is included from other files.

A friend

944	 Chapter 17 /  Templates

Display 17.5  Program Using the GenericList Class Template (part 1 of 2)

 1 //Program to demonstrate use of the class template GenericList.
 2 #include <iostream>
 3 #include "genericlist.h"	
 4 #include "genericlist.cpp"
 5 using namespace std;
 6 using namespace listsavitch;

 7 int main()
 8 {
 9 GenericList<int> first_list(2);
10 first_list.add(1);
11 first_list.add(2);

(continued)

Since genericlist.cpp is included,
you need compile only this one file (the
one with the main).

Display 17.4  Interface for the Class Template GenericList (part 2 of 2)

30
31 bool full() const;
32 //Returns true if the list is full.
33
34 void erase();
35 //Removes all items from the list so that the list is empty.
36
37 friend ostream& operator <<(ostream& outs,
38 const GenericList<ItemType>& the_list)
39 {
40 for (int i = 0; i < the_list.current_length; i++)
41 outs << the_list.item[i] << endl;
42 return outs;
43 }
44 //Overloads the << operator so it can be used to output the
45 //contents of the list. The items are output one per line.
46 //Precondition: If outs is a file output stream, then outs has
47 //already been connected to a file.
48 //
49 //Note the implementation of the overloaded << in the header
50 //file! This is commonly done with overloaded friend templates.
51 //Since << is a friend it is NOT a member of the class but
52 //rather in the namespace, this is the simplest implementation
53 //and may make more sense than putting it in genericlist.cpp.
54 private:
55 ItemType *item; //pointer to the dynamic array that holds the list.
56 int max_length; //max number of items allowed on the list.
57 int current_length; //number of items currently on the list.
58 };
59 }//listsavitch
60 #endif //GENERICLIST_H

Display 17.5  Program Using the GenericList Class Template (part 2 of 2)

12 cout << "first_list = \n"
13 << first_list;
14 GenericList<char> second_list(10);
15 second_list.add('A');
16 second_list.add('B');
17 second_list.add('C');
18 cout << "second_list = \n"
19 << second_list;

20 return 0;
21 }

Output

first_list =

1

2

second_list =

A

B

C

	 17.2  Templates for Data Abstraction	 945

Display 17.6  Implementation of GenericList (part 1 of 2)

 1 //This is the implementation file: genericlist.cpp
 2 //This is the implementation of the class template named GenericList.
 3 //The interface for the class template GenericList is in the
 4 //header file genericlist.h.
 5 #ifndef GENERICLIST_CPP
 6 #define GENERICLIST_CPP
 7 #include <iostream>
 8 #include <cstdlib>
 9 #include "genericlist.h" //This is not needed when used as we are using this file,
10 //but the #ifndef in genericlist.h makes it safe.
11 using namespace std;
12
13 namespace listsavitch
14 {
15 //Uses cstdlib:
16 template<class ItemType>
17 GenericList<ItemType>::GenericList(int max) : max_length(max),
18 current_length(0)

(continued)

946	 Chapter 17 /  Templates

Display 17.6  Implementation of GenericList (part 2 of 2)

19 {
20 item = new ItemType[max];
21 }
22
23 template<class ItemType>
24 GenericList<ItemType>::~GenericList()
25 {
26 delete [] item;
27 }
28
29 template<class ItemType>
30 int GenericList<ItemType>::length() const
31 {
32 return (current_length);
33 }
34
35 //Uses iostream and cstdlib:
36 template<class ItemType>
37 void GenericList<ItemType>::add(ItemType new_item)
38 {
39 if (full())
40 {
41 cout << "Error: adding to a full list.\n";
42 exit(1);
43 }
44 else
45 {
46 item[current_length] = new_item;
47 current_length = current_length + 1;
48 }
49 }
50
51 template<class ItemType>
52 bool GenericList<ItemType>::full() const
53 {
54 return (current_length == max_length);
55 }
56
57 template<class ItemType>
58 void GenericList<ItemType>::erase()
59 {
60 current_length = 0;
61 }
62 }//listsavitch
63 #endif // GENERICLIST_CPP Notice that we have enclosed all the template
64 // definitions in #ifndef. . . #endif.

	 17.2  Templates for Data Abstraction	 947

Display 17.7 �I nterface for the Class Template GenericList Without
Implementation (part 1 of 2)

 1 //This version moves the implementation of the overloaded <<
 2 //to the .cpp file, but requires adding some forward declarations.
 3 #ifndef GENERICLIST_H
 4 #define GENERICLIST_H
 5 #include <iostream>
 6 using namespace std;
 7
 8 namespace listsavitch
 9 {
10 template<class ItemType>
11 class GenericList;
12 //We need a forward declaration of the GenericList template
13 //class for the friend header declaration that comes right after it.
14
15 template<class ItemType>
16 ostream& operator <<(ostream& outs, const GenericList<ItemType>& the_list);
17 //Forward declaration of the friend << for the definition inside the
18 //GenericList class below. These must be defined here since << is not
19 //a member of the class.
20
21 template<class ItemType>

(continued)

A note is in order about compiling the code from Displays 17.4, 17.5,
and 17.6. A safe solution to the compilation of this code is to #include
the template class definition and the template function definitions before
use, as we did. In that case, only the file in Display 17.5 needs to be
compiled. Be sure that you use the #ifndef #define #endif mechanism
to prevent multiple file inclusion of all the files you are going to #include.

Also note that that the implementation of the overloaded
insertion operator << has been placed in the header file rather than the
implementation file. This may seem unusual, but it is quite common
when using friend functions or operators within a template. Although
we are defining << like it is a member of GenericList, recall that friend
functions really exist outside the class and are part of the namespace.
The compiler will have an easy time finding the implementation of <<
this way when the class is included from other files.

If you want to separate the implementation of the overloaded friend
insertion operator << from the header, then it requires a little bit of
extra work. We must make a forward declaration of the << operator
which in turn requires a forward declaration of the GenericList class.
Display 17.7 illustrates the required changes to genericlist.h while
Display 17.8 illustrates the changes to genericlist.cpp, which simply
has the additional implementation.

948	 Chapter 17 /  Templates

Display 17.7 �I nterface for the Class Template GenericList Without
Implementation (part 2 of 2)

22 class GenericList
23 {
24 � �The rest of this class is identical to Display 17.4 except the overloaded
25 operator below has no implementation code and an additional <>.
26
27 friend ostream& operator << <>(ostream& outs,
28 const GenericList<ItemType>& the_list);
29 //Overloads the << operator so it can be used to output the
30 //contents of the list.
31 //Note the <> needed after the operator (or function) name!
32 //The implementation is in genericlist.cpp (Display 17.8).
33 };
34 }//listsavitch
35 #endif //GENERICLIST_H

Display 17.8 I mplementation of GenericList with Overloaded Operator

 1 //This is the implementation file: genericlist.cpp
 2 //This is the implementation of the class template named GenericList.
 3 //The interface for the class template GenericList is in the
 4 //header file genericlist.h.
 5 #ifndef GENERICLIST_CPP
 6 #define GENERICLIST_CPP
 7 #include <iostream>
 8 #include <cstdlib>
 9 #include "genericlist.h" //Not needed when used as we are using this file,
10 //but the #ifndef in genericlist.h makes it safe.
11 using namespace std;
12
13 namespace listsavitch
14 {
15 The rest of this file is identical to Display 17.6 except for the
16 Implementation of <<.
17 template<class ItemType>
18   ostream& operator <<(ostream& outs, const GenericList<ItemType>& the_list)
19 {
20 for (int i = 0; i < the_list.current_length; i++)
21 outs << the_list.item[i] << endl;
22 return outs;
23 }
24 }//listsavitch
25 #endif // GENERICLIST_CPP Notice that we have enclosed all the template
26 // definitions in #ifndef . . . #endif.

	 Answers to Self-Test Exercises	 949

Self-Test Exercises

	  7.	G ive the definition for the member function get_element for the class
template Pair discussed in the section “Syntax for Class Templates.”

	  8.	G ive the definition for the constructor with zero arguments for the class
template Pair discussed in the section “Syntax for Class Templates.”

	  9.	G ive the definition of a template class called HeterogeneousPair that is like
the class template Pair discussed in the section “Syntax for Class Templates,”
except that with HeterogeneousPair the first and second positions may store
values of different types. Use two type parameters T1 and T2; all items in the
first position will be of type T1, and all items in the second position will be
of type T2. The single mutator function set_element in the template class
Pair should be replaced by two mutator functions called set_first and
set_second in the template class HeterogeneousPair. Similarly, the single
accessor function get_element in the template class Pair should be replaced
by two accessor functions called get_first and get_second in the template
class HeterogeneousPair.

	10.	 Is the following true or false?

Friends are used exactly the same for template and nontemplate classes.

Chapter Summary

■	 Using function templates, you can define functions that have a parameter
for a type.

■	 Using class templates, you can define a class with a type parameter for sub-
parts of the class.

Answers to Self-Test Exercises

	1.	 Function Declaration:

template<class T>
T maximum(T first, T second);
//Precondition: The operator < is defined for the type T.
//Returns the maximum of first and second.

		 Definition:

template<class T>
T maximum(T first, T second)
{
 if (first < second)

950	 Chapter 17 /  Templates

 return second;
 else
 return first;
}

	2.	 Function Declaration:

template<class T>
T absolute(T value);
//Precondition: The expressions x < 0 and -x are defined
//whenever x is of type T.
//Returns the absolute value of its argument.

		 Definition:

template<class T>
T absolute(T value)
{
 if (value < 0)
 return -value;
 else
 return value;
}

	3.	 Templates provide a facility to allow the definition of functions and classes
that have parameters for type names.

	4.	 d. Any type, whether a primitive type (provided by C++) or a type defined
by the user (a class or struct type, an enum type, or a defined array type,
or int, float, double, etc.).

	5.	 The function declaration and function definition are given here. They are
basically identical to those for the versions given in Display 7.10 except
that two instances of int are changed to BaseType in the parameter list.

		 Function Declaration:

template<class BaseType>
int search(const BaseType a[],
 int number_used, BaseType target);
//Precondition: number_used is <= the declared size of a.
//Also, a[0] through a[number_used-1] have values.
//Returns the first index such that a[index] == target,
//provided there is such an index; otherwise, returns -1.

		 Definition:

template<class BaseType>
int search(const BaseType a[], int number_used,
 BaseType target)

{

 int index = 0, found = false;
 while ((!found) && (index < number_used))
 if (target == a[index])
 found = true;
 else
 index++;

 if (found)
 return index;
 else
 return -1;
}

	6.	 Function overloading only works for types for which an overloading is pro-
vided. Overloading may work for types that automatically convert to some
type for which an overloading is provided but may not do what you expect.
The template solution will work for any type that is defined at the time of
invocation, provided that the requirements for a definition of < are satisfied.

	7.	 //Uses iostream and cstdlib:
template<class T>
T Pair<T>::get_element(int position) const
{

 if (position == 1)
 return first;
 else if (position == 2)
 return second;
 else
 {
 cout << "Error: Illegal pair position.\n";
 exit(1);
 }
}

	8.	 There are no natural candidates for the default initialization values, so this
constructor does nothing, but it does allow you to declare (uninitialized)
objects without giving any constructor arguments.

template<class T>
Pair<T>::Pair()
{
//Do nothing.
}

	9.	 //Class for a pair of values, the first of type T1
//and the second of type T2:
template<class T1, class T2>

	 Answers to Self-Test Exercises	 951

952	 Chapter 17 /  Templates

class HeterogeneousPair
{
public:
 HeterogeneousPair();
 HeterogeneousPair(T1 first_value, T2 second_value);
 void set_first(T1 value);
 void set_second(T2 value);
 T1 get_first() const;
 T2 get_second() const;
private:
 T1 first;
 T2 second;
};

		 The member function definitions are as follows:

template<class T1, class T2>
HeterogeneousPair<T1, T2>::HeterogeneousPair()
{
//Do nothing.
}

template<class T1, class T2>
HeterogeneousPair<T1, T2>::HeterogeneousPair
 (T1 first_value, T2 second_value)
 : first(first_value), second(second_value)
{
 //Body intentionally empty.
}

template<class T1, class T2>
T1 HeterogeneousPair<T1, T2>::get_first() const
{
 return first;
}

template<class T1, class T2>
T2 HeterogeneousPair<T1, T2>::get_second() const
{
 return second;
}

template<class T1, class T2>
void HeterogeneousPair<T1, T2>::set_first(T1 value)
{
 first = value;
}

	P rogramming Projects	 953

template<class T1, class T2>
void HeterogeneousPair<T1, T2>::set_second(T2 value)
{
 second = value;
}

	10.	 True.

Practice Programs

Practice Programs can generally be solved with a short program that directly applies
the programming principles presented in this chapter.

	1.	 Write a function template for a function that has parameters for a partially
filled array and for a value of the base type of the array. If the value is in
the partially filled array, then the function returns the index of the first
indexed variable that contains the value. If the value is not in the array,
the function returns −1. The base type of the array is a type parameter.
Notice that you need two parameters to give the partially filled array: one
for the array and one for the number of indexed variables used. Also, write
a suitable test program to test this function template.

	2.	 Write a template version of the iterative binary search from Display 14.8.
Specify and discuss the requirements on the template parameter type.

	3.	 Write a template version of the recursive binary search from Display 14.6.
Specify and discuss the requirements on the template parameter type.

Programming Projects

Programming Projects require more problem-solving than Practice Programs and can
usually be solved many different ways. Visit www.myprogramminglab.com to complete
many of these Programming Projects online and get instant feedback.

	1.	R ewrite the definition of the class template GenericList given in Display
17.4 and Display 17.6 so that it is more general. This more general ver-
sion has the added feature that you can step through the items on the list
in order. One item is always the current item. You can ask for the current
item, change the current item to the next item, change the current item to
the previous item, start at the beginning of the list by making the first item
on the list the current item, and ask for the nth item on the list. To do this,
you will add the following members: an additional member variable that
records the position on the list of the current item, a member function
that returns the current item as a value, a member function that makes the
next item the current item, a member function that makes the previous
item the current item, a member function that makes the first item on the

www.myprogramminglab.com

954	 Chapter 17 /  Templates

list the current item, and a member function that returns the nth item on
the list given n as an argument. (Number items as in arrays, so that the
first item is the 0th item, the next is item number 1, and so forth.)

Note that there are situations in which some of these function actions are
not possible. For example, an empty list has no first item, and there is no
item after the last item in any list. Be sure to test for the empty list and
handle it appropriately. Be sure to test for the beginning and end of the
list and handle these cases appropriately. Write a suitable test program to
test this class template.

	2.	 Write a template for a function that has parameters for a list of items and
for a possible item on the list. If the item is on the list, then the func-
tion returns the position of the first occurrence of that item. If the item
is not on the list, the function returns −1. The first position on the list
is position 0, the next is position 1, and so forth. The type of the items
on the list is a type parameter. Use the class template GenericList that
you defined in Project 1. Write a suitable program to test this function
template.

	3.	R edo Programming Project 3 in Chapter 7, but this time make the function
delete_repeats a template function with a type parameter for the base
type of the array. It would help if you first did the nontemplate version;
in other words, it would help if you first did Programming Project 3 in
Chapter 7, if you have not already done it.

	4.	 Display 17.3 gives a template function for sorting an array using the
selection sort algorithm. Write a similar template function for sorting
an array, but this time use the insertion sort algorithm as described in
Programming Project 6 of Chapter 7. If you have not already done it,
it would be a good idea to first do the nontemplate version; in other
words, it would be a good idea to first do Programming Project 6 from
Chapter 7.

	5.	 (This project requires that you know what a stack is and how to use dy-
namic arrays. Stacks are covered in Chapter 14; dynamic arrays are covered
in Chapter 9. This is an appropriate project only if you have covered Chap-
ters 9 and 14.)

Write a template version of a stack class. Use a type parameter for the type
of data that is stored in the stack. Use dynamic arrays to allow the stack to
grow to hold any number of items.

	6.	 Write a template version of a class that implements a priority queue.
Queues are discussed in Chapter 13 and priority queues are discussed in
Chapter 18. To summarize, a priority queue is essentially a list of items

	P rogramming Projects	 955

that is always ordered by priority. Each item that is added to the list re-
quires an associated priority value. For this problem, make the priority
an integer where 0 is the highest priority and larger values are lower in
priority. Removing an item from the queue removes the item with the
highest priority.

The add function of the priority queue should take a generic type and then
an integer priority. In the following example, the generic type is a char
and we have added three items to the queue:

q.add('X', 10);
q.add('Y', 1);
q.add('Z', 3);

The remove function should return and remove from the priority queue
the item that has the highest priority. Given the example above, we would
expect the following:

cout << q.remove(); // Outputs Y (priority 1)
cout << q.remove(); // Returns Z (priority 3)
cout << q.remove(); // Returns X (priority 10)

Test your queue on data with priorities in various orders (for example,
ascending, descending, mixed). You can implement the priority queue
by storing the items using a list(s) of your choice (for example, vector,
array, linked list, or GenericList described in this chapter) and then
performing a linear search for the item with the lowest integer value in the
remove function. In future courses you may study a data structure called a
heap that affords a more efficient way to implement a priority queue.

	  7.	 Write a template-based class that implements a set of items. A set is a col-
lection of items in which no item occurs more than once. Internally, you
may represent the set using the data structure of your choice (for example,
list, vector, arrays, etc.). However, the class should externally support the
following functions:

a. � Add a new item to the set. If the item is already in the set then nothing
happens.

b. R emove an item from the set.
c. R eturn the number of items in the set.
d.  Determine if an item is a member of the set.
e. �R eturn a pointer to a dynamically created array containing each item in the

set. The caller of this function is responsible for deallocating the memory.

Test your class by creating different sets of different data types (for example,
strings, integers, or other classes). If you add objects to your set, then you
may need to overload the == and != operators for the object’s class so your
template-based set class can properly determine membership.

VideoNote
Solution to Programming
Project 17.7

956	 Chapter 17 /  Templates

	  8.	 This project requires that you complete Programming Project 7 from this
chapter and Programming Project 8 from Chapter 14. Programming Project 8
asked you to write a program to find all permutations of a set. Modify
the program so that it generates permutations given an instance of the
template-based set class defined in Programming Project 7. You may wish to
also use your template-based set class to help simplify the implementation
of the permutation algorithm itself.

The algorithm requires that you store a set of lists. C++ allows you to
create a set of lists with your template-based set class. For example,
myset<vector<T> > will define a set containing a vector of type T. Be
careful to place a space between the last two >’s, or the compiler may
get confused. The code myset<vector<T>> without a space will likely
produce a compiler error unless you are using C++11 or higher.

Your program should print all permutations of sets of several different
sizes and comprised of several different types of data (for example, a set of
three integers, a set of four strings, or a set of five doubles).

	  9.	 In this chapter we used only a single template class type parameter. C++
allows you to specify multiple type parameters. For example, the following
code specifies that the class accepts two type parameters:

template<class T, class V>
class Example
{
 ...
}

When creating an instance of the class, we must now specify two data
types, such as:

Example<int, char> demo;

Create a Map class that maps keys to values. The data type for the keys
and values should be specified separately using type parameters. The
map forms the basis for a simple database. For example, to map from
employee ID numbers to employee names, we might use integers for the
data type of the keys and strings for the data type of the names. The class
should have functions to:

1.  Add a new key/value pair to the map
2.  Set an existing key/value pair to a new value given the key
3.  Delete a key/value pair from the map given the key
4.  Check if a key/value pair exists in the map given the key
5. R etrieve the value for a key/value pair given the key

Use any data type you wish to implement the map. Write a main function
that tests the class by exercising all of the functions with sample data.

Standard Template
Library

18.1  Iterators  959
using Declarations  959
Iterator Basics  960
Programming Tip: Use auto to Simplify Variable

Declarationss  964
Pitfall: Compiler Problems  964
Kinds of Iterators  966
Constant and Mutable Iterators  970
Reverse Iterators  971
Other Kinds of Iterators  972

18.2  Containers  973
Sequential Containers  974
Pitfall: Iterators and Removing Elements  978
Programming Tip: Type Definitions in

Containers  979

Container Adapters stack and queue  979
Associative Containers set and map  983
Programming Tip: Use Initialization, Ranged for,

and auto with Containers  990
Efficiency  990

18.3  Generic Algorithms  991
Running Times and Big-O Notation  992
Container Access Running Times  995
Nonmodifying Sequence Algorithms  997
Container Modifying Algorithms  1001
Set Algorithms  1003
Sorting Algorithms  1004

18

Chapter Summary  1005
Answers to Self-Test Exercises  1005

Practice Programs  1007
Programming Projects  1008

Introduction

There is a large collection of standard data structures for holding data. Since
they are so standard it makes sense to have standard portable implementations
for them. The Standard Template Library (STL) includes libraries for such data
structures. Included in the STL are implementations of the stack, queue, and
many other standard data structures. When discussed in the context of the STL,
these data structures are usually called container classes because they are used
to hold collections of data. In Chapter 8 we presented a preview of the STL
by describing the vector template class, which is one of the container classes
in the STL. In this chapter we will present an overview of some of the basic
classes included in the STL. We do not have room to give a comprehensive
treatment of the STL here, but we will present enough to get you started using
some basic STL container classes.

The STL was developed by Alexander Stepanov and Meng Lee at Hewlett-
Packard and was based on research by Stepanov, Lee, and David Musser. It
is a collection of libraries written in the C++ language. Although the STL is
not part of the core C++ language, it is part of the C++ standard and so any
implementation of C++ that conforms to the standard would include the STL.
As a practical matter, you can consider the STL to be part of the C++ language.

As its name suggest, the classes in the STL are template classes. A typical
container class in the STL has a type parameter for the type of data to be
stored in the container class. The STL container classes make extensive use
of iterators, which are objects that facilitate cycling through the data in a
container. An introduction to the concept of an iterator was given in Section
13.1, where we discussed pointers used as iterators. You will find it helpful to
read that section before reading this chapter. If you have not already done so,
you should also read Section 8.3, which covers the vector template class of
the STL.

The STL also includes implementations of many important generic algorithms,
such as searching and sorting algorithms. The algorithms are implemented as
template functions. After discussing the container classes, we will describe some of
these algorithm implementations.

The STL differs from other C++ libraries, such as <iostream> for example,
in that the classes and algorithms are generic, which is another way of saying
they are template classes and template functions.

958

Libraries are not made; they grow.

Augustine Birrell

Prerequisites

This chapter uses the material from Chapters 2 through 13, 15, and Chapter 17.

18.1  Iterators

The White Rabbit put on his spectacles. “Where shall I begin, please your
Majesty?” he asked.

“Begin at the beginning,” the King said, very gravely, “And go on till you
come to the end: then stop.”

Lewis Carroll, Alice in Wonderland

Vectors, introduced in Chapter 8, are one of the container template classes
in the STL. Iterators are a generalization of pointers. (Chapter 13 includes
an introduction to pointers used as iterators.) This section shows you how
to use iterators with vectors. Other container template classes, which we
introduce in Section 18.2, use iterators in the same way. So, all you learn
about iterators in this section will apply across a wide range of containers and
does not apply solely to vectors. This reflects one of the basic tenets of the STL
philosophy: The semantics, naming, and syntax for iterator usage should be
(and are) uniform across different container types. We begin with a review
and discussion of the using declarations, which we will use extensively when
discussing iterators and the STL.

using Declarations

It may help to review the subsection entitled “Qualifying Names” in Chapter
12 before you continue with this subsection and this chapter.

Suppose my_function is a function defined in the namespace my_space.
The following using declaration allows you to use the identifier my_function
and have it mean the versions of my_function defined in the namespace
my_space:

using my_space::my_function;

Within the scope of this using declaration an expression such as
my_function(1,2) means the same thing as my_space::my_function(1,2);
that is, within the scope of this using declaration the identifier my_function
always indicates the version of my_function defined in my_space, as opposed
to any definition of my_function defined in any other namespace.

When discussing iterators we will often apply the :: operator to another
level. You will often see expressions such as the following:

using std::vector<int>::iterator;

	 18.1  Iterators	 959

In this case, the identifier iterator names a type. So within the scope of this
using directive, the following would be allowed:

iterator p;

This declares p to be of the type iterator. What is the type iterator? It is
defined in the definition of the class vector<int>. Which class vector<int>?
The one defined in the namespace std. (We will fully explain the type
iterator later. At this point we are concerned only with explaining using
directives.)

You may object that this is all a big to-do about nothing. There is no
class vector<int> defined in any namespace other than the namespace std.
That may or may not be true, but there could be a class named vector<int>
defined in some other namespace either now or in the future. You may object
further that you never heard of defining a type within a class. We have not
covered such definitions, but they are possible and they are common in the
STL. So, you must know how to use such types, even if you do not define such
types.

In summary, consider the using directive

using std::vector<int>::iterator;

Within the scope of this using directive the identifier iterator means the
type named iterator that is defined in the class vector<int>, which in turn
is defined in the std namespace.

Iterator Basics

An iterator is a generalization of a pointer, and in fact is typically even
implemented using a pointer, but the abstraction of an iterator is designed to
spare you the details of the implementation and give you a uniform interface
to iterators that is the same across different container classes. Each container
class has its own iterator types, just like each data type has its own pointer
type. But just as all pointer types behave essentially the same for dynamic
variables of their particular data type, so too does each iterator type behave
the same, but each iterator is used only with its own container class.

An iterator is not a pointer, but you will not go far wrong if you think of
it and use it as if it were a pointer. Like a pointer variable, an iterator variable
is located at (“points to”) one data entry in the container. You manipulate
iterators using the following overloaded operators that apply to iterator objects:

•	Prefix and postfix increment operators, ++, for advancing the iterator to the
next data item

•	Prefix and postfix decrement operators, −−, for moving the iterator to the
previous data item.

•	 Equal and unequal operators, == and !=, to test whether two iterators
point to the same data location.

960	 Chapter 18 /  Standard Template Library

•	A dereferencing operator, *, so that if p is an iterator variable, then *p
gives access to the data located at (“pointed to by”) p. This access may be
read-only, write-only, or allow both reading and changing of the data,
depending on the particular container class.

Not all iterators have all of these operators. However, the vector template class
is an example of a container whose iterators have all these operators and more.

A container class has member functions that get the iterator process
started. After all, a new iterator variable is not located at (“pointing to”) any
data in the container. Many container classes, including the vector template
class, have the following member functions that return iterator objects
(iterator values) that point to special data elements in the data structure:

•	c.begin() returns an iterator for the container c that points to the “first”
data item in the container c.

•	c.end() returns something that can be used to test when an iterator has
passed beyond the last data item in a container c. The iterator c.end() is
completely analogous to NULL used to test when a pointer has passed the
last node in a linked list of the kind discussed in Chapter 13. The iterator
c.end() is thus an iterator that is located at no data item, but that is a kind
of end marker or sentinel.

For many container classes, these tools allow you to write for loops that
cycle through all the elements in a container object c, as follows:

//p is an iterator variable of the type for the container object c.
for (p = c.begin(); p != c.end(); p++)
 process *p //*p is the current data item.

That’s the big picture. Now let’s look at the details in the concrete setting
of the vector template container class.

Display 18.1 illustrates the use of iterators with the vector template class.
Keep in mind that each container type in the STL has its own iterator types,
although they are all used in the same basic ways. The iterators we want for a
vector of ints are of type

std::vector<int>::iterator

Another container class is the list template class. Iterators for lists of ints
are of type

std::list<int>::iterator

In the program in Display 18.1, we specialize the type name iterator so
that it applies to iterators for vectors of ints. The type name iterator that
we want in Display 18.1 is defined in the template class vector and so if we
specialize the template class vector to ints and want the iterator type for
vector<int>, we want the type

std::vector<int>::iterator;

	 18.1  Iterators	 961

Since the vector definition places the name vector in the std namespace, the
entire using declaration is

using std::vector<int>::iterator;

The basic use of iterators with the vector (or any container class) is
illustrated by the following lines from Display 18.1:

vector<int>::iterator p;
for (p = container.begin(); p != container.end(); p++)
 cout << *p << " ";

962	 Chapter 18 /  Standard Template Library

Display 18.1   Iterators Used with a Vector

 1 //Program to demonstrate STL iterators.
 2 #include <iostream>
 3 #include <vector>
 4 using std::cout;
 5 using std::endl;
 6 using std::vector;
 7 int main()
 8 {
 9 vector<int> container;
10 for (int i = 1; i <= 4; i++)
11 container.push_back(i);
12 cout << "Here is what is in the container:\n";
13 vector<int>::iterator p;
14 for (p = container.begin(); p != container.end(); p++)
15 cout << *p << " ";
16 cout <<endl;
17 cout << "Setting entries to 0:\n";
18 for (p = container.begin(); p != container.end(); p++)
19 *p = 0;
20
21 cout << "Container now contains:\n";
22 for (p = container.begin(); p != container.end(); p++)
23 cout << *p << " ";
24 cout << endl;
25 return 0;
26 }

Sample Dialogue

Here is what is in the container:

1 2 3 4

Setting entries to 0:

Container now contains:

0 0 0 0

Recall that container is of type vector<int>.
A vector v can be thought of as a linear arrangement of its data elements.

There is a first data element v[0], a second data element v[1], and so forth.
An iterator p is an object that can be located at one of these elements. (Think
of p as pointing to one of these elements.) An iterator can move its location
from one element to another element. If p is located at, say, v[7], then p++
moves p so it is located at v[8]. This allows an iterator to move through the
vector from the first element to the last element, but it needs to find the first
element and needs to know when it has seen the last element.

You can tell if an iterator is at the same location as another iterator using the
operator ==. Thus, if you have an iterator pointing to the first, last, or other element,
you could test another iterator to see if it is located at the first, last, or other element.

If p1 and p2 are two iterators, then the comparison

p1 == p2

is true when and only when p1 and p2 are located at the same element. (This
is analogous to pointers. If p1 and p2 were pointers, this would be true if they
pointed to the same thing.) As usual, != is just the negation of == and so

p1 != p2

is true when p1 and p2 are not located at the same element.
The member function begin() is used to position an iterator at the first

element in a container. For vectors, and many other container classes, the
member function begin() returns an iterator located at the first element. (For
a vector v the first element is v[0].) Thus,

vector<int>::iterator p = v.begin();

initializes the iterator variable p to an iterator located at the first element. So,
the basic for loop for visiting all elements of the vector v is

vector<int>::iterator p;
for (p = v.begin(); Boolean_Expression>; p++)
 Action_At_Location p;

The desired Boolean_Expression for a stopping condition is

p == v.end()

The member function end() returns a sentinel value that can be checked
to see if an iterator has passed the last element. If p is located at the last
element, then after p++, the test p = v.end() changes from false to true. So
the for loop with the correct Boolean_Expression is

vector<int>::iterator p;
for (p = v.begin(); p != v.end(); p++)
 Action_At_Location p;

Note that p != v.end() does not change from true to false until after p’s
location has advanced past the last element. So, v.end() is not located at any

	 18.1  Iterators	 963

element. The value v.end() is a special value that serves as a sentinel value. It is
not an ordinary iterator, but you can compare v.end() to an iterator using ==
and !=. The value v.end() is analogous to the value NULL used to mark the
end of a linked list of the kind discussed in Chapter 13.

The following for loop from Display 18.1 uses this exact technique with
the vector named container:

vector<int>::iterator p;
for (p = container.begin(); p != container.end(); p++)
 cout << *p << " ";

The action taken at the location of the iterator p is

cout << *p << " ";

The dereferencing operator * is overloaded for STL container iterators so that
*p produces the element at location p. In particular, for a vector container, *p
produces the element located at the iterator p. So, the cout statement above
outputs the element located at the iterator p and the entire for loop outputs
all the elements in the vector container.

The dereferencing operator *p always produces the element located at the
iterator p. In some situations, *p produces read-only access, which does not allow
you to change the element. In other situations, it gives you access to the element
and will let you change the element. For vectors, *p will allow you to change the
element located at p, as illustrated by the following for loop from Display 18.1:

for (p = container.begin(); p != container.end(); p++)
 *p = 0;

This for loop cycles through all the elements in the vector container and
changes all the elements to 0.

■  Programming Tip   Use auto to Simplify Variable Declarations

The auto keyword can make your code much more readable when it comes to
templates and iterators. Declaring an iterator can be really verbose:

vector<int>::iterator p = v.begin();

We can do the same thing much more compactly with auto:

auto p = v.begin();� ■

Pitfall  Compiler Problems

Some compilers have problems with iterator declarations. You can declare an
iterator in different ways. For example, we have been using the following:

using std::vector;
 . . .
vector<char>::iterator p;

964	 Chapter 18 /  Standard Template Library

Alternatively, if your code only uses a single type of iterator, you could use the
following:

using std::vector<char>::iterator;
. . .
iterator p;

You also could use the following, which is not quite as nice, because it
introduces all names from the std namespace to the current declarative
region, increasing the likelihood of a name conflict.

using namespace std;
 . . .
vector<char>::iterator p;

There are other, similar variations. Your compiler should accept any of these
alternatives. However, we have found that some compilers will accept only certain
of them. If one form does not work with your compiler, try another.	 ■

	 18.1  Iterators	 965

Iterator

An iterator is an object that can be used with a container to gain access
to elements in the container. An iterator is a generalization of the notion
of a pointer, and the operators ==, !=, ++, and −− behave the same for
iterators as they do for pointers. The basic outline of how an iterator can
cycle through all the elements in a container is

STL_Container<type>::iterator p;
for (p = container.begin(); p != container.end(); p++)
 Process_Element_At_Location p;

STL_Container is the name of the container class (for example, vector)
and type is the data type of the item to be stored. The member function
begin() returns an iterator located at the first element. The member
function end() returns a value that serves as a sentinel value one location
past the last element in the container.

Dereferencing

The dereferencing operator *p when applied to an iterator p produces
the element located at the iterator p. For some STL container classes,
*p produces read-only access, which does not allow you to change
the element. For other STL container classes, it gives you access to the
element and will let you change the element.

966	 Chapter 18 /  Standard Template Library

Self-Test Exercises

	 1.	 If v is a vector, what does v.begin() return? What does v.end() return?

	 2.	 If p is an iterator for a vector object v, what is *p?

	 3.	 Suppose v is a vector of ints. Write a for loop that outputs all the
elements of v, except for the first element.

Kinds of Iterators

Different containers have different kinds of iterators. Iterators are classified according
to the kinds of operations that work on them. Vector iterators are of the most
general form; that is, all the operations work with vector iterators. So, we will
again use the vector container to illustrate iterators. In this case we use a vector to
illustrate the iterator operators of decrement and random access. Display 18.2 shows
another program using a vector object named container and an iterator p.

Display 18.2   Bidirectional and Random Access Iterator Use (part 1 of 2)

 1 //Program to demonstrate bidirectional and random access iterators.
 2 #include <iostream>
 3 #include <vector>
 4 using std::cout;
 5 using std::endl;
 6 using std::vector;
 7
 8 int main()
 9 {
10 vector<char> container;
11 container.push_back('A');
12 container.push_back('B');
13 container.push_back('C');
14 container.push_back('D');

15 for (int i = 0; i < 4; i++)
16 cout << "container[" << i << "] == "
17 << container[i] << endl;
18 vector<char>::iterator p = container.begin();
19 cout << "The third entry is " << container[2] << endl;
20 cout << "The third entry is " << p[2] << endl;
21 cout << "The third entry is " << *(p + 2) << endl;

22 cout << "Back to container[0].\n";
23 p = container.begin();
24 cout << "which has value " << *p << endl;

(continued)

Three different notations
for the same thing.

This notation is specialized
to vectors and arrays.

These two work for
any random access
iterator.

	 18.1  Iterators	 967

Display 18.2  � Bidirectional and Random Access Iterator Use
(part 2 of 2)

25 cout << "Two steps forward and one step back:\n";
26 p++;
27 cout << *p << endl;
28 p++;
29 cout << *p << endl;
30 p--;
31 cout << *p << endl;
32 return 0;
33 }

Sample Dialogue

container[0] == A

container[1] == B

container[2] == C

container[3] == D

The third entry is C

The third entry is C

The third entry is C

Back to container[0].

which has value A

Two steps forward and one step back:

B

C

B

This is the decrement operator. It
works for any bidirectional iterator.

The decrement operator is used in Display 18.2, where the line containing
it is shown in highlight. As you would expect, p−− moves the iterator p to the
previous location. The decrement operator −− is the same as the increment
operator ++, but it moves the iterator in the opposite direction.

The increment and decrement operators can be used in either prefix
(++p) or postfix (p++) notation. In addition to changing p, they also return
a value. The details of the value returned are completely analogous to what
happens with the increment and decrement operators on int variables. In
prefix notation, first the variable is changed and the changed value is returned.
In postfix notation, the value is returned before the variable is changed. We
prefer not to use the increment and decrement operators as expressions that
return a value and use them only to change the variable value.

968	 Chapter 18 /  Standard Template Library

The following lines from Display 18.2 illustrate that with vector iterators
you have random access to the elements of a vector, such as container:

vector<char>::iterator p = container.begin();
cout << "The third entry is " << container[2] << endl;
cout << "The third entry is " << p[2] << endl;
cout << "The third entry is " << *(p + 2) << endl;

Random access means you can go in one step directly to any particular element.
We have already used container[2] as a form of random access to a vector. It is
simply the square bracket operator that is standard with arrays and vectors. What
is new is that you can use this same square bracket notation with an iterator. The
expression p[2] is a way to obtain access to the element indexed by 2.

The expressions p[2] and *(p + 2) are completely equivalent. By analogy
to pointer arithmetic (see Chapter 9), (p + 2) names the location two places
beyond p. Since p is at the first (index 0) location in the above code, (p + 2)
is at the third (index 2) location. The expression (p + 2) returns an iterator.
The expression *(p + 2) dereferences that iterator. Of course, you can replace 2
with a different nonnegative integer to obtain a pointer pointing to a different
element.

Be sure to note that neither p[2] nor (p + 2) changes the value of the
iterator in the iterator variable p. The expression (p + 2) returns another iterator
at another location, but it leaves p where it was. The same thing happens
with p[2]. Also note that the meaning of p[2] and (p + 2) depends on the
location of the iterator in p. For example, (p + 2) means two locations beyond
the location of p, wherever that may be.

For example, suppose the previously discussed code from Display 18.2
were replaced with the following (note the added p++):

vector<char>::iterator p = container.begin();
p++;
cout << "The third entry is " << container[2] << endl;
cout << "The third entry is " << p[2] << endl;
cout << "The third entry is " << *(p + 2) << endl;

The output of these three couts would no longer be

The third entry is C
The third entry is C
The third entry is C

but would instead be

The third entry is C
The third entry is D
The third entry is D

The p++ moves p from location 0 to location 1 and so (p + 2) is now an
iterator at location 3, not location 2. So, *(p + 2) and p[2] are equivalent to
container[3], not container[2].

	 18.1  Iterators	 969

We now know enough about iterators to make sense of how iterators are
classified. The main kinds of iterators are

Forward iterators: ++ works on the iterator.

Bidirectional iterators: both ++ and −− work on the iterator.

Random access iterators: ++, −−, and random access all work with the
iterator.

Note that these are increasingly strong categories: Every random access iterator
is also a bidirectional iterator, and every bidirectional iterator is also a forward
iterator. As we will see, different template container classes have different
kinds of iterators. The iterators for the vector template class are random
access iterators.

Note that the names forward iterator, bidirectional iterator, and random access
iterator refer to kinds of iterators, not type names. The actual type names will
be something like std::vector<int>::iterator, which in this case happens
to be a random access iterator.

SELF-TEST Exercise

	 4.	 Suppose the vector v contains the letters 'A', 'B', 'C', and 'D' in that
order. What is the output of the following code?

vector<char>::iterator i = v.begin();
i++;
cout << *(i + 2) << " ";
i−−;
cout << i[2] << " ";
cout << *(i + 2) << " ";

Kinds of Iterators

Different containers have different kinds of iterators. The following are
the main kinds of iterators:

Forward iterators: ++ works on the iterator.

Bidirectional iterators: both ++ and −− work on the iterator.

Random access iterators: ++, −−, and random access all work with the
iterator.

970	 Chapter 18 /  Standard Template Library

Constant and Mutable Iterators

The categories forward iterator, bidirectional iterator, and random access
iterator each subdivide into two categories: constant and mutable, depending
on how the dereferencing operator behaves with the iterator. With a constant
iterator the dereferencing operator produces a read-only version of the
element. With a constant iterator p, you can use *p, for example, to assign it
to a variable or output it to the screen, but you cannot change the element in
the container by, for example, assigning it to *p. With a mutable iterator p, *p
can be assigned a value and that will change the corresponding element in the
container. The vector iterators are mutable, as shown by the following lines
from Display 18.1:

cout << "Setting entries to 0:\n";
for (p = container.begin(); p != container.end(); p++)
 *p = 0;

If a container has only constant iterators, you cannot obtain a mutable
iterator for the container. However, if a container has mutable iterators
and you want a constant iterator for the container, you can have it. You
might want a constant iterator as a kind of error checking if you intend
that your code not change the elements in the container. For example, the
following will produce a constant iterator for a vector container named
container:

std::vector<char>::const_iterator p = container.begin();

or equivalently

using std::vector<char>::const_iterator;
const_iterator p = container.begin();

With p declared in this way, the following would produce an error message:

*p = 'Z';

For example, Display 18.2 would behave exactly the same if you change

vector<int>::iterator p;

to

vector<int>::const_iterator p;

However, a similar change would not work in Display 18.1 because of the
following line from the program in Display 18.1:

*p = 0;

Note that const_iterator is a type name, while constant iterator is the
name of a kind of iterator. However, every iterator of a type named const_
iterator will be a constant iterator.

	 18.1  Iterators	 971

Reverse Iterators

Sometimes you want to cycle through the elements in a container in reverse order.
If you have a container with bidirectional iterators, you might be tempted to try

vector<int>::iterator p;
for (p = container.end(); p != container.begin(); p−−)
 cout << *p << " ";

This code will compile, and you may be able to get something like this to
work on some systems, but there is something fundamentally wrong with this:
container.end() is not a regular iterator, but only a sentinel, and container
.begin() is not a sentinel.

Fortunately, there is an easy way to do what you want. For a container
with bidirectional iterators, there is a way to reverse everything using a kind of
iterator known as a reverse iterator. The following will work fine:

vector<int>::reverse_iterator rp;
for (rp = container.rbegin(); rp != container.rend(); rp++)
 cout << *rp << " ";

The member function rbegin() returns an iterator located at the last element.
The member function rend() returns a sentinel that marks the “end” of the
elements in the reverse order. Note that for an iterator of type reverse_
iterator, the increment operator ++ moves backward through the elements.
In other words, the meanings of −− and ++ are interchanged. The program in
Display 18.3 demonstrates a reverse iterator.

Constant Iterator

A constant iterator is an iterator that does not allow you to change the
element at its location.

Reverse Iterators

A reverse iterator can be used to cycle through all elements of a
container, provided that the container has bidirectional iterators. The
general scheme is as follows:

STL_Container<type>::reverse_iterator rp;
for (rp = c.rbegin(); rp != c.rend(); rp++)
 Process_At_Location rp;

The object c is a container class with bidirectional iterators.

972	 Chapter 18 /  Standard Template Library

The reverse_iterator type also has a constant version, which is named
const_reverse_iterator.

Other Kinds of Iterators

There are other kinds of iterators that we will not cover in this book. Briefly,
two kinds of iterators you may encounter are an input iterator, which is
essentially a forward iterator that can be used with input streams, and an

Display 18.3   Reverse Iterator

 1 //Program to demonstrate a reverse iterator.
 2 #include <iostream>
 3 #include <vector>
 4 using std::cout;
 5 using std::endl;
 6 using std::vector;

 7 int main()
 8 {
 9 vector<char> container;

10 container.push_back('A');
11 container.push_back('B');
12 container.push_back('C');
13 cout << "Forward:\n";
14 vector<char>::iterator p;
15 for (p = container.begin(); p != container.end(); p++)
16 cout << *p << " ";
17 cout << endl;
18
19 cout << "Reverse:\n";
20 vector<char>::reverse_iterator rp;
21 for (rp = container.rbegin(); rp != container.rend(); rp++)
22 cout << *rp << " ";
23 cout << endl;

24 return 0;
25 }

Sample Dialogue

Forward:

A B C

Reverse:

C B A

	 18.2  Containers	 973

output iterator, which is essentially a forward iterator that can be used with
output streams. For more details, you will need to consult a more advanced
reference.

Self-Test Exercises

	 5.	 Suppose the vector v contains the letters 'A', 'B', 'C', and 'D' in that
order. What is the output of the following code?

vector<char>::reverse_iterator i = v.rbegin();
i++;
i++;
cout << *i << " ";
i−−;
cout << *i << " ";

	 6.	 Suppose you want to run the following code, where v is a vector of ints:

for (p = v.begin(); p != v.end(); p++)
 cout << *p << " ";

Which of the following are possible ways to declare p?

std::vector<int>::iterator p;
std::vector<int>::const_iterator p;

18.2  Containers

Put all your eggs in one basket and
—WATCH THAT BASKET.

Mark Twain, Pudd’n head Wilson

The container classes of the STL are different kinds of data structures for
holding data, such as lists, queues, and stacks. Each is a template class with a
parameter for the particular type of data to be stored. So, for example, you can
specify a list to be a list of ints, or doubles, or strings, or any class or struct
type you wish. Each container template class may have its own specialized
accessor and mutator functions for adding data and removing data from the
container. Different container classes may have different kinds of iterators. For
example, one container class may have bidirectional iterators while another
container class may have only forward iterators. However, whenever they are
defined the iterator operators and the member functions begin() and end()
have the same meaning for all STL container classes.

974	 Chapter 18 /  Standard Template Library

Sequential Containers

A sequential container arranges its data items into a list so that there is a
first element, a next element, and so forth up to a last element. The linked
lists we discussed in Chapter 13 are examples of a kind of list. The lists we
discussed in Chapter 13 are sometimes called singly linked lists because
there is only one link from one location to another. The STL has no container
corresponding to such singly linked lists, although some implementations
do offer an implementation of them, typically under the name slist. The
simplest list that is part of the STL is the doubly linked list, which is the
template class named list. The difference between these two kinds of lists is
illustrated in Display 18.4.

The lists in Display 18.4 contain the three integer values 1, 2, and 3 in that
order. The types for the two lists are slist<int> and list<int>. That display
also indicates the location of the iterators begin() and end(). We have not yet
told you how you can enter the integers into the lists.

In Display 18.4 we have drawn our singly and doubly linked lists as nodes
and pointers of the form discussed in Chapter 14. The STL class list and the
nonstandard class slist might (or might not) be implemented in this way.

Display 18.4   Two Kinds of Lists

slist: a singly linked list.
++ defined -- not defined

list: a doubly linked list.
Both ++ and -- defined

slist is not part of
the STL and may not
always be implemented.
list is part of the STL.

begin()

end()

begin()

end()

1

2

3

1

2

3

	 18.2  Containers	 975

However, when using the STL template classes, you are shielded from these
implementation details. So, you simply think in terms of locations for the
data (which may or may not be nodes) and iterators (not pointers). You can
think of the arrows in Display 18.4 as indicating the directions for ++ (which
is down) and −− (which is up in Display 18.4).

We wanted to present the template class slist to help give a context
for the sequential containers. It corresponds to what we discussed most
in Chapter 13, and it is the first thing that comes to the mind of most
programmers when you mention linked lists. However, since the template class
slist is not standard, we will discuss it no more. If your implementation
offers the template class slist and you want to use it, the details are similar to
those we will describe for list, except that the decrement operators −− (prefix
and postfix) are not defined for slist.

A simple program using the STL template class list is given in Display
18.5. The function push_back adds an element to the end of the list. Notice
that for the list template class, the dereferencing operator gives you access
to the data for reading and for changing the data. Also notice that with the
list template class and all the template classes and iterators of the STL, all
definitions are placed in the std namespace.

Display 18.5   Using the list Template Class (part 1 of 2)

 1 //Program to demonstrate the STL template class list.
 2 #include <iostream>
 3 #include <list>
 4 using std::cout;
 5 using std::endl;
 6 using std::list;
 7
 8 int main()
 9 {
10 list<int> list_object;
11
12 for (int i = 1; i <= 3; i++)
13 list_object.push_back(i);
14
15 cout << "List contains:\n";
16 list<int>::iterator iter;
17 for (iter = list_object.begin(); iter != list_object.end(); iter++)
18 cout << *iter << " ";
19 cout << endl;
20
21 cout << "Setting all entries to 0:\n";

(continued)

976	 Chapter 18 /  Standard Template Library

Note that Display 18.5 would compile and run exactly the same if we
replace list and list<int> with vector and vector<int>, respectively. This
uniformity of usage is a key part of the STL syntax.

There are, however, differences between a vector and a list container.
One of the main differences is that a vector container has random access
iterators while a list has only bidirectional iterators. For example, if you start
with Display 18.2, which uses random access, and replace all occurrences
of vector and vector<char> with list and list<char>, respectively, and
then compile the program, you will get a compiler error. (You will get an
error message even if you delete the statements containing container[i] or
container[2].)

The basic sequential container template classes of the STL are given in
Display 18.6. A sample of some member functions is given in Display 18.7.
Other containers, such as stacks and queues, can be obtained from these using
techniques discussed in the subsection entitled “Container Adapters stack
and queue.” All these sequence template classes have a destructor that returns
storage for recycling.

Deque, pronounced “d-queue” or “deck,” stands for “doubly ended
queue.” A deque is a kind of super queue. With a queue you add data at one
end of the data sequence and remove data from the other end. With a deque

Display 18.5   Using the list Template Class (part 2 of 2)

22 for (iter = list_object.begin(); iter != list_object.end(); iter++)
23 *iter = 0;
24
25 cout << "List now contains:\n";
26 for (iter = list_object.begin(); iter != list_object.end(); iter++)
27 cout << *iter << " ";
28 cout << endl;
29
30 return 0;
31 }

Sample Dialogue

List contains:

1 2 3

Setting all entries to 0:

List now contains:

0 0 0

Template	I terator Type Names	 Kind of Iterators	L ibrary Header
Class Name			 File

slist	 slist<T>::iterator	 mutable forward	 <slist>

Warning:	 slist<T>::const_iterator	 constant forward	 Depends on
slist is not	 		 implementation
part of the			 and may not be
STL. 			 available.

list	 list<T>::iterator	 mutable bidirectional	 <list>
	 list<T>::const_iterator	 constant bidirectional	
	 list<T>::reverse_iterator	 mutable bidirectional	
	 list<T>::const_reverse_iterator	 constant bidirectional	

vector	 vector<T>::iterator	 mutable random access	 <vector>
	 vector<T>::const_iterator	 constant random access	
	 vector<T>::reverse_iterator	 mutable random access	
	 vector<T>::const_reverse_iterator	 constant random access

deque	 deque<T>::iterator	 mutable random access	 <deque>
	 deque<T>::const_iterator	 constant random access	
	 deque<T>::reverse_iterator	 mutable random access	

	 deque<T>::const_reverse_iterator	 constant random access	

	 18.2  Containers	 977

Display 18.7   Some Sequential Container Member Functions (part 1 of 2)

Display 18.6   STL Basic Sequential Containers

Member Function	 Meaning
(c is a Container Object)	

c.size()	 Returns the number of elements in the container.

c.begin()	 Returns an iterator located at the first element in the container.

c.end()	� Returns an iterator located one beyond the last element in the
container.

c.rbegin()	� Returns an iterator located at the last element in the container.
Used with reverse_iterator. Not a member of slist.

c.rend()	� Returns an iterator located one beyond the first element in the
container. Used with reverse_iterator. Not a member of slist.

c.push_back(Element)	� Insert the Element at the end of the sequence. Not a member of
slist.

(continued)

978	 Chapter 18 /  Standard Template Library

you can add data at either end and remove data from either end. The template
class deque is a template class for a deque with a parameter for the type of data
stored.

Display 18.7   Some Sequential Container Member Functions (part 2 of 2)

c.push_front(Element)	� Insert the Element at the front of the sequence. Not a member of
vector.

c.insert(Iterator, Element)	 Insert a copy of Element before the location of Iterator.

c.erase(Iterator)	� Removes the element at location Iterator. Returns an iterator at
the location immediately following. Returns c.end() if the last
element is removed.

c.clear()	 A void function that removes all the elements in the container.

c.front()	� Returns a reference to the element in the front of the sequence.
Equivalent to *(c.begin()).

c1 == c2	� True if c1.size() == c2.size() and each element of c1 is equal to
the corresponding element of c2.

c1 != c2	 !(c1 == c2)

<All the sequential containers discussed in this section also have a default constructor, a copy
constructor, and various other constructors for initializing the container to default or specified
elements. Each also has a destructor that returns all storage for recycling and a well-behaved
assignment operator.>

Sequential Containers

A sequential container arranges its data items into a list so that there is
a first element, a next element, and so forth up to a last element. The
sequential container template classes that we have discussed are slist,
list, vector, and deque.

Pitfall  Iterators and Removing Elements

When you add or remove an element to or from a container, that can affect
other iterators. In general, there is no guarantee that the iterators will be located
at the same element after an addition or deletion. Some containers do, however,
guarantee that the iterators will not be moved by additions or deletions, except
of course if the iterator is located at an element that is removed.

	 18.2  Containers	 979

Of the template classes we have seen so far, list and slist guarantee
that their iterators will not be moved by additions or deletions, except of
course if the iterator is located at an element that is removed. The template
classes vector and deque make no such guarantee.	 ■

■  PROGRAMMING Tip   Type Definitions in Containers

The STL container classes contain type definitions that can be handy when
programming with these classes. We have already seen that STL container classes
may contain the type names iterator, const_iterator, reverse_iterator,
and const_reverse_iterator (and hence must contain their type definitions
behind the scenes). There are typically other type definitions as well.

All the template classes we have discussed so far have the defined types
value_type and size_type. The type value_type is the type of the elements
stored in the container. For example, list<int>::value_type is another
name for int. Another defined type is size_type, which is an unsigned
integer type that is the return type for the member function size. As we
noted in Chapter 8, the size_type for the vector template class is unsigned
int, although most compilers will be happy if you think of the type as just
plain int.	 ■

SELF-TEST Exercises

	 7.	 What is a major difference between a vector and a list?

	 8.	 Which of the template classes slist, list, vector, and deque have the
member function push_back?

	 9.	 Which of the template classes slist, list, vector, and deque have
random access iterators?

	10.	 Which of the template classes slist, list, vector, and deque can have
mutable iterators?

Container Adapters stack and queue

Container adapters are template classes that are implemented on top of other
classes. For example, the stack template class is by default implemented on top
of the deque template class, which means that buried in the implementation
of the stack is a deque, which is where all the data resides. However, you are
shielded from this implementation detail and see a stack as a simple last-in/
first-out data structure.

980	 Chapter 18 /  Standard Template Library

Other container adapter classes are the queue and priority_queue
template classes. Stacks and queues were discussed in Chapter 13. A priority
queue is like a queue with the additional property that each entry is given a
priority when it is added to the queue. If all entries have the same priority,
then entries are removed from a priority queue in the same manner as they are
removed from a queue. If items have different priorities, the higher-priority
items are removed before lower-priority items. We will not be discussing
priority queues in any detail, but mention it for those who may be familiar
with the concept.

Although an adapter template class has a default container class on
top of which it is built, you may choose to specify a different underlying
container, for efficiency or other reasons depending on your application.
For example, any sequential container may serve as the underlying
container for a stack and any sequential container other than vector may
serve as the underlying container for a queue. The default underlying data
structure is the deque for both the stack and the queue. For a priority_
queue, the default underlying container is a vector. If you are happy with
the default underlying container type, then a container adapter looks like
any other template container class to you. For example, the type name
for the stack template class using the default underlying container is
stack<int> for a stack of ints. If you wish to specify that the underlying
container is instead the vector template class, you would use stack<int,
vector<int>> as the type name. We will always use the default underlying
container.

If you do specify an underlying container, be warned that C++ compilers
prior to C++11 cannot compile code with two > symbols in the type expression
without a space in between them. Use stack<int, vector<int>   >, with a
space between the last two >’s. Do not use stack<int, vector<int>>. C++11
compilers do not need a space between the two > symbols.

The member functions and other details about the stack template class
are given in Display 18.8. For the queue template class these details are given
in Display 18.9. A simple example of using the stack template class is given
in Display 18.10.

Warning

Display 18.8   Stack Template Class (part 1 of 2)

Stack Adapter Template Class Details
Type name stack<T> or stack<T, Underlying_Container> for a stack of elements of
type T.
Library header: <stack>, which places the definition in the std namespace.
Defined types: value_type, size_type.
There are no iterators.

(continued)

	 18.2  Containers	 981

Member Function 	 Meaning
(s is a Stack Object)

s.size()	 Returns the number of elements in the stack.

s.empty()	 Returns true if the stack is empty; otherwise returns false.

s.top()	 Returns a mutable reference to the top member of the stack.

s.push(Element)	 Inserts a copy of Element at the top of the stack.

s.pop()	� Removes the top element of the stack. Note that pop is a void
function. It does not return the element removed.

s1 == s2	� True if s1.size() == s2.size() and each element of s1 is equal to
the corresponding element of s2; otherwise returns false.

The stack template class also has a default constructor, a copy constructor, as well as a
constructor that takes an object of any sequential container class and initializes the stack to the
elements in the sequence. It also has a destructor that returns all storage for recycling and a
well-behaved assignment operator.

Display 18.8   Stack Template Class (part 2 of 2)

Sample Member Functions

Display 18.9   Queue Template Class (part 1 of 2)

Queue Adapter Template Class Details
Type name queue<T> or queue<T, Underlying_Container> for a queue of elements
of type T.
For efficiency reasons, the Underlying_Container cannot be a vector type.
Library header: <queue> which places the definition in the std namespace.
Defined types: value_type, size_type.
There are no iterators.

Sample Member Functions

Member Function	 Meaning
(q is a Queue Object)

q.size()	 Returns the number of elements in the queue.

q.empty()	 Returns true if the queue is empty; otherwise returns false.

(continued)

982	 Chapter 18 /  Standard Template Library

Display 18.10   Program Using the Stack Template Class (part 1 of 2)

 1 //Program to demonstrate the use of the stack template class from the STL.
 2 #include <iostream>
 3 #include stack>
 4 using std::cin;
 5 using std::cout;
 6 using std::endl;
 7 using std::stack;
 8
 9 int main()
10 {
11 stack<char> s;
12
13 cout << "Enter a line of text:\n";
14 char next;
15 cin.get(next);
16 while (next != '\n')
17 {
18 s.push(next);
19 cin.get(next);
20 }
21
22 cout << "Written backward that is:\n";
23 while (!s.empty())
24 {

(continued)

Display 18.9   Queue Template Class (part 2 of 2)

q.front()	 Returns a mutable reference to the front member of the queue.

q.back()	 Returns a mutable reference to the last member of the queue.

q.push(Element)	 Adds Element to the back of the queue.

q.pop()	� Removes the front element of the queue. Note that pop is a
void function. It does not return the element removed.

q1 == q2	� True if q1.size() == q2.size() and each element of q1 is equal to
the corresponding element of q2; otherwise returns false.

The queue template class also has a default constructor, a copy constructor, as well as a
constructor that takes an object of any sequential container class and initializes the stack to the
elements in the sequence. It also has a destructor that returns all storage for recycling and a
well-behaved assignment operator.

	 18.2  Containers	 983

Display 18.10   Program Using the Stack Template Class (part 2 of 2)

25 cout << s.top();
26 s.pop();
27 }
28 cout << endl;
29
30 return 0;
31 }

Sample Dialogue

Enter a line of text:

straw

Written backward that is:

warts

The member function pop removes one element,
but does not return that element. pop is a void
function. So, we needed to use top to read the
element we remove.

Self-Test Exercises

	11.	 What kind of iterators (forward, bidirectional, or random access) does the
stack template adapter class have?

	12.	 What kind of iterators (forward, bidirectional, or random access) does the
queue template adapter class have?

	13.	 If s is a stack<char>, what is the type of the returned value of
s.pop()?

Associative Containers set and map

Associative containers are basically very simple databases. They store data,
such as structs or any other type of data. Each data item has an associated
value known as its key. For example, if the data is a struct with an employee’s
record, the key might be the employee’s Social Security number. Items are
retrieved on the basis of the key. The key type and the type for data to be
stored need not have any relationship to one another, although they often
are related. A very simple case is when the each data item is its own key. For
example, in a set every element is its own key.

The set template class is, in some sense, the simplest container you can
imagine. It stores elements without repetition. The first insertion places an
element in the set. Additional insertions after the first have no effect, so no
element appears more than once. Each element is its own key; basically, you

984	 Chapter 18 /  Standard Template Library

just add or delete elements and ask if an element is in the set or not. Like
all STL classes, the set template class was written with efficiency as a goal. In
order to work efficiently, a set object stores its values in sorted order. You can
specify the order used for storing elements as follows:

set<T, Ordering> s;

Ordering should be a well-behaved ordering relation that takes two arguments of
type T and returns a bool value.1 T is the type of elements stored. If no ordering
is specified, then the ordering is assumed to be the < relational operator. Some
basic details about the set template class are given in Display 18.11. A simple
example that shows how to use some of the member functions of the template
class set is given in Display 18.12.

A map is essentially a function given as a set of ordered pairs. For each
value first that appears in a pair, there is at most one value second such that
the pair (first, second) is in the map. The template class map implements
map objects in the STL. For example, if you want to assign a unique number
to each string name, you could declare a map object as follows:

map<string, int> number_map;

For string values known as keys, the number_map object can associate a unique
int value.

An alternate way to think of a map is as an associative array. A traditional
array maps from a numerical index to a value. For example, a[10] = 5
would store the number 5 at index 10. An associative array allows you to
define your own indices using the data type of your choice. For example,
numberMap["c++"] = 5 would associate the integer 5 with the string “c++". For
convenience, the [] square bracket operator is defined to allow you to use an
array-like notation to access a map, although you also can use the insert or
find methods if you want.

Like a set object, a map object stores its elements in sorted order by its
key values. You can specify the ordering on keys as a third entry in the angular
brackets <>. If you do not specify an ordering, a default ordering is used. The
restrictions on orderings you can use is the same as those on the orderings
allowed for the set template class. Note that the ordering is on key values
only. The second type can be any type and need not have anything to do with
any ordering. As with the set object, the sorting of the stored entries in a map
object is done for reasons of efficiency.

1 The ordering must be a strict weak ordering. Most typical orderings used to imple-
ment the < operator is strict weak ordering. For those who want the details: A strict
weak ordering must be: (irreflexive) Ordering(x, x) is always false; (antisymmetric)
Ordering(x, y) implies !Ordering(y, x); (transitive) Ordering(x, y) and
Ordering(y, z) imply Ordering(x, z); and (transitivity of equivalence) if x is
equivalent to y and y is equivalent to z, then x is equivalent to z. Two elements x and
y are equivalent if Ordering(x, y)and Ordering(y, x) are both false.

	 18.2  Containers	 985

Display 18.11   set Template Class

set Template Class Details
Type name set<T> or set<T, Ordering> for a set of elements of type
T. The Ordering is used to sort elements for storage. If no Ordering is
given, the ordering used is the binary operator <.

Library header: <set>, which places the definition in the std
namespace.

Defined types include: value_type, size_type.

Iterators: iterator, const_iterator, reverse_iterator, and
const_reverse_iterator. All iterators are bidirectional and those
not including const_ are mutable. begin(), end(), rbegin(), and
rend() have the expected behavior. Adding or deleting elements
does not affect iterators, except for an iterator located at the element
removed.

Sample Member Functions

Member Function	 Meaning
(s is a Set Object)	

s.insert(Element)	� Inserts a copy of Element in the set. If Element is
already in the set, this has no effect.

s.erase(Element)	� Removes Element from the set. If Element is not in
the set, this has no effect.

s.find(Element)	� Returns a mutable iterator located at the copy
of Element in the set. If Element is not in the set,
s.end() is returned.

s.erase(Iterator)	 Erases the element at the location of the Iterator.

s.size()	 Returns the number of elements in the set.

s.empty()	� Returns true if the set is empty; otherwise returns
false.

s1 == s2	� Returns true if the sets contains the same elements;
otherwise returns false.

The set template class also has a default constructor, a copy constructor,
as well as other specialized constructors not mentioned here. It also has
a destructor that returns all storage for recycling and a well-behaved
assignment operator.

986	 Chapter 18 /  Standard Template Library

Display 18.12   Program Using the set Template Class

 1 //Program to demonstrate use of the set template class.
 2 #include <iostream>
 3 #include <set>
 4 using std::cout;
 5 using std::endl;
 6 using std::set;

 7 int main()
 8 {
 9 set<char> s;
10
11 s.insert('A');
12 s.insert('D');
13 s.insert('D');
14 s.insert('C');
15 s.insert('C');
16 s.insert('B');
17
18 cout << "The set contains:\n";
19 set<char>::const_iterator p;
20 for (p = s.begin(); p != s.end(); p++)
21 cout << *p << " ";
22 cout << endl;
23
24 cout << "Removing C.\n";
25 s.erase('C');
26 for (p = s.begin(); p != s.end(); p++)
27 cout << *p << " ";
28 cout << endl;
29
30 return 0;
31 }

Sample Dialogue

The set contains:

A B C D

Removing C.

A B D

No matter how many times you add an
element to a set, the set contains
only one copy of that element.

The easiest way to add and retrieve data from a map is to use the []
operator. Given a map object m, the expression m[key] will return a reference
to the data element associated with key. If no entry exists in the map for key,
then a new entry will be created with the default value for the data element.

	 18.2  Containers	 987

For numeric data types, the default value is 0. For objects of type string, the
default value is an empty string.

The [] operator can be used to add a new item to the map or to replace an
existing entry. For example, the statement m[key] = newData; will create a new
association between key and newData. Note that care must be taken to ensure
that map entries are not created by mistake. For example, if you execute the
statement val = m[key]; with the intention of retrieving the value associated
with key but mistakenly enter a value for key that is not already in the map,
then a new entry will be made for key with the default value and assigned
into val.

Some basic details about the map template class are given in Display
18.13. In order to understand these details, you first need to know something
about the pair template class.

The STL template class pair<T1,T2> has objects that are pairs of values
such that the first element is of type T1 and the second is of type T2. If aPair
is an object of type pair<T1,T2>, then aPair.first is the first element, which
is of type T1, and aPair.second is the second element, which is of type T2.
The member variables first and second are public member variables, so no
accessor or mutator functions are needed.

The header file for the pair template is <utility>. So, to use the pair
template class, you need the following, or something like it, in your file:

#include <utility>
using std::pair;

The map template class uses the pair template class to store the association
between the key and a data item. For example, given the definition

map<string, int> numberMap;

we can add a mapping from "c++" to the number 10 by using a pair
object:

pair<string, int> toInsert("c++", 10);
numberMap.insert(toInsert);

or by using the [] operator:

numberMap["c++"] = 10;

In either case, when we access this pair using an iterator, iterator->first
will refer to the key "c++" while iterator->second will refer to the data value
10. A simple example that shows how to use some of the member functions of
the template class map is given in Display 18.14.

We will mention two other associative containers, although we will not
give any details about them. The template classes multiset and multimap
are essentially the same as set and map, respectively, except that a multiset
allows repetition of elements and a multimap allows multiple values to be
associated with each key value.

988	 Chapter 18 /  Standard Template Library

Display 18.13   map Template Class

map Template Class Details
Type name map<KeyType, T> or map<KeyType, T, Ordering> for a map that associates
(“maps”) elements of type KeyType to elements of type T.
The Ordering is used to sort elements by key value for efficient storage.
If no Ordering is given, the ordering used is the binary operator <.

Library header: <map> places the definition in the std namespace.

Defined types include: key_type for the type of the key values, mapped_type for the type of
the values mapped to, and size_type. (So, the defined type key_type is simply what we
called KeyType earlier.)

Iterators: iterator, const_iterator, reverse_iterator, and const_reverse_iterator.
All iterators are bidirectional. Those iterators not including const_ are neither constant nor
mutable, but something in between. For example, if p is of type
iterator, then you change the key value but not the value of type T. Perhaps it is best, at least
at first, to treat all iterators as if they were constant.
begin(), end(), rbegin(), and rend() have the expected behavior. Adding or
deleting elements does not affect iterators, except for an iterator located at the element
removed.

Sample Member Functions

Member Function	 Meaning
(m is a Map Object)	

m.insert(Element)	� Inserts Element in the map. Element is of type pair<KeyType, T>.
Returns a value of type pair<iterator, bool>. If the insertion is
successful, the second part of the returned pair is true and the
iterator is located at the inserted element.

m.erase(Target_Key)	 Removes the element with the key Target_Key.

m.find(Target_Key)	� Returns an iterator located at the element with key value Target_Key.
Returns m.end() if there is no such element.

m[Target_Key]	� Returns a reference to the object associated with the key Target_Key.
If the map does not already contain such an object, then a default
object of type T is inserted and returned.

m.size()	 Returns the number of pairs in the map.

m.empty()	 Returns true if the map is empty; otherwise returns false.

m1 == m2	� Returns true if the maps contains the same pairs; otherwise returns false.

The map template class also has a default constructor, a copy constructor, as well as other
specialized constructors not mentioned here. It also has a destructor that returns all storage for
recycling and a well-behaved assignment operator.

	 18.2  Containers	 989

Display 18.14   Program Using the map Template Class (part 1 of 2)

 1 //Program to demonstrate use of the map template class.
 2 #include <iostream>
 3 #include <map>
 4 #include <string>
 5 using std::cout;
 6 using std::endl;
 7 using std::map;
 8 using std::string;

 9 int main()
10 {
11 map<string, string> planets;

12 planets["Mercury"] = "Hot planet";
13 planets["Venus"] = "Atmosphere of sulfuric acid";
14 planets["Earth"] = "Home";
15 planets["Mars"] = "The Red Planet";
16 planets["Jupiter"] = "Largest planet in our solar system";
17 planets["Saturn"] = "Has rings";
18 planets["Uranus"] = "Tilts on its side";
19 planets["Neptune"] = "1500 mile-per-hour winds";
20 planets["Pluto"] = "Dwarf planet";
21 cout << "Entry for Mercury - " << planets["Mercury"]
22 << endl << endl;
23 if (planets.find("Mercury") != planets.end())
24 cout << "Mercury is in the map." << endl;
25 if (planets.find("Ceres") == planets.end())
26 cout << "Ceres is not in the map." << endl << endl;
27 cout << "Iterating through all planets: " << endl;
28 map<string, string>::const_iterator iter;
29 for (iter = planets.begin(); iter != planets.end(); iter++)
30 {
31 cout << iter->first << " - " << iter->second << endl;
32 }
33 return 0;
34 }

Sample Dialogue

Entry for Mercury - Hot planet

Mercury is in the map.

Ceres is not in the map.

Iterating through all planets:

Earth - Home

(continued)

The iterator will output the map in order sorted
by the key. In this case the output will be listed
alphabetically by planet.

990	 Chapter 18 /  Standard Template Library

■  Programming Tip � Use Initialization, Ranged for, and auto
with Containers

Several features introduced in C++11 make it easier to work with collections.
In particular, you can initialize your container objects using the uniform
initializer list format, which consists of initial data in curly braces. You can
also use auto and the ranged for loop to easily iterate through a container.
Consider the following two initialized collection objects:

 map<int, string> personIDs = {
 {1,"Walt"},
 {2,"Kenrick"}
 };
 set<string> colors = {"red","green","blue"};

We can iterate through each container conveniently using a ranged for loop
and auto:

 for (auto p : personIDs)
 cout << p.first << " " << p.second << endl;
 for (auto p : colors)
 cout << p << " ";

The output of this snippet is:

 1 Walt
 2 Kenrick
 blue green red� ■

Efficiency

The STL was designed with efficiency as an important consideration. In fact,
the STL implementations strive to be optimally efficient. For example, the set
and map elements are stored in sorted order so that algorithms that search for
the elements can be more efficient.

Each of the member functions for each of the template classes has a
guaranteed maximum running time. These maximum running times are
expressed using what is called big-O notation, which we discuss in Section 18.3.

Display 18.14   Program Using the map Template Class (part 2 of 2)

Jupiter - Largest planet in our solar system

Mars - The Red Planet

Mercury - Hot planet

Neptune - 1500 mile-per-hour winds

Pluto - Dwarf planet

Saturn - Has rings

Uranus - Tilts on its side

Venus - Atmosphere of sulfuric acid

VideoNote
C++11 and Containers

	 18.3  Generic Algorithms	 991

(Section 18.3 also gives some guaranteed running times for some of the con-
tainer member functions we have already discussed. These are in the subsec-
tion entitled “Container Access Running Times.”) When using more advanced
references or even later in this chapter, you will be told the guaranteed maxi-
mum running times for certain functions.

Self-Test Exercises

	14.	 How many elements will be in the map mymap after the following code is
executed?

map<int, string> mymap;
mymap[5] = "c++";
cout << mymap[4] << endl;

	15.	 Can a set have elements of a class type?

	16.	 Suppose s is of the type set<char>. What value is returned by s.find('A')
if 'A' is in s? What value is returned if 'A' is not in s?

18.3  Generic Algorithms

“Cures consumption, anemia, sexual dysfunction, and all other diseases.”

Typical claim by a traveling salesman of “snake oil”

This section covers some basic function templates in the STL. We cannot give
you a comprehensive description of them all here, but will present a large
enough sample to give you a good feel for what is contained in the STL and to
give you sufficient detail to start using these template functions.

These template functions are sometimes called generic algorithms. The
term algorithm is used for a reason. Recall that an algorithm is just a set of
instructions for performing a task. An algorithm can be presented in any language,
including a programming language like C++. But when using the word algorithm,
programmers typically have in mind a less formal presentation given in English or
pseudocode. As such, it is often thought of as an abstraction of the code defining
a function. It gives the important details but not the fine details of the coding.
The STL specifies certain details about the algorithms underlying the STL template
functions and that is why they are sometimes called generic algorithms.

These STL function templates do more than just deliver a value in any
way that the implementers wish. The function templates in the STL come with
minimum requirements that must be satisfied by their implementations if they
are to satisfy the standard. In most cases, they must be implemented with a
guaranteed running time. This adds an entirely new dimension to the idea of
a function interface. In the STL, the interface not only tells a programmer what
the function does and how to use the functions; the interface also tells how
rapidly the task will be done. In some cases, the standard even specifies the

992	 Chapter 18 /  Standard Template Library

particular algorithm that is used, although not the exact detail of the coding.
Moreover, when it does specify the particular algorithm, it does so because of
the known efficiency of the algorithm. The key new point is a specification of
an efficiency guarantee for the code. In this chapter we will use the terms generic
algorithm, generic function, and STL function template to all mean the same thing.

In order to have some terminology to discuss the efficiency of these
template functions or generic algorithms, we first present some background
on how the efficiency of algorithms is usually measured.

Running Times and Big-O Notation

If you ask a programmer how fast his or her program is, you might expect
an answer like “two seconds.” However, the speed of a program cannot be
given by a single number. A program will typically take a longer amount of
time on larger inputs than it will on smaller inputs. You would expect that
a program to sort numbers would take less time to sort ten numbers than it
would to sort one thousand numbers. Perhaps it takes two seconds to sort ten
numbers, but ten seconds to sort one thousand numbers. How, then, should
the programmer answer the question, “How fast is your program?”

The programmer would have to give a table of values showing how long
the program took for different sizes of input. For example, the table might be as
shown in Display 18.15. This table does not give a single time, but instead gives
different times for a variety of different input sizes. The table is a description
of what is called a function in mathematics. Just as a (non-void) C++ function
takes an argument and returns a value, so too does this function take an
argument, which is an input size, and returns a number, which is the time
the program takes on an input of that size. If we call this function T, then T(10)
is 2 seconds, T(100) is 2.1 seconds, T(1000) is 10 seconds, and T(10,000) is
2.5 minutes. The table is just a sample of some of the values of this function
T. The program will take some amount of time on inputs of every size. So
although they are not shown in the table, there are also values for T(1), T(2),
. . . , T(101), T(102), and so forth. For any positive integer N, T(N) is the
amount of time it takes for the program to sort N numbers. The function T is
called the running time of the program.

Display 18.15   Some Values of a Running-Time Function

	I nput Size	 Running Time

	 10 numbers	 2 seconds

	 100 numbers	 2.1 seconds

	 1000 numbers	 10 seconds

	 10,000 numbers	 2.5 minutes

	 18.3  Generic Algorithms	 993

So far we have been assuming that this sorting program will take the same
amount of time on any list of N numbers. That need not be true. Perhaps it takes
much less time if the list is already sorted or almost sorted. In that case, T(N) is
defined to be the time taken by the “hardest” list, that is, the time taken on that
list of N numbers which makes the program run the longest. This is called the
worst-case running time. In this chapter we will always mean worst-case running
time when we give a running time for an algorithm or for some code.

The time taken by a program or algorithm is often given by a formula,
such as 4N + 3, 5N + 4, or N2. If the running time T(N) is 5N + 5, then on
inputs of size N the program will run for 5N + 5 time units.

Following is some code for searching an array a with N elements to
determine whether a particular value target is in the array:

int i = 0;
bool found = false;
while ((i < N) && !(found))
 if (a[i] == target)
 found = true;
 else
 i++;

We want to compute some estimate of how long it will take a computer to
execute this code. We would like an estimate that does not depend on which
computer we use, either because we do not know which computer we will use or
because we might use several different computers to run the program at different
times. One possibility is to count the number of “steps,” but it is not easy to
decide what a step is. In this situation the normal thing to do is to count the
number of operations. The term operations is almost as vague as the term step, but
there is at least some agreement in practice about what qualifies as an operation.
Let us say that, for this C++ code, each application of any of the following will
count as an operation: =, <, &&, !, [], ==, and ++. The computer must do other
things besides carry out these operations, but these seem to be the main things
that it is doing and we will assume that they account for the bulk of the time
needed to run this code. In fact, our analysis of time will assume that everything
else takes no time at all and that the total time for our program to run is equal to
the time needed to perform these operations. Although this is an idealization that
clearly is not completely true, it turns out that this simplifying assumption works
well in practice and so is often made when analyzing a program or algorithm.

Even with our simplifying assumption, we still must consider two cases:
Either the value target is in the array or it is not. Let us first consider the case when
target is not in the array. The number of operations performed will depend on
the number of array elements searched. The operation = is performed two times
before the loop is executed. Since we are assuming that target is not in the array,
the loop will be executed N times, one for each element of the array. Each time
the loop is executed, the following operations are performed: <, &&, !, [], ==, and
++ This adds six operators for each of N loop iterations. Finally, after N iterations,
the Boolean expression is again checked and found to be false. This adds a final

994	 Chapter 18 /  Standard Template Library

three operations (<, &&, !).2 If we tally all these operations, we get a total of 6N + 5
operations when the target is not in the array. We will leave it as an exercise for
you to confirm that if the target is in the array, then the number of operations
will be 6N + 5 or less. Thus, the worst-case running time is T(N) = 6N + 5
operations for any array of N elements and any value of target.

We just determined that the worst-case running time for our search code is
6N + 5 operations. But operations is not a traditional unit of time, like
nanoseconds, seconds, or minutes. If we want to know how long the algorithm will
take on some particular computer, we must know how long it takes that computer
to perform one operation. If an operation can be performed in 1 nanosecond,
then the time will be 6N + 5 nanoseconds. If an operation can be performed in
1 second, the time will be 6N + 5 seconds. If we use a slow computer that takes
10 seconds to perform an operation, the time will be 60N + 50 seconds. In general,
if it takes the computer c nanoseconds to perform one operation, then the actual
running time will be approximately c(6N + 5) nanoseconds. (We say approximately,
since we are making some simplifying assumptions and so the result may not be
the absolutely exact running time.) This means that our running time of 6N + 5 is
a very crude estimate. To get the running time expressed in nanoseconds, you must
multiply by some constant that depends on the particular computer you are using.
Our estimate of 6N + 5 is only accurate to “within a constant multiple.” There is
a standard notation for these sorts of estimates and we discuss this notation next.

Estimates on running time, such as the one we just went through, are
normally expressed in something called big-O notation. (The O is the letter
“Oh,” not the digit zero.) Suppose we estimate the running time to be, say, 6N + 5
operations and suppose we know that no matter what the exact running time of
each different operation may turn out to be, there will always be some constant
factor c such that the real running time is less than or equal to c(6N + 5).

Under these circumstances, we say the code (or program or algorithm) runs
in time O(6N + 5). This is usually read as “big-O of 6N + 5.” We need not know
what the constant c will be. In fact, it will undoubtedly be different for different
computers, but we must know that there is one such c for any reasonable
computer system. If the computer is very fast, then the c might be less than
1—say, 0.001. If the computer is very slow, the c might be very large—say,
1000. Moreover, since changing the units, say from nanosecond to second, only
involves a constant multiple, there is no need to give any units of time.

Be sure to notice that a big-O estimate is an upper-bound estimate. We
always approximate by taking numbers on the high side, rather than the low
side, of the true count. Also notice that when performing a big-O estimate, we
need not determine a very exact count of the number of operations performed.
We only need an estimate that is correct “up to a constant multiple.” If our
estimate is twice as large as the true number, that is good enough.

2 Because of short circuit evaluation, !(found) is not evaluated, so we actually get two,
not three operations. However, the important thing is to obtain a good upper bound.
If we add in one extra operation that is not significant.

	 18.3  Generic Algorithms	 995

An order of magnitude estimate, such as the previous 6N + 5, contains a
parameter for the size of the task solved by the algorithm (or program or piece
of code). In our sample case, this parameter N was the number of array elements
to be searched. Not surprisingly, it takes longer to search a larger number of
array elements than it does to search a smaller number of array elements. Big-
O running time estimates are always expressed as a function of the size of the
problem. In this chapter all our algorithms will involve a range of values in some
container. In all cases N will be the number of elements in that range.

The following is an alternative, pragmatic way to think about big-O estimates:

Look only at the term with the highest exponent and do not pay
attention to constant multiples.

For example, all of the following are O(N2):

N2 + 2N + 1, 3N2 + 7, 100N2 + N

All of the following are O(N3):

N3 + 5N2 + N + 1, 8N3 + 7, 100N3 + 4N + 1

Big-O running-time estimates are admittedly crude, but they do contain
some information. They will not distinguish between a running time of 5N + 5
and a running time of 100N, but they do let us distinguish between some
running times and so determine that some algorithms are faster than others.
Look at the graphs in Display 18.16; notice that all the graphs for functions
that are O(N) eventually fall below the graph for the function 0.5N2. The
result is inevitable: An O(N) algorithm will always run faster than any O(N2)
algorithm, provided we use large enough values of N. Although an O(N2)
algorithm could be faster than an O(N) algorithm for the problem size you are
handling, programmers have found that in practice O(N) algorithms perform
better than O(N2) algorithms for most practical applications that are intuitively
“large.” Similar remarks apply to any other two different big-O running times.

Some terminology will help with our descriptions of generic algorithm
running times. Linear running time means a running time of T(N) = aN + b. A
linear running time is always an O(N) running time. Quadratic running time
means a running time with highest term N2. A quadratic running time is always an
O(N2) running time. We will also occasionally have logarithms in running-time
formulas. Those normally are given without any base, since changing the base is
just a constant multiple. If you see log N, think log base 2 of N, but it would not be
wrong to think log base 10 of N. Logarithms are very slow-growing functions. So, a
O(log N) running time is very fast. Sometimes log2 N is written as lg N.

Container Access Running Times

Now that we know about big-O notation, we can express the efficiency of
some of the accessing functions for container classes that we discussed in
Section 18.2 “Containers.” Insertions at the back of a vector (push_back),

996	 Chapter 18 /  Standard Template Library

the front or back of a deque (push_back and push_front), and anywhere in
a list (insert) are all O(1) (that is, a constant upper bound on the running
time that is independent of the size of the container.) Insertion or deletion of
an arbitrary element for a vector or deque is O(N), where N is the number of
elements in the container. For a set or map, finding (find) is O(log N), where
N is the number of elements in the container.

Self-Test Exercises

	17.	 Show that a running time T(N) = aN + b is an O(N) running time. (Hint:
The only issue is the + b. Assume N is always at least 1.)

	18.	 Show that for any two bases a and b for logarithms, if a and b are both
greater than 1, then there is a constant c such that log

a
 N ≤ c(log

b
 N). Thus,

there is no need to specify a base in O(log N). That is, O(loga N) and
O(log

b
 N) mean the same thing.

Display 18.16   Comparison of Running Times

T(N
) =

 0
.5

N
2

T(N
) =

 N
 +

 2

T
(N

)
(r

u
n

n
in

g
ti

m
e)

N (the problem size)

T(N
) =

 N
T(N

) =
 1

.5
 N

	 18.3  Generic Algorithms	 997

Nonmodifying Sequence Algorithms

This section describes template functions that operate on containers but do
not modify the contents of the container in any way. A good simple and
typical example is the generic find function.

The generic find function is similar to the find member function of the
set template class but is a different find function; in particular, the generic
find function takes more arguments than the find function we discussed
when we presented the set template class. The generic find function searches
a container to locate a particular element, but the generic find can be used
with any of the STL sequential container classes. Display 18.17 shows a
sample use of the generic find function used with the class vector<char>.
The function in Display 18.17 would behave exactly the same if we replaced
vector<char> with list<char> throughout, or if we replaced vector<char>
with any other sequential container class. That is one of the reasons why the
functions are called generic. One definition of the find function works for a
wide selection of containers.

If the find function does not find the element it is looking for, it returns
its second iterator argument, which need not be equal to some end() as it is
in Display 18.17. Sample Dialogue 2 shows the situation when find does not
find what it is looking for.

Display 18.17   The Generic find Function (part 1 of 2)

 1 //Program to demonstrate use of the generic find function.
 2 #include <iostream>
 3 #include <vector>
 4 #include <algorithm>
 5 using std::cin;
 6 using std::cout;
 7 using std::endl;
 8 using std::vector;
 9 using std::find;

10 int main()
11 {
12 vector<char> line;

13 cout << "Enter a line of text:\n";
14 char next;
15 cin.get(next);
16 while (next != '\n')
17 {
18 line.push_back(next);
19 cin.get(next);
20 }

(continued)

998	 Chapter 18 /  Standard Template Library

Display 18.17   The Generic find Function (part 2 of 2)

21 vector<char>::const_iterator where;
22 where = find(line.begin(), line.end(), 'e');
23 //where is located at the first occurrence of 'e' in line.

24 vector<char>::const_iterator p;
25 cout << "You entered the following before you entered your first e:\n";
26 for (p = line.begin(); p != where; p++)
27 cout << *p;
28 cout << endl;
29 cout << "You entered the following after that:\n";
30 for (p = where; p != line.end(); p++)
31 cout << *p;
32 cout << endl;

33 cout << "End of demonstration.\n";
34 return 0;
35 }

Sample Dialogue 1

Enter a line of text

A line of text.

You entered the following before you entered your first e:

A lin

You entered the following after that:

e of text.

End of demonstration.

Sample Dialogue 2

Enter a line of text

I will not!

You entered the following before you entered your first e:

I will not!

You entered the following after that:

End of demonstration.

If find does not find
what it is looking for, it
returns line.end().

Does find work with absolutely any container classes? No, not quite.
To start with, it takes iterators as arguments, and some containers, such as
stack, do not have iterators. To use the find function, the container must
have iterators, the elements must be stored in a linear sequence so that the

If find does not find what
it is looking for, it returns
its second argument.

	 18.3  Generic Algorithms	 999

++ operator moves iterators through the container, and the elements must
be comparable using ==. In other words, the container must have forward
iterators (or some stronger kind of iterators, such as bidirectional iterators).

When presenting generic function templates, we will describe the iterator
type parameter by using the name of the required kind of iterator as the type
parameter name. So ForwardIterator should be replaced by a type that is a
type for some kind of forward iterator, such as the iterator type in a list,
vector, or other container template class. Remember, a bidirectional iterator
is also a forward iterator, and a random access iterator is also a bidirectional
iterator. So the type name ForwardIterator can be used with any iterator
type that is a bidirectional or random access iterator type as well as a plain
old forward iterator type. In some cases, when we specify ForwardIterator
you can use an even simpler iterator kind; namely, an input iterator or
output iterator, but since we have not discussed input and output iterators,
we do not mention them in our function template declarations.

Remember the names forward iterator, bidirectional iterator, and random
access iterator refer to kinds of iterators, not type names. The actual type
names will be something like std::vector<int>::iterator, which in this
case happens to be a random access iterator.

Display 18.18 gives a sample of some nonmodifying generic functions
in the STL. The display uses a notation that is common when discussing
container iterators. The iterator locations encountered in moving from an
iterator first to, but not equal to, an iterator last is called the range [first,
last). For example, the following for loop outputs all the elements in the
range [first, last):

for (iterator p = first; p != last; p++)
 cout << *p << endl;

Note that when two ranges are given they need not be in the same
container or even in the same type of container. For example, for the search
function, the ranges [first1, last1) and [first2, last2) may be in the
same or different containers.

Range [first, last)

The movement from some iterator first, often container.begin(), up
to but not including some location last, often container.end(), is so
common it has come to have a special name, range [first, last). For
example, the following outputs all elements in the range [c.begin(),c.
end()), where c is some container object, such as a vector:

for (iterator p = c.begin(); p != c.end(); p++)
 cout << *p << endl;

1000	 Chapter 18 /  Standard Template Library

Display 18.18   Some Nonmodifying Generic Functions

These all work for forward iterators, which means they also work for bidirectional and random
access iterators. (In some cases they even work for other kinds of iterators, which we have not
covered in any detail.)

 1 template<class ForwardIterator, class T>
 2 ForwardIterator find(ForwardIterator first,
 3 ForwardIterator last, const T& target);
 4 //Traverses the range [first, last) and returns an iterator located at
 5 //the first occurrence of target. Returns second if target is not found.
 6 //Time complexity: linear in the size of the range [first, last).

 7 template<class ForwardIterator, class T>
 8 int3 count(ForwardIterator first, ForwardIterator last, const T& target);
 9 //Traverses the range [first, last) and returns the number
10 //of elements equal to target.
11 //Time complexity: linear in the size of the range [first, last).

12 template<class ForwardIterator1, class ForwardIterator2>
13 bool equal(ForwardIterator1 first1, ForwardIterator1 last1,
14 ForwardIterator2 first2);
15 //Returns true if [first1, last1) contains the same elements in the same order as
16 //the first last1-first1 elements starting at first2. Otherwise, returns false.
17 //Time complexity: linear in the size of the range [first, last).
18
19 template<class ForwardIterator1, class ForwardIterator2>
20 ForwardIterator1 search(ForwardIterator1 first1, ForwardIterator1 last1,
21 ForwardIterator2 first2, ForwardIterator2 last2);
22 //Checks to see if [first2, last2) is a subrange of [first1, last1).
23 //If so, it returns an iterator located in [first1, last1) at the start of
24 //the first match. Returns last1 if a match is not found.
25 //Time complexity: quadratic in the size of the range [first1, last1).

26 template<class ForwardIterator, class T>
27 bool binary_search(ForwardIterator first, ForwardIterator last,
28 const T& target);
29 //Precondition: The range [first, last) is sorted into ascending order using <.
30 //Uses the binary search algorithm to determine if target is in the range
31 //[first, last).
32 //Time complexity: For random access iterators O(log N). For non-random-access
33 //iterators
34 //linear is N, where N is the size of the range [first, last).

3 The actual return type is an integer type that we have not discussed, but the returned value should be assign-
able to a variable of type int.

	 18.3  Generic Algorithms	 1001

Notice that there are three search functions in Display 18.18—find,
search, and binary_search. The function search searches for a subsequence,
while the find and binary_search functions search for a single value. How do
you decide whether to use find or binary_search when searching for a single
element? One returns an iterator and the other returns just a Boolean value,
but that is not the biggest difference. The binary_search function requires that
the range being searched be sorted (into ascending order using <) and run in
time O(log N); the find function does not require that the range be sorted but
it guarantees only linear time. If you have or can have the elements in sorted
order, you can search for them much more quickly by using binary_search.

Note that with the binary_search function you are guaranteed that the
implementation will use the binary search algorithm, which was discussed
in Chapter 14. The importance of using the binary search algorithm is that it
guarantees a very fast running time, O(log N). If you have not read Chapter 14
and have not otherwise heard of binary search, just think of it as a very efficient
search algorithm that requires that the elements be sorted. Those are the only
two points about binary search that are relevant to the material in this chapter.

Self-Test Exercises

	19.	R eplace all occurrences of the identifier vector with the identifier list in
Display 18.17. Compile and run the program.

	20.	 Suppose v is an object of the class vector<int>. Use the search generic
function (Display 18.18) to write some code to determine whether or
not v contains the number 42 immediately followed by 43. You need not
give a complete program, but do give all necessary include and using
directives. (Hint: It may help to use a second vector.)

Container Modifying Algorithms

Display 18.19 contains descriptions of some of the generic functions in the
STL which change the contents of a container in some way.

Remember that when you add or remove an element to or from a
container, that can affect any of the other iterators. There is no guarantee that
the iterators will be located at the same element after an addition or deletion
unless the container template class makes such a guarantee. Of the template
classes we have seen, list and slist guarantee that their iterators will not be
moved by additions or deletions, except of course if the iterator is located at
an element that is removed. The template classes vector and deque make no
such guarantee. Some of the function templates in Display 18.19 guarantee
the values of some specific iterators and those guarantees you can, of course,
count on, no matter what the container is.

1002	 Chapter 18 /  Standard Template Library

Display 18.19   Some Modifying Generic Functions

 1 template<class T>
 2 void swap(T& variable1, T& variable2);
 3 //Interchanges the values of variable1 and variable2

The name of the iterator type parameter tells the kind of iterator for which the function works.
Remember that these are minimum iterator requirements. For example, ForwardIterator
works for forward iterators, bidirectional iterators, and random access iterators.

 4 template<class ForwardIterator1, class ForwardIterator2>
 5 ForwardIterator2 copy(ForwardIterator1 first1, ForwardIterator1 last1,
 6 ForwardIterator2 first2, ForwardIterator2 last2);
 7 //Precondition: The ranges [first1, last1) and [first2, last2) are the same size.
 8 //Action: Copies the elements at locations [first1, last1) to locations
 9 //[first2, last2).
10 //Returns last2.
11 //Time complexity: linear in the size of the range [first1, last1).

12 template<class ForwardIterator, class T>
13 ForwardIterator remove(ForwardIterator first, ForwardIterator last,
14 const T& target);
15 //Removes those elements equal to target from the range [first, last).
16 //The size of
17 //the container is not changed. The removed values equal to target are
18 //moved to the
19 //end of the range [first, last). There is then an iterator i in this
20 //range such that
21 //all the values not equal to target are in [first, i). This i is returned.
22 //Time complexity: linear in the size of the range [first, last).

23 template<class BidirectionalIterator>
24 void reverse(BidirectionalIterator first, BidirectionalIterator last);
25 //Reverses the order of the elements in the range [first, last).
26 //Time complexity: linear in the size of the range [first, last).

27 template<class RandomAccessIterator>
28 void random_shuffle(RandomAccessIterator first, RandomAccessIterator last);
29 //Uses a pseudorandom number generator to randomly reorder the elements
30 //in the range [first, last).
31 //Time complexity: linear in the size of the range [first, last).

Self-Test Exercises

	21.	 Can you use the random_shuffle template function with a list container?

	22.	 Can you use the copy template function with vector containers, even though
copy requires forward iterators and vector has random access iterators?

	 18.3  Generic Algorithms	 1003

Set Algorithms

Display 18.20 shows a sample of the generic set operation functions defined
in the STL. Note that these generic algorithms assume the containers store their
elements in sorted order. The containers set, map, multiset, and multimap do
store their elements in sorted order, so all the functions in Display 18.20 apply
to these four template class containers. Other containers, such as vector, do
not store their elements in sorted order and these functions should not be
used with such containers. The reason for requiring that the elements be
sorted is so that the algorithms can be more efficient.

Display 18.20   Set Operations (part 1 of 2)

These operations work for sets, maps, multisets, multimaps (and other containers) but do not work for all
containers. For example, they do not work for vectors, lists, or deques unless their contents are sorted. For
these containers to work, the elements in the container must be stored in sorted order. These operators all
work for forward iterators, which means they also work for bidirectional and random access iterators. (In some
cases they even work for other kinds of iterators, which we have not covered in any detail.)

 1 template<class ForwardIterator1, class ForwardIterator2>
 2 bool includes(ForwardIterator1 first1, ForwardIterator1 last1,
 3 ForwardIterator2 first2, ForwardIterator2 last2);
 4 //Returns true if every element in the range [first2, last2) also occurs in the
 5 //range [first1, last1). Otherwise, returns false.
 6 //Time complexity: linear in the size of [first1, last1) plus [first2, last2).
 7
 8 template<class ForwardIterator1, class ForwardIterator2,
 9 class ForwardIterator3>
10 void set_union(ForwardIterator1 first1, ForwardIterator1 last1,
11 ForwardIterator2 first2, ForwardIterator2 last2,
12 ForwardIterator3 result);
13 //Creates a sorted union of the two ranges [first1, last1) and [first2, last2).
14 //The union is stored starting at result.
15 //Time complexity: linear in the size of [first1, last1) plus [first2, last2).

16 template<class ForwardIterator1, class ForwardIterator2,
17 class ForwardIterator3>
18 void set_intersection(ForwardIterator1 first1, ForwardIterator1 last1,
19 ForwardIterator2 first2, ForwardIterator2 last2,
20 ForwardIterator3 result);
21 //Creates a sorted intersection of the two ranges [first1, last1) and
22 //[first2, last2).
23 //The intersection is stored starting at result.
24 //Time complexity: linear in the size of [first1, last1) plus [first2, last2).
25
26 template<class ForwardIterator1, class ForwardIterator2,
27 class ForwardIterator3>

(continued)

1004	 Chapter 18 /  Standard Template Library

Self-Test Exercise

	23.	 The mathematics course version of a set does not keep its elements in
sorted order and it has a union operator. Why does the set_union template
function require that the containers keep their elements in sorted order?

Sorting Algorithms

Display 18.21 gives the declarations and documentation for two template functions,
one to sort a range of elements and one to merge two sorted ranges of elements. Note
that the sorting function sort guarantees a run time of O(N log N). Although it is
beyond the scope of this book, it can be shown that you cannot write a comparison-
based sorting algorithm that is faster than O(N log N). So this guarantees that the
sorting algorithm is as fast as is possible, up to a constant multiple.

Display 18.20   Set Operations (part 2 of 2)

28 void set_difference(ForwardIterator1 first1, ForwardIterator1 last1,
29 ForwardIterator2 first2, ForwardIterator2 last2,
30 ForwardIterator3 result);
31 //Creates a sorted set difference of the two ranges [first1, last1) and
32 //[first2, last2).
33 //The difference consists of the elements in the first range that are not in the
34 //second.
35 //The result is stored starting at result.
36 //Time complexity: linear in the size of [first1, last1) plus [first2, last2).

Display 18.21   Some Generic Sorting Algorithms

 1 template<class RandomAccessIterator>
 2 void sort(RandomAccessIterator first, RandomAccessIterator last);
 3 //Sorts the elements in the range [first, last) into ascending order.
 4 //Time complexity: O(N log N), where N is the size of the range [first, last).
 5
 6 template<class ForwardIterator1,class ForwardIterator2,
 7 class ForwardIterator3>
 8 void merge(ForwardIterator1 first1, ForwardIterator1 last1,
 9 ForwardIterator2 first2, ForwardIterator2 last2,
10 ForwardIterator3 result);
11 //Precondition: The ranges [first1, last1) and [first2, last2) are sorted.
12 //Action: Merges the two ranges into a sorted range [result, last3), where
13 //last3 = result + (last1 - first1) + (last2 - first2).
14 //Time complexity: linear in the size of the range [first1, last1)
15 //plus the size of [first2, last2).

Sorting uses the < operator, and so the < operator must be defined. There are other versions, not
given here, that allow you to provide the ordering relation. Sorted means sorted into ascending order.

	 Answers to Self-Test Exercises	 1005

Chapter Summary

■	 An iterator is a generalization of a pointer. Iterators are used to move
through the elements in some range of a container. The operations ++, −−,
and dereferencing * are usually defined for an iterator.

■	 Container classes with iterators have member functions end() and begin()
that return iterator values such that you can process all the data in the con-
tainer as follows:

for (p = c.begin(); p != c.end(); p++)
 process *p //*p is the current data item.

■	 The main kinds of iterators are

	 Forward iterators: ++ works on the iterator.

	 Bidirectional iterators: both ++ and −− work on the iterator.

	R andom access iterators: ++, −−, and random access all work with the iterator.

■	 With a constant iterator p, the dereferencing operator *p produces a read-only
version of the element. With a mutable iterator p, *p can be assigned a value.

■	 A bidirectional container has reverse iterators that allow your code to cycle
through the elements in the container in reverse order.

■	 The main container template classes in the STL are list, which has mutable
bidirectional iterators, and the template classes vector and deque, both of
which have mutable random access iterators.

■	 stack and queue are container adaptor classes, which means they are built
on top of other container classes. A stack is a last-in/first-out container.
A queue is a first-in/first-out container.

■	 The set, map, multiset, and multimap container template classes store their
elements in sorted order for efficiency of search algorithms. A set is a simple
collection of elements. A map allows storing and retrieving by key values.
The multiset class allows repetitions of entries. The multimap class allows
a single key to be associated with multiple data items.

■	 The STL includes template functions to implement generic algorithms with
guarantees on their maximum running time.

Answers to Self-Test Exercises

	 1.	 v.begin() returns an iterator located at the first element of v. v.end() re-
turns a value that serves as a sentinel value at the end of all the elements of v.

	 2.	 *p is the dereferencing operator applied to p. *p is a reference to the ele-
ment at location p.

1006	 Chapter 18 /  Standard Template Library

	 3.	 vector<int>::iterator p;

for (p = v.begin(), p++; p != v.end(); p++)
 cout << *p << " ";

	 4.	 D C C

	 5.	 B C

	 6.	E ither would work.

	 7.	 A major difference is that a vector container has random access iterators
whereas a list has only bidirectional iterators.

	 8.	 All except slist.

	 9.	 vector and deque.

	10.	 They all can have mutable iterators.

	11.	 The stack template adapter class has no iterators.

	12.	 The queue template adapter class has no iterators.

	13.	N o value is returned; pop is a void function.

	14.	 mymap will contain two entries. One is a mapping from 5 to "c++" and the
other is a mapping from 4 to the default string, which is blank.

	15.	 Yes they can be of any type, although there is only one type for each set ob-
ject. The type parameter in the template class is the type of elements stored.

	16.	 If 'A' is in s, then s.find('A') returns an iterator located at the element
'A'. If 'A' is not in s, then s.find('A') returns s.end().

	17.	 Just note that aN + b ≤ (a + b)N, as long as 1 ≤ N.

	18.	 This is mathematics, not C++, so = will mean equals not assignment.

		 First note that log
a
 N = (log

a
 b)(log

b
 N).

		 To see this first identity, just note that if you raise a to the power log
a
 N,

you get N, and if you raise a to the power (log
a
 b)(log

b
 N), you also get N.

		 If you set c = (log
a
 b), you get log

a
 N = c(log

b
 N).

	19.	 The programs should run exactly the same.

	20.	 #include <iostream>
#include <vector>
#include <algorithm>
using std::cout;
using std::vector;
using std::search;

	 Practice Programs	 1007

...
vector<int> target;
target.push_back(42);
target.push_back(43);
vector<int>::const_iterator result = search(v.begin(), v.end(),
 target.begin(), target.end());
if (result != v.end())
 cout << "Found 42, 43.\n";
else
 cout << "42, 43 not there.\n";

	21.	N o, you must have random access iterators, and the list template class
has only bidirectional iterators.

	22.	 Yes, a random access iterator is also a forward iterator.

	23.	 The set_union template function requires that the containers keep their
elements in sorted order to allow the function template to be implemented
in a more efficient way.

Practice Programs

Practice Programs can generally be solved with a short program that directly applies
the programming principles presented in this chapter.

	 1.	 Write a program in which you declare a deque to store values of type
double, read in ten double numbers, and store them in the deque. Then call the
generic sort function to sort the numbers in the deque and display the results.

	  2.	 Write a program that uses the map template class to compute a histogram of
positive numbers entered by the user. The map’s key should be the number
that is entered, and the value should be a counter of the number of times
the key has been entered so far. Use −1 as a sentinel value to signal the end
of user input. For example, if the user inputs:

5
12
3
5
5
3
21
-1

then the program should output the following (not necessarily in this order):

The number 3 occurs 2 times.
The number 5 occurs 3 times.
The number 12 occurs 1 times.
The number 21 occurs 1 times.

VideoNote
Solution to Practice
Program 18.2

1008	 Chapter 18 /  Standard Template Library

	  3.	G iven a variable of type string set to arbitrary text, write a program that
uses the stack template class of type char to reverse the string.

	  4.	 You have a list of student ID’s followed by the course number (separated
by a space) that the student is enrolled in. The listing is in no particular
order. For example, if student 1 is in CS100 and CS200 while student 2 is
in CS105 and MATH210 then the list might look like this:

1 CS100
2 MATH210
2 CS105
1 CS200

Write a program that reads data in this format from the console. If the ID
is -1 then stop inputting data. Use the map template class to map from an
integer (the student ID) to a vector of type string that holds each class
that the student is enrolled in.

After all data is input, iterate through the map and output the student ID
and all classes stored in the vector for that student. The result should be a
list of classes organized by student ID.

If you aren’t using C++11 or higher then don’t forget that you need a
space between the >> characters when defining the map of vectors.

Programming Projects

Programming Projects require more problem-solving than Practice Programs and can
usually be solved many different ways. Visit www.myprogramminglab.com to complete
many of these Programming Projects online and get instant feedback.

	 1.	 Write a program that allows the user to enter any number of student names
and their scores. The program should then display the student names and
scores according to the ascending order of scores. Use the template class vec-
tor and the generic sort function from the STL. Note that you will need to
define a structure or class type for data consisting of one student name and
score. You will also need to overload the < operator for this structure or class.

	 2.	 A prime number is an integer greater than 1 and divisible only by itself and 1.
An integer x is divisible by an integer y if there is another integer z such that
x = y * z. The Greek mathematician Eratosthenes (pronounced: Er-ah-
tos-thin-eeze) gave an algorithm, called the Sieve of Eratosthenes, for finding
all prime numbers less than some integer N. The algorithm works like this:
Begin with a list of integers 2 through N. The number 2 is the first prime.
(It is instructive to consider why this is true.) The multiples of 2, that is, 4, 6,
8, etc., are not prime. We cross these off the list. Then the first number after
2 that was not crossed off is the next prime. This number is 3. The multiples

www.myprogramminglab.com

	 Programming Projects	 1009

of 3 are not primes. Cross the multiples of 3 off the list. Note that 6 is already
gone, cross off 9, 12 is already gone, cross off 15, etc. The first number not
crossed off is the next prime. The algorithm continues on in this fashion
until we reach N. All the numbers not crossed off the list are primes.

a.	� Write a program using this algorithm to find all primes less than a
user-supplied number N. Use a vector container for the integers. Use an
array of bool initially set to all true to keep track of crossed-off integers.
Change the entry to false for integers that are crossed off the list.

b.	 Test for N = 10, 30, 100, and 300.

We can improve our solution in several ways:

c.	� The program does not need to go all the way to N. It can stop at N/2.
Try this and test your program. N/2 works and is better but is not
the smallest number we could use. Argue that to get all the primes
between 1 and N the minimum limit is the square root of N.

d.	� Modify your code from part (a) to use the square root of N as an
upper limit.

	 3.	 Suppose you have a collection of student records. The records are structures
of the following type:

struct StudentInfo
{
 string name;
 int grade;
};

The records are maintained in a vector<StudentInfo>. Write a pro-
gram that prompts for and fetches data and builds a vector of student
records, then sorts the vector by name, calculates the maximum and
minimum grades and the class average, then prints this summarizing
data along with a class roll with grades. (We aren’t interested in who
had the maximum and minimum grade, though, just the maximum,
minimum, and average statistics.) Test your program.

	 4.	 Continuing Programming Project 3, write a function that separates the
students in the vector of StudentInfo records into two vectors, one con-
taining records of passing students and one containing records of failing
students. (Use a grade of 60 or better for passing.)

�You are asked to do this in two ways, and to give some run-time estimates.

a.	� Consider continuing to use a vector. You could generate a second
vector of passing students and a third vector of failing students. This
keeps duplicate records for at least some of the time, so don’t do it that
way. You could create a vector of failing students and a test-for-failing
function. Then you push_back failing student records, then erase

1010	 Chapter 18 /  Standard Template Library

(which is a member function) the failing student records from the
original vector. Write the program this way.

b.	� Consider the efficiency of this solution. You are potentially erasing
O(N) members from the middle of a vector. You have to move a lot
of members in this case. erase from the middle of a vector is an O(N)
operation. Give a big-O estimate of the running time for this program.

c.	� If you used a list<StudentInfo>, what are the run-times for the
erase and insert functions? Consider how the time efficiency of
erase for a list affects the run-time for the program. Rewrite this
program using a list instead of a vector. Remember that a list
provides neither indexing nor random access and its iterators are only
bidirectional, not random access.

	 5.	R edo (or do for the first time) Programming Project 9 from Chapter 11,
except use the STL set template class instead of your own set class. Use
the generic set_intersection function to compute the intersection of
Q and D.

Here is an example of set_intersection to intersect set A with B and
store the result in C, where all sets are sets of strings:

#include <iterator>
#include <set>
#include <string>
...

set<string> C;
// Note space between >> in line below
insert_iterator<set<string> > cIterator(C, C.begin());
set_intersection(A.begin(), A.end(),
 B.begin(),B.end(),
 cIter);
// set C now contains the intersection of A and B

	 6.	 In this project you are to create a database of books that are stored using a
vector. Keep track of the author, title, and publication date of each book.
Your program should have a main menu that allows the user to select from
the following: (1) Add a book’s author, title, and date; (2) Print an alpha-
betical list of the books sorted by author; and (3) Quit.

You must use a class to hold the data for each book. This class must hold
three string fields: one to hold the author’s name, one for the publication
date, and another to hold the book’s title. Store the entire database of
books in a vector in which each vector element is a book class object.

To sort the data, use the generic sort function from the <algorithm> library.
Note that this requires you to define the < operator to compare two objects
of type Book so that the author field from the two books are compared.

VideoNote
Solution to Programming
Project 18.6

	 Programming Projects	 1011

A sample of the input/output behavior might look as follows. Your I/O
need not look identical, this is just to give you an idea of the functionality.

Select from the following choices:
1. Add new book
2. Print listing sorted by author
3. Quit
1

Enter title:
More Than Human

Enter author:
Sturgeon, Theodore

Enter date:
1953

Select from the following choices:
1. Add new book
2. Print listing sorted by author
3. Quit
1

Enter title:
Problem Solving with C++

Enter author:
Savitch, Walter

Enter date:
2015

Select from the following choices:
1. Add new book
2. Print listing sorted by author
3. Quit
2

The books entered so far, sorted alphabetically by author are:
 Savitch, Walter. Problem Solving with C++. 2015.
 Sturgeon, Theodore. More Than Human. 1953.

Select from the following choices:
1. Add new book
2. Print listing sorted by author
3. Quit
1

Enter title:
At Home in the Universe

Enter author:
Kauffman

Enter date:
1996

1012	 Chapter 18 /  Standard Template Library

Select from the following choices:
1. Add new book
2. Print listing sorted by author
3. Quit
2

The books entered so far, sorted alphabetically by artist are:
 Kauffman, At Home in the Universe, 1996
 Savitch, Walter. Problem Solving with C++. 2015.
 Sturgeon, Theodore. More Than Human. 1953.

	 7.	R edo or do for the first time Programming Project 8 from Chapter 14,
except use the STL set class for all set operations and the STL linked list
class to store and manipulate each individual permutation. When creating
a set containing lists, make sure to place a space between the last two >’s if
you are using a compiler earlier than C++11. For example, set<list<int>>
defines a set where elements are linked lists containing elements of type
int. The code set<list<int> > without a space will produce a compiler
error. (This issue was eliminated with the release of C++11.)

	 8.	 You have collected a file of movie ratings where each movie is rated from
1 (bad) to 5 (excellent). The first line of the file is a number that identifies
how many ratings are in the file. Each rating then consists of two lines: the
name of the movie followed by the numeric rating from 1 to 5. Here is a
sample rating file with four unique movies and seven ratings:

7
Harry Potter and the Order of the Phoenix
4
Harry Potter and the Order of the Phoenix
5
The Bourne Ultimatum
3
Harry Potter and the Order of the Phoenix
4
The Bourne Ultimatum
4
Wall-E
4
Glitter
1

		 Write a program that reads a file in this format, calculates the average rating
for each movie, and outputs the average along with the number of reviews.
Here is the desired output for the sample data:

Glitter: 1 review, average of 1 / 5
Harry Potter and the Order of the Phoenix: 3 reviews, average
of 4.3 / 5

The Bourne Ultimatum: 2 reviews, average of 3.5 / 5
Wall-E: 1 review, average of 4 / 5

		U se a map or multiple maps to calculate the output. Your map(s) should
index from a string representing each movie’s name to integers that store the
number of reviews for the movie and the sum of the ratings for the movie.

	  9.	 Consider a text file of names, with one name per line, that has been com-
piled from several different sources. A sample follows:

Brooke Trout
Dinah Soars
Jed Dye
Brooke Trout
Jed Dye
Paige Turner

		 There are duplicate names in the file. We would like to generate an invita-
tion list but don’t want to send multiple invitations to the same person.
Write a program that eliminates the duplicate names by using the set tem-
plate class. Read each name from the file, add it to the set, and then output
all names in the set to generate the invitation list without duplicates.

	10.	 Do Programming Project 16 from Chapter 8 except use a Racer class to
store information about each race participant. The class should store the
racer’s name, bib number, finishing position, and all of his or her split
times as recorded by the RFID sensors. You can choose appropriate struc-
tures to store this information. Include appropriate functions to access or
change the racer’s information, along with a constructor.

Use a map to store the race data. The map should use the bib number as
the key and the value should be the Racer object that corresponds to the
bib number. With the map you won’t need to search for a bib number
anymore, you can directly access the splits and final position based on the
bib number.

If you aren’t using C++11 or higher then don’t forget that you need a
space between the >> characters when defining the map of vectors.

	 Programming Projects	 1013

This page intentionally left blank

1015

The following keywords should not be used for anything other than their pre-
defined purposes in the C++ language. In particular, do not use them for vari-
able names or for programmer-defined functions. In addition to the following
keywords listed, identifiers containing a double underscore (__) are reserved
for use by C++ implementations and standard libraries and should not be used
in your programs.

These alternative representations for operators and punctuation are re-
served and also should not be used otherwise.

Appendix

1C++ Keywords

alignas default if reinterpret_cast try
alignof delete inline return typedef
asm do int short typeid
auto double log signed typename
bool dynamic_cast long sizeof union
break else mutable static unsigned
case enum namespace static_assert using
catch explicit new static_cast virtual
char export noexcept struct void
class extern nullptr switch volatile
const false operator template wchar_t
const_cast float private this while
constexpr for protected thread_local
continue friend public throw
decltype goto register true

and &&	 and_eq &=	 bitand &	 bitor |	 compl ~	 not !
not_eq !=	 or ||	 or_eq |=	 xor ^	 xor_eq ^=

1016

All the operators in a given box have the same precedence. Operators in higher
boxes have higher precedence than operators in lower boxes. Unary operators and
the assignment operator are executed right to left when operators have the same
precedence. For example, x = y = z means x = (y = z). Other operators that
have the same precedences are executed left to right. For example, x + y + z
means (x + y) + z.

Precedence of Operators

Appendix

2

:: scope resolution operator

. dot operator
-> member selection
[] array indexing
() function call
++ postfix increment operator (placed after the variable)
-- postfix decrement operator (placed after the variable)

++ prefix increment operator (placed before the variable)
-- prefix decrement operator (placed before the variable)
! not
- unary minus
+ unary plus
* dereference
& address of
new
delete
delete[]
sizeof

* multiplication
/ division
% remainder (modulo)

+ addition
- subtraction

<< insertion operator (output)
>> extraction operator (input)

< less than     <= less than or equal
> greater than   >= greater than or equal

== equal
!= not equal

&& and

|| or

= assignment
+= add and assign   -= subtract and assign
*= multiply and assign
/= divide and assign   %= modulo and assign

	 Appendix  2	 1017

Highest precedence
(done first)

Lowest precedence
(done last)

1018

Only the printable characters are shown. Character number 32 is the blank.

The ASCII Character Set

Appendix

3

32 56 8 80 P 104 h

33 ! 57 9 81 Q 105 i

34 " 58 : 82 R 106 j

35 # 59 ; 83 S 107 k

36 $ 60 < 84 T 108 l

37 % 61 = 85 U 109 m

38 & 62 > 86 V 110 n

39 ' 63 ? 87 W 111 o

40 (64 @ 88 X 112 p

41) 65 A 89 Y 113 q

42 * 66 B 90 Z 114 r

43 + 67 C 91 [115 s

44 , 68 D 92 \ 116 t

45 – 69 E 93] 117 u

46 . 70 F 94 ^ 118 v

47 / 71 G 95 _ 119 w

48 0 72 H 96 ' 120 x

49 1 73 I 97 a 121 y

50 2 74 J 98 b 122 z

51 3 75 K 99 c 123 {

52 4 76 L 100 d 124 |

53 5 77 M 101 e 125 }

54 6 78 N 102 f 126 ~

55 7 79 O 103 g

1019

The following lists are organized according to what the function is used for,
rather than what library it is in. The function declaration gives the number and
types of arguments as well as the type of the value returned. In most cases, the
function declarations give only the type of the parameter and do not give a
parameter name. (See the section “Alternate Form for Function Declarations”
in Chapter 4 for an explanation of this kind of function declaration.)

Appendix

4Some Library Functions

Arithmetic Functions

Function Declaration Description Header File

int abs(int); Absolute value cstdlib

long labs(long); Absolute value cstdlib

double fabs(double); Absolute value cmath

double sqrt(double); Square root cmath

double pow(double, double); Returns the first argument raised to the
power of the second argument.

cmath

double exp(double); Returns e (base of the natural logarithm) to
the power of its argument.

cmath

double log(double); Natural logarithm (ln) cmath

double log10(double); Base 10 logarithm cmath

double ceil(double); Returns the smallest integer that is greater
than or equal to its argument.

cmath

double floor(double); Returns the largest integer that is less than
or equal to its argument.

cmath

1020	 Appendix  4

Input and Output Member Functions

Form of a Function Call Description Header File

Stream_Var.open
(External_File_Name);

Connects the file with the External_File_
Name to the stream named by the Stream_
Var. The External_File_Name is a string
value.

fstream

Stream_Var.fail(); Returns true if the previous operation (such
as open) on the stream Stream_Var has
failed.

fstream
or iostream

Stream_Var.close(); Disconnects the stream Stream_Var from the
file it is connected to.

fstream

Stream_Var.bad(); Returns true if the stream Stream_Var is
corrupted.

fstream or
iostream

Stream_Var.eof(); Returns true if the program has attempted
to read beyond the last character in the file
connected to the input stream Stream_Var.
Otherwise, it returns false.

fstream or
iostream

Stream_Var.get
(Char_Variable);

Reads one character from the input stream
Stream_Var and sets the Char_Variable
equal to this character. Does not skip over
whitespace.

fstream or
iostream

Stream_Var.getline
(String_Var, Max_
Characters +1);

One line of input from the stream Stream_
Var is read, and the resulting string is placed
in String_Var. If the line is more than Max_
Characters long, only the first Max_Char-
acters are read. The declared size of the
String_Var should be Max_Characters +1
or larger.

fstream or
iostream

Stream_Var.peek(); Reads one character from the input stream
Stream_Var and returns that character. But
the character read is not removed from the
input stream; the next read will read the same
character.

fstream or
iostream

	 Appendix  4	 1021

Form of a Function Call Description Header File

Stream_Var.put
(Char_Exp);

Writes the value of the Char_Exp to the output
stream Stream_Var.

fstream or
iostream

Stream_Var.putback
(Char_Exp);

Places the value of Char_Exp in the input
stream Stream_Var so that that value is the
next input value read from the stream. The
file connected to the stream is not changed.

fstream or
iostream

Stream_Var.precision
(Int_Exp);

Specifies the number of digits output after the
decimal point for floating-point values sent to
the output stream Stream_Var.

fstream or
iostream

Stream_Var.width
(Int_Exp);

Sets the field width for the next value output
to the stream Stream_Var.

fstream or
iostream

Stream_Var.setf(Flag); Sets flags for formatting output to the stream
Stream_Var. See Display 6.5 for the list of
possible flags.

fstream or
iostream

Stream_Var.unsetf(Flag); Unsets flags for formatting output to the
stream Stream_Var. See Display 6.5 for the
list of possible flags.

fstream or
iostream

Input and Output Member Functions (continued)

1022	 Appendix  4

Character Functions

For all of these the actual type of the argument is int, but for most purposes
you can think of the argument type as char. If the value returned is a value of
type int, you must perform an explicit or implicit typecast to obtain a char.

Function Declaration Description Header File

bool isalnum(char); Returns true if its argument satisfies either
isalpha or isdigit. Otherwise, returns false.

cctype

bool isalpha(char); Returns true if its argument is an upper- or
lowercase letter. It may also return true for other
arguments. The details are implementation
dependent. Otherwise, returns false.

cctype

bool isdigit(char); Returns true if its argument is a digit. Otherwise,
returns false.

cctype

bool ispunct(char); Returns true if its argument is a printable char-
acter that does not satisfy isalnum and is not
whitespace. (These characters are considered
punctuation characters.) Otherwise, returns
false.

cctype

bool isspace(char); Returns true if its argument is a whitespace char-
acter (such as blank, tab, or new line). Otherwise,
returns false.

cctype

bool iscntrl(char); Returns true if its argument is a control
character. Otherwise, returns false.

cctype

bool islower(char); Returns true if its argument is a lowercase letter.
Otherwise, returns false.

cctype

bool isupper(char); Returns true if its argument is an uppercase
letter. Otherwise, returns false.

cctype

int tolower(char); Returns the lowercase version of its argument.
If there is no lowercase version, returns its argu-
ment unchanged.

cctype

int toupper(char); Returns the uppercase version of its argument.
If there is no uppercase version, returns its argu-
ment unchanged.

cctype

	 Appendix  4	 1023

String Functions

Function Declaration Description Header File

int atoi(const chara[]); Converts a string of characters to an integer. cstdlib

long atol(const chara[]); Converts a string of characters to a long integer. cstdlib

double atof(const
char a[]);

Converts a string of characters to a double. cstdlib1

strcat(String_Variable,
String_Expression);

Appends the value of the String_Expression to
the end of the string in the String_Variable.

cstring

strcmp(String_Exp1,
String_Exp2)

Returns true if the values of the two string
expressions are different; otherwise, returns
false.2

cstring

strcpy(String_Variable,
String_Expression);

Changes the value of the String_Variable to
the value of the String_Expression.

cstring

strlen(String_Expression) Returns the length of the String_Expression. cstring

strncat(String_Variable,
String_Expression,
Limit);

Same as strcat except that at most Limit char-
acters are appended.

cstring

strncmp(String_Exp1,
String_Exp2, Limit)

Same as strcmp except that at most Limit char-
acters are compared.

cstring

strncpy(String_Variable,
String_Expression,
Limit);

Same as strcpy except that at most Limit char-
acters are copied.

cstring

strstr(String_Expression,
Pattern)

Returns a pointer to the first occurrence of the
string Pattern in String_Expression. Returns
the NULL pointer if the Pattern is not found.

cstring

strchr(String_Expression,
Character)

Returns a pointer to the first occurrence of the
Character in String_Expression. Returns the
NULL pointer if Character is not found.

cstring

strrchr(String_Expression,
Character)

Returns a pointer to the last occurrence of the
Character in String_Expression. Returns the
NULL pointer if Character is not found.

cstring

1 Some implementations place it in cmath.
2 Returns an integer that is less than zero, zero, or greater than zero according to whether String_Exp1 is less
than, equal to, or greater than String_Exp2, respectively. The ordering is lexicographic ordering.

1024	 Appendix  4

Random Number Generator

Function Declaration Description Header File

int random(int); The call random(n) returns a pseudoran-
dom integer greater than or equal to 0
and less than or equal to n–1. (Not avail-
able in all implementations. If not avail-
able, then you must use rand.)

cstdlib

int rand(); The call rand() returns a pseudorandom
integer greater than or equal to 0 and less
than or equal to RAND_MAX. RAND_MAX is a
predefined integer constant that is defined
in cstdlib. The value of RAND_MAX is
implementation dependent but will be at
least 32767.

cstdlib

void srand(unsigned int);
void srandom(unsigned int);

(The type unsigned int is
an integer type that only
allows nonnegative values.
You can think of the argu-
ment type as int with the
restriction that it must
be nonnegative.)

Reinitializes the random number genera-
tor. The argument is the seed. Calling
srand multiple times with the same
argument will cause rand or random
(whichever you use) to produce the same
sequence of pseudorandom numbers.
If rand or random is called without any
previous call to srand, the sequence
of numbers produced is the same as if
there had been a call to srand with an
argument of 1.

cstdlib

	 Appendix  4	 1025

Trigonometric Functions

These functions use radians, not degrees.

Function Declaration Description Header File

double acos(double); Arc cosine cmath

double asin(double); Arc sine cmath

double atan(double); Arc tangent cmath

double cos(double); Cosine cmath

double cosh(double); Hyperbolic cosine cmath

double sin(double); Sine cmath

double sinh(double); Hyperbolic sine cmath

double tan(double); Tangent cmath

double tanh(double); Hyperbolic tangent cmath

1026

When a member function definition is short, you can give the function defini-
tion within the definition of the class. You simply replace the member func-
tion declaration with the member function definition; however, since the
definition is within the class definition, you do not include the class name
and scope resolution operator. For example, the class Pair defined below has
inline function definitions for its two constructors and for the member func-
tion get_first:

class Pair
{

public:
 Pair() {}

 Pair(char first_value, char second_value)
 : first(first_value), second(second_value) {}

 char get_first()
 {

 return first;
 }
 ...

private:

 char first;

 char second;
};

Note that there is no semicolon needed after the closing brace in an inline
function definition, though it is not incorrect to have a semicolon there.

Inline function definitions are treated differently by the compiler and
so they usually run more efficiently, although they consume more storage.
With an inline function, each function call in your program is replaced by a
compiled version of the function definition, so calls to inline functions do not
have the overhead of a normal function call.

Inline Functions

Appendix

5

1027

You can overload the square brackets, [], for a class so that they can be used with
objects of the class. If you want to use [] in an expression on the left-hand side of
an assignment operator, then the operator must be defined to return a reference,
which is indicated by adding & to the returned type. (This has some similarity to
what we discussed for overloading the I/O operators << and >>.) When overload-
ing [], the operator []must be a member function; the overloaded [] cannot be
a friend operator. (In this regard, [] is overloaded in a way similar to the way in
which the assignment operator = is overloaded; overloading = is discussed in the
section of Chapter 11 entitled “Overloading the Assignment Operator.”)

For example, the following defines a class called Pair whose objects
behave like arrays of characters with the two indexes 1 and 2 (not 0 and 1):

class Pair
{

public:
 Pair();

 Pair(char first_value, char second_value);

 char& operator[](int index);

private:

 char first;

 char second;
};

The definition of the member function[] can be as follows:

char& Pair::operator[](int index)
{

 if (index == 1)

 return first;

 else if (index == 2)

 return second;

 else
 {
 cout << "Illegal index value.\n";
 exit(1);
 }
}

Appendix

6Overloading the Array
Index Square Brackets

1028	 Appendix  6

Objects are declared and used as follows:

Pair a;
a[1] = 'A';
a[2] = 'B';
cout << a[1] << a[2] << endl;

Note that in a[1], a is the calling object and 1 is the argument to the member
function [].

1029

When defining member functions for a class, you sometimes want to refer to
the calling object. The this pointer is a predefined pointer that points to the
calling object. For example, consider a class like the following:

class Sample
{
public:
 ...
 void show_stuff();
 ...
private:
 int stuff;
 ...
};

The following two ways of defining the member function show_stuff are
equivalent:

void Sample::show_stuff()
{
 cout << stuff;
}
//Not good style, but this illustrates the this pointer:
void Sample::show_stuff()
{
 cout << (this->stuff);
}

Notice that this is not the name of the calling object, but is the name of a
pointer that points to the calling object. The this pointer cannot have its
value changed; it always points to the calling object.

As the comment before the previous sample use of this indicates, you
normally have no need for the pointer this. However, in a few situations it is
handy.

One place where the this pointer is commonly used is in overloading the
assignment operator =. For example, consider the following class:

Appendix

7The this Pointer

Overloading
the assignment
operator

1030	 Appendix  7

class StringClass
{
public:
 ...
 StringClass& operator =(const StringClass& right_side);
 ...
private:
 char *a;//Dynamic array for a string value ended with '\0.'
};

The following definition of the overloaded assignment operator can be used
in chains of assignments like

s1 = s2 = s3;

This chain of assignments means

s1 = (s2 = s3);

The definition of the overloaded assignment operator uses the this pointer
to return the object on the left side of the = sign (which is the calling object):

//This version does not work in all cases. Also see the next version.
StringClass& StringClass::operator =(const StringClass& right_side)
{
 delete [] a;
 a = new char[strlen(right_side.a) + 1];
 strcpy(a, right_side.a);
 return *this;
}

The definition above does have a problem in one case: If the same object
occurs on both sides of the assignment operator (like s=s;), then the array
member will be deleted. To avoid this problem, you can use the this pointer
to test this special case as follows:

//Final version with bug fixed:
StringClass& StringClass::operator =(
const StringClass& right_side)
{
 if (this == &right_side)
 {
 return *this;
 }
 else
 {
 delete [] a;
 a = new char [strlen(right_side.a) + 1];
 strcpy(a, right_side.a);
 return *this;
 }
}

In the section of Chapter 11 entitled “Overloading the Assignment
Operator,” we overloaded the assignment operator for a string class called
StringVar. In that section, we did not need the this pointer because we
had a member variable called max_length that we could use to test whether
or not the same object was used on both sides of the assignment operator
=. With the class StringClass discussed above, we have no such alternative
because there is only one member variable. In this case, we have essentially no
alternative but to use the this pointer.

	 Appendix  7	 1031

1032

In this book we have normally overloaded operators by treating them as
friends of the class. For example, in Display 11.5 of Chapter 11 we overloaded
the + operator as a friend. We did this by labeling the operator a friend inside
the class definition, as follows:

//Class for amounts of money in U.S. currency.
class Money
{
public:
 friend Money operator +(const Money& amount1,
 const Money& amount2);
 . . .

We then defined the overloaded operator + outside the class definition (as
shown in Display 11.5).

It is also possible to overload the operator + (and other operators) as
member operators. To overload the + operator as a member operator, the
class definition would instead begin as follows:

//Class for amounts of money in U.S. currency.
class Money
{
public:
 Money operator +(const Money& amount2);

Note that when a binary operator is overloaded as a member operator,
there is only one (not two) parameters. The calling object serves as the first
parameter. For example, consider the following code:

Money cost(1, 50), tax(0, 15), total;
total = cost + tax;

When + is overloaded as a member operator, then in the expression cost +
tax, the variable cost is the calling object and tax is the one argument to +.

The definition of the member operator + would be as follows:

Money Money::operator +(const Money& amount2)
{
 Money temp;

Overloading Operators
as Member Operators

Appendix

8

	 Appendix  8	 1033

 temp.all_cents = all_cents + amount2.all_cents;
 return temp;
}

Notice the following line from this member operator definition:

temp.all_cents = all_cents + amount2.all_cents;

The first argument to + is an unqualified all_cents, and so it is the member
variable all_cents of the calling object.

Overloading an operator as a member variable can seem strange at first,
but it is easy to get used to the new details. Many experts advocate always
overloading operators as member operators rather than as friends. That is
more in the spirit of object-oriented programming. However, there is a big
disadvantage to overloading a binary operator as a member operator. When
you overload a binary operator as a member operator, the two arguments are
no longer symmetric. One is a calling object and only the second “argument”
is a true argument. This is unaesthetic, but it also has a very practical
shortcoming. Any automatic type conversion will only apply to the second
argument. So, for example, the following would be legal:

Money base_amount(100, 60), full_amount;
full_amount = base_amount + 25;

This is because Money has a constructor with one argument of type long, and
so the value 25 will be considered a long value that is automatically converted
to a value of type Money.

However, if you overload + as a member operator, then you cannot
reverse the two arguments to +. The following is illegal:

full_amount = 25 + base_amount;

This is because 25 cannot be a calling object. Conversion of long values to
type Money works for arguments but not for calling objects.

On the other hand, if you overload + as a friend, then the following is
perfectly legal:

full_amount = 25 + base_amount;

1034

Index

SYMBOLS
+, addition operator, 69–72
\a, alert escape sequence, 53–54
&, ampersand symbol,

260–261, 263, 268,
270–271, 511, 519–520
address-of operator, 511
call-by-reference param-

eters, 260–261, 263, 268,
270–271, 519–520

memory locations and,
pointers, 511, 519–520

->, arrow operator, 742, 744
=, assignment operator, 69, 74,

81–82, 493, 511–512, 514,
569, 757–758, 860–861
arithmetic operators and,

69, 74
dynamic data structures and,

757–758
inheritance and, 860–861
objects used with, 569
overloading, 680–682
pointers and, 511–512, 514,

757–758
variables and, 69, 511–512
vectors, 493

*, asterisk symbol, 22,
509–512, 961, 964–965
dereferencing operator,

510–511, 961, 964–965
multiplication operator,

22, 70
pointer variable declaration,

509–512
\, backslash, 23

\, backslash escape sequence, 53
&&, Boolean and operator,

78–79, 112–116
!, Boolean not operator, 79,

113, 118
||, Boolean or operator, 78, 80,

112–116
{ }, braces, 24–25, 82, 84–86,

121–123, 137–138, 543,
547
C++ programming layout,

24–25
conditional statements

and, 82
local variable declaration,

137–138
loop body execution, 84–86
nested statements and,

121–123, 137–138
structure member names,

543, 547
:, colon symbol, 557–558,

600–601
derived class separation,

600–601
inheritance and, 600–601
scope resolution operator,

557–558
,, comma for separation in

declarations, 44, 431
//, comment symbols, 93–94,
==, comparison equal to

operator, 78, 81–82,
456–457, 487

>, comparison greater than
operator, 78

>=, comparison greater than or
equal to operator, 78, 80

<, comparison less than
operator, 78

<=, comparison less than or
equal to operator, 78

!=, comparison not equal to
operator, 78–79

––, decrement operators,
87–91, 143–144, 960–961,
967–969

<> >>, direction arrows, 21
#, directive notation, 25
/, division operator, 70–72
., dot (calling) operator, 313,

545, 550
\", double quote escape

sequence, 53
" ", double quotes for string

characters, 64–65
=, equal sign, 22, 456–457
>>, extraction operator, 309,

316–318, 464, 650–658
n!, factorial function, 230–231
++, increment operators,

87–91, 141–144, 960–961,
967–969, 971

<<, insertion operator, 310,
316–318, 329, 464, 650–658

\n, new line instruction, 23,
338–360, 345–346

\n, new–line instruction, 53, 58
\0, null character, 453–454, 456
(), parentheses, 71, 78–79,

84–86, 130, 184, 191, 197
arguments, 184

	 Index	 1035

arithmetic order, 71
Boolean expressions, 78–79,

84–86
controlling expressions, 130
predefined functions and,

184, 191, 197
return statements, 197
type casting and, 191

< >, predefined function
header files, 184–186

\\, real backslash escape
sequence, 53

%, remainder operator, 70–71
;, semicolons, 24, 44, 131, 146,

149–150, 547
end of declarations, 24,

44, 131
for statements, 146, 149–150
structure definitions, 547

' ', single quotes for constant
characters, 65

[], square brackets, 378–379,
392–393, 427, 431, 489, 492
arrays using, 378–379,

392–393
multidimensional arrays

and, 427, 431
variable declaration and,

378–379, 489
vectors using, 489, 492

+, string concatenation, 66–67.
-, subtraction operator, 70
\t, tab escape sequence, 53
_, underscore symbol for identi-

fiers, 70, 475–477
<cstring> library, 458–459
<string> library, 472, 474

A
abs function, 186–187
Absolute value functions, 186–187
Abstract data types (ADT),

588–597, 705–715
application file, 714
case study: DigitalTime–

a Class Compiled
Separately, 706–712

class types for, 588–597
compiling programs using,

705–715
implementation files,

592–597, 708–715
information hiding, 597
interface files, 592–593,

705–707
private member func-

tion changes, 593, 597,
705–716

programming, 588–597
reusable components of, 715
separate compilation using,

705–715
writing, rules for, 591–592

Accessor functions, 567–568,
626

Adapter container classes,
979–983

addition (+), 70
Addresses, 4–5, 32, 509–511,

528–529
address–of operator (&), 511
arithmetic performed on

pointers, 528–529
memory location and, 4–5, 32
pointers, 509–511, 528–529

ADT, see Abstract data types
(ADT)

Algorithms, 12–16, 30–32,
212–213, 278, 400–402,
792–793, 811–812,
926–938, 991–1004
abstraction, 926–938
array programs, 400–402
bubble sort, 421–423
design, 212–213, 278,

400–402, 792–793
development of, 12–14
generic, 991–1004
implementation phase, 15
logic errors, 30–31
object–oriented program-

ming (OOP) for, 16–17
problem solutions using,

12–15

problem–solving phase, 15
procedural abstraction and,

212–213, 278
program design using, 15–16
programming use of, 12–16, 32
pseudocode, 213
recursion programs,

792–793, 811–812
templates for, 926–938,

991–1004
Ampersand symbol (&),

260–261, 263, 268,
270–271, 511, 519

Ancestor class, 844
And operator (&&), 78–79,

112–116
Appending to a file, 320–322
Application file, ADT, 714
Arguments, 183–184, 197–198,

200–201, 265–268, 332,
346–349, 389–398,
459–460, 548–549,
585–586, 747
array parameters for,

391–396
arrays and, 389–398,

459–460
C strings, 459–460
call–by–reference param-

eters, 265–268
call–by–value parameters,

197–198
character I/O, 346–349
const parameter modifier

for, 394–397
constructors without,

585–586
default, 348–349
formal parameters and,

197–198, 200–201
function calls using,

183–184, 197–198,
265–268

function subtasks using,
265–268

functions in arrays, 389–398
incorrect order of, 200–201

1036	 Index

Arguments (continued)
indexed variables as,

389–391
linked lists as, 747
parentheses () and, 184
predefined functions,

183–184, 459–460
programmer-defined func-

tions, 197–198, 200–201
streams as, 332, 346–347
structures as, 548–549

Arithmetic functions, 1019
Arithmetic operators, 69–74,

112–116, 528–529
addition (+), 70
assignment operator (=)

and, 69, 74
Boolean operations com-

pared to, 112–115
data types and, 69–72
division (/), 70–72
double used with, 70
expressions and, 69–72
int used with, 70–72
multiplication (*), 70
negative integers in, 71
Op shorthand notation, 74
parentheses () for order

of, 71
pointer addresses using,

528–529
remainder (%), division with,

70–71
subtraction (-), 70
variables and, 69–72

Array parameter, 391–396
Array variables, 521–523
Arrays, 377–450, 453–472,

521–527, 530–532,
660–682, 1027–1028
arguments to functions,

389–398
base type, 379
C strings, 453–472
case study: Production

Graph, 398–409
class members, 664–667

classes and, 660–682,
942–943

const modifier, 376–382,
394–397

constructor calls for, 661
declaring, 378–384,

426–427, 453–454
dynamic, 521–527,

530–532, 667–682
errors in, 383–384
for loops used with, 380
functions and, 389–398
index (subscript), 379,

383–384, 1027–1028
indexed variables and,

379–386, 389–391, 426,
431

initializing, 386, 454–455
int data types, 378–382
memory locations, 382–383,

393–394
multidimensional, 425–431,

530–532
overloading, 1027–1028
parameters, 391–397, 414,

426–427
partially filled, 411–413
programming with, 411–423
referencing, 378–384
searching, 414–416
size of, 379–382, 394,

411–414, 426–427
sorting, 417–423
square brackets [] used for,

378–379, 392–393, 427
strings as types of, 453–472
subtasks for functions of,

399–400
two–dimensional, 427,

531–532
variables in, 378–386,

389–391, 453–460
Arrow (->) operator, 742, 744
Ask–before–iterating looping

technique, 157, 159
Assembly language, 8
assert macro, 290–291

Assignment operator (=), 69,
74, 81–82, 493, 511–512,
514, 569, 680–682, 757–
758, 860–861

Assignment statements, 45–49,
511–512
pointers and, 511–512
variable values and, 45–49

Associative containers, 983–990
Asterisk symbol (*), 22, 70,

509–512
atof function, 467
atoi function, 467–468
atoll function, 467
Augusta, Ada, 12–13
auto

C++11, 63
using with containers, 990
variable declaration using,

964
Automatic variables, 518

B
Babbage, Charles, 12–13
Backslash \ use, 23
Base (stopping) cases, 798
Base class, 834, 836–837,

848–850, 858
Base type, 379
Bidirectional iterators, 966–969
Big–O notation, 994–995
Binary digits, 4
Binary tree, 761–762
Bits (binary digits), 4, 32
Black box analogy, 204–207.

See also Procedural
abstraction

Blocks, 135–137, 226–227
branching statements as, 137
functions and, 226–227
local variables and,

135–137, 226–227
nested, 137
scope, 137, 226–227
statement, 137

bool values, 66, 116, 199
data type, 66

	 Index	 1037

int, converting to, 116–118
programmer–defined func-

tions returning, 199
Boolean expressions, 66,

77–79, 84–87, 112–119
and (&&) operator used in,

78–79, 112–116
arithmetic operations

compared to, 112–115
branching mechanisms

using, 77–79, 112–119
complete evaluation, 116
data values, 66
evaluating, 112–116
int value conversion,

116–118
looping mechanisms using,

84–87, 112–119
not (!) operator, 79, 113,

118
or (||) operator, 78, 80,

112–116
parentheses () for, 78–79,

84–86
precedence rules, 114–115
short–circuit evaluation, 115
subexpressions, 115
true/false values, 66, 116
truth tables, 112–114

Braces { }, 24–25, 82, 84–86,
121–123, 137–138, 543, 547

Branching mechanisms, 75–82,
112–139, 203
and operator (&&) for, 78–79
blocks, 135–137
Boolean expressions, 77–79,

112–120
braces { } used for, 82,

121–123, 137–138
break statements, 131–133
C++ flow of control using,

75–82
comparison operators for,

77–82
compound statements, 82
controlling expression,

130–132

flow of control using, 75–82,
112–139

if-else statements, 75–82,
120–128

indenting, 120–121,
123–125

local variables, 135–137
menus, 133–134
multiway, 120–139
nested statements, 120–123,

137
or operator (||) for, 78, 80
programmer–defined func-

tion calls in, 203
string of inequalities from,

80–81
switch statements, 128–135

break statements, 131–133,
153–154
branching mechanisms,

131–133
flow of control using,

131–133, 153–154
loop mechanisms, 153–154
looping mechanisms,

153–154
nested loops using, 154
switch statements, 131–133

Bubble sort, 421–423
Bug, 29. See also Debugging
Bytes, 4–5, 32

C
C++ programming, 39–110

arithmetic operators, 69–74
assignment statements,

45–49
asterisk symbol (*), 22
backslash (\) use, 23
braces { }, 24–25, 82, 84–86
branching mechanisms,

75–82
cin (input) statements,

21–23, 56–57
comments, 93–95
compilers and, 24–25
compiling, 26–28

compound statements, 82
constants, 95–97
cout (output) statements,

21–23, 50–52
data types, 44–45, 60–74
debugging, 29–31
declaration of variables,

21–23, 44–45
direction arrows (<> >>) , 21
directives #, 25, 52–53
expressions, 69–74
flow of control, 74–92
increment and decrement

operators, 87–91
indentation, 93
input, 21–23, 56–59
input/output (I/O), 50–59
instructions, 19–23
language, 18–19
line breaks, 24
loop mechanisms, 84–91, 98
main() function, 25
names and, 49, 95–97
object code, 26–27
output, 21–23, 50–56
programmer role, 19
return statement, 25–26
running, 26–28
spacing, 24, 26
statements, 21–26, 40–50,

82
user role, 19
variables, 21–23, 40–50,

60–69
C++11 programming, 27,

63–64
auto, 63
constructor delegation in,

587–588
conversion between strings

and numbers, 488
data values, 63–64
decltype, 64
member initialization in,

587
nullptr in, 745
range-based, 386–387

1038	 Index

C strings, 453–472, 484–488
<cstring> library, 458–459
arguments, 459–460
arrays, 453–472
declaration of, 453–454
equality operators = and ==

used for, 456–457
extraction (>>) operator used

for, 464
functions, 457–460, 467–468
getline function, 465–466
initializing, 454–455
input/output (I/O), 464–466
insertion (<<) operator used

for, 464
null (\0) character and,

453–454, 456
number conversions, 466–470
parameters, 460
predefined functions,

457–460, 467–468
robust input, 468, 470–471
strcat function, 459–460
strcmp function, 457–460
strcpy function, 457–460
string object conversion,

487–488
values, 456–458
variables, 453–460

Call-by-reference parameters,
259–266, 519–520
ampersand symbol (&)

for, 260–261, 263, 268,
270–271, 519–520

arguments, 265–268
call-by-value combined with,

268–271
function calls, 259–260
memory locations and,

260–261
pointers, 519–520

Call-by-value parameters,
197–198, 224–226,
268–271, 674–675
arguments for, 197–198
call-by-reference combined

with, 268–271

classes and, 674–675
dynamic arrays and,

674–675
local variables as, 224–226,

270–271
Calls (invocations), 183–188,

196–198, 208–211,
259–260, 265–268, 583–584
absolute value functions,

186–187
arguments and, 183–184,

197–198, 265–268
call–by–reference param-

eters, 259–260
call–by–value parameters,

197–198
constructors, 583–584
functions, 183–188,

196–198, 208–211,
259–260, 265–268

header files (< >) and,
184–186

#include directives, 184–186
loop body as, 208
nested loops and, 208–211
predefined functions,

183–188
procedural abstraction and,

208–211
programmer–defined func-

tions, 196–198
return statements and,

196–197
capacity() function,

493–494
catch block, 900–901,

901–902, 908–909
catch–block parameter,

900–902
Central processing unit (CPU),

3, 6–7
char data type, 64–66
Characters, 64–65, 68,

338–360, 1022
blank spaces and, 338–339
data values, 64–65
default arguments, 348–349

editing text files, 355–357
eof function for, 353–354
functions, 348–349, 1022
get function for, 338–341
input/output (I/O), 338–349
isspace function, 358–359
member functions, 338–354
new-line (/n), 338–360,

345–346
new_line() function for,

343–345, 347–348
predefined functions, 356,

358–360
put function for, 341–342
putback function for,

342–343
stream parameters and,

346–347
toupper and tolower

functions for, 358–360
values returned, 358–360
whitespace, 68, 358

Child class, 600, 834, 844
Chips, computer processors

and, 6
cin (input) statements, 21–23,

56–57
Classes, 17, 66–68, 312–315,

472–488, 541–617,
619–682, 762–765,
833–892, 904–905, 973–990
abstract data types (ADT),

588–597
adapter, 979–983
ancestor, 844
arrays and, 660–682
base, 834, 836–837,

848–850, 858
C++ programming and, 17
call-by-value parameters

and, 674–675
child, 600, 834, 844
constructors for, 576–588,

661, 668–671
containers, 973–990
copy constructors for,

675–679

	 Index	 1039

defining, 600–603
derived, 598–603, 834–836,

837–845, 854–856,
860–861

destructors for, 671–673
dot operator (.) for,

557–558
dynamic arrays and,

667–682
encapsulation, 556
exceptions, 904–905
file I/O and, 312–315
friend functions, 620–642
hierarchies, 599–600
inheritance and, 598–603,

833–892
linked lists of, 762–765
member functions of,

312–314, 554–558,
570–574, 576–588

member variables, 664–667
object–oriented program-

ming (OOP) and, 17
objects and, 312–315, 554,

566, 569, 576–588
overloading operators,

643–660
parent, 600–601, 834, 844
private members used in,

559–568
public members used in,

559–568
redefining functions,

853–856
scope resolution operator

(::) for, 557–558
streams and, 312–315
string, 66–68, 472–488
stringvar, 668–671
structures compared to,

542–550, 575
templates for, 973–990

close function, 310–311, 318
Coding, 213–214, 278–280,

400–407, 793–794,
812–816
array programs, 400–407

procedural abstraction and,
213–214, 278–280

recursion programs,
793–794, 812–816

Colon (:), 557–558, 600–601
Comma (,) separation in decla-

rations, 44
Comments, C++ programming

and, 93–95
Compact discs (CDs), 6
Comparison operators, 77–82,

482, 487
and operator (&&) for,

78–79
equal to (==), 78, 81–82
greater than (>), 78
greater than or equal to (>=),

78, 80
less than (<), 78
less than or equal to (<=), 78
not equal to (!=), 78–79
or operator (||) for, 78, 80
string class and, 482, 487
string of inequalities from,

80–81
Compiler programs, 9–11,

24–32, 704–718
abstract data types (ADT)

interface for, 705–715
C++ programming, 24–28,

32
compiling process, 26–28
error messages, 30–31
#ifndef directive, 25, 26,

716–718
#include directive, 25, 26,

716
language translation using,

9–11
line breaks, 24
linking code, 9–11
object code, 9–11, 26–27
separate compilation,

704–718
spacing, 24, 26
syntax error, 30
testing, 27–29

Complete evaluation, 116
Compound statements, 82
Computer systems, 2–12

compilers, 9–11
hardware, 2–7
input/output devices, 3
languages for, 8–11
linkers, 9–11
mainframe, 2
memory, 3–6
network, 2
operating systems, 7
personal (PC), 2
processor (CPU), 3, 6–7
programs, 2, 7–11
software, 2, 7–8

Concatenation (+), strings,
66–67

const modifier, 96–97,
376–382, 394–397,
638–642
array declaration using,

376–382
array parameters, 394–397
C++ programming using,

96–97
friend functions and,

638–642
inconsistent use of, 397

Constant array parameters, 395
Constant iterators, 970–971
Constant parameters, 638–642
Constants, 60–62, 65, 95–97,

119–120, 221–223, 473,
636
data types, 60–62
declared, 96
enumerated types, 119–120
friend functions and, 636
functions and, 221–223
global named, 221–223
naming, 95–97
numbers, leading zeros in,

636
single quotes (' ') for

characters, 65
string class conversion, 473

1040	 Index

Constructors, 473–474, 492,
576–588, 661, 668–671,
675–679, 845–848,
860–861
arrays and, 661, 668–671,

675–679
calling (invoking), 583–584,

661
classes and, 576–588,

668–671, 675–679
copy, 675–679, 860–861
default, 473–474, 584–585,

661
dynamic arrays, 668–671,

675–679
inheritance and, 845–848,

860–861
initialization of objects

using, 576–583
member functions as,

576–588
no arguments and, 585–586
overloaded, 578
size of arrays and, 668–671
string class and, 473–474
vectors and, 492

Container modifying algo-
rithms, 1001–1002

Containers, 973–990, 995–996
access running times,

995–996
adapter classes, 979–983
associative, 983–990
auto, using with, 990
deque, 976
doubly linked lists, 974
efficiency of, 990–991
initializing, 990
map class, 983–990
priority_queue class,

979–983
queue class, 979–983
ranged for, using with, 990
sequential, 974–979
set class, 983–990
singly linked lists, 974
stack class, 979–983

templates for, 973–990
type definitions in, 979

Controlling expression,
130–132

Copy constructors, 675–679,
860–861

Count–controlled loops, 158
cout (output) statements,

21–23, 50–52, 289–290
debugging with, 289–290
direction arrows (<> >>),

21
program output using,

21–23, 50–52
streams, as
variable declaration and,

21–23

D
Dangling pointers, 517, 522–523
Data, computer programs and,

7–8
Data abstractions, templates

for, 939–948
Data types, 44–45, 60–74,

95–97, 119–120, 942
arithmetic operators and,

69–74
bool, 66
Boolean, 66
C++11, 63–64
char, 64–66
character, 64–65
compatibility of, 68–69
constants as, 60–62, 65,

95–97, 119–120
double, 44, 60–64
enumerated, 119–120
expressions and, 69–74
float, 63
floating–point notation,

61–63
int, 44, 60–62, 63, 70–72
integer, 60–62
long, 62–63
names for declaration,

44–45

numeric, 44, 60–64
Op shorthand notation, 74
short, 63
string class and, 66–68
templates for, 942
variables as, 44–45, 60–74

Debugging, 29–31, 162–164,
281–287, 287–291
assert macro for, 290–291
bugs, 29
code, 290
common errors, 287
cout statement for, 289–290
error messages, 30–31
functions, 281–287,

287–291
localizing errors, 288–290
logic errors, 30–31
loops, 162–164
off-by-one error, 162
retesting changes, 164
run–time errors, 30
second opinions and, 287
syntax errors, 30
testing programs for, 29–31,

281–287
tracing variables, 162–163,

288
warning messages, 30

Decimal (.) notation, 55–56,
61

Declaration, 21–23, 44–45,
48–49, 193, 195–196,
199–201, 275–281,
308–309, 378–384,
426–427, 453–454, 489–490
arrays, 378–384, 426–427
cin (input) statements for,

21–23
comma (,) for separation in,

44, 431
const modifier and,

376–382
cout (output) statements

for, 21–23
C–string variables, 453–454
double variable type, 44

	 Index	 1041

functions, 193, 195–196,
199–201, 275–281

illegal ranges, 383–384
indexed variables, 379–384
initializing in, 48–49
int variable type, 21, 44,

378–380
memory and, 382–383
multidimensional arrays,

426–427
postconditions, 275–281
preconditions, 275–281
programmer–defined func-

tions, 193, 195–196,
199–200

semicolon (;) for end of, 44
square brackets [] used for,

378–379, 489
streams, 308–309
type names and, 44–45
variables, 21–23, 44–45,

48–49, 64, 378–382,
453–454, 489–490

vectors, 489–490
Declared size, 379
decltype, 64
Decrement operators (--),

87–91, 143–144, 967–969
Default arguments, 348–349
Default constructors, 473–474,

584–585, 661
delete operator, 517–518,

524–527, 530–531
Deque, 976
Dereferencing (*) operator,

510–511, 961, 964–965
Derived classes, 598–603, 834–

836, 837–845, 854–856,
860–861, 913
assignment (=) operators

used for, 860–861
colon (:) for separation of,

600–601
constructors used in,

845–848
copy constructors used in,

860–861

defining, 600–603
destructors used in, 861
exception specification in,

913
implementation of, 834–836
inheritance and, 598–603,

834–836, 837–845,
854–856, 860–861

redefining functions,
853–856

Descendants, 844
Destructors, 671–673, 861,

875–876
dynamic arrays, 671–673
inheritance and, 860–861
polymorphism and, 875–876
virtual, 875–876

Digital video discs (DVDs), 6
digit_to_int function imple-

mentation, 635–636
Direction arrows (<> >>), 21
Directives (#), 25, 52–53
Diskettes (floppy disks), 6
Division operator (/), 70–72
do-while loop statements,

87–91, 139–140, 154
break statement for, 154
execution of, 87, 139–140
infinite, 87–91
syntax of, 87–88, 139–140

Dot (.) operator, 313, 545, 550
double, 44, 55–56, 60–64, 70

arithmetic operators and, 70
decimal (.) notation for, 61
exponent (e) notation for,

61
floating–point notation of,

61–62
numeric data type, 44,

60–64
output values from, 55–56
scientific notation of, 61–62
variable type, 44

Double quotes (" ") for string
characters, 64–65

Double–precision numbers,
60–61

Doubly linked lists, 760–761,
974

Drivers, function testing using,
282–284

Dynamic arrays, 521–527,
530–532, 667–682, 740,
757–758
array variables and,

521–523
assignment operator (=) and,

757–758
call-by-value parameters

and, 674–675
classes and, 667–682
constructors for, 668–671
copy constructors for,

675–679
creating and using, 522–527
delete operator, 524–527,

530–531
destructors for, 671–673
linked lists and, 740,

757–758
multidimensional, 530–532
new operator, 524–527
pointer arithmetic and,

528–529
pointer variables and,

521–523, 527, 740,
757–758

size of, 668–671
square brackets [] used for,

524–527, 526–527
stringvar class, 668–671
variables, 521–523, 527,

740, 757–758

E
Echoing input, 58
Empty statements, 150
Encapsulation, 17
#endif directive, 716–717
endl instruction, 54–55
eof function, 353–354
equal function, 620–626
Equal to comparison operator

(==), 78, 81–82, 456–457

1042	 Index

Errors, 29–31, 287–290, 316,
383–384, 431, 638–642,
874–875
arrays and, 383–384, 431
bugs, 29
commas between index vari-

ables, 431
common, 287
compiler, 30–31, 875
constant parameters for,

638–639
debugging, 287–290
file I/O, 316
index variables out of range,

383
localizing, 288–290
logic, 30–31
messages, 30–31, 316
polymorphism and,

874–875
run–time, 31
syntax, 30
testing for, 30–31
tracing variables, 162–163,

288
virtual member functions

and, 874–875
warning messages compared

to, 30
Escape sequences, 53–55
Exceptions, 893–924

catch-block parameter,
900–902

catch block used for,
900–901, 901–902,
908–909

class hierarchies, 917
classes defined for, 904–905
derived classes and, 913
functions, throwing in,

909–911
handler, 900
handling, 893–924
memory, testing for, 917–918
multiple, 904, 906–909
nested try-catch blocks,

916

overuse of, 916–917
programming techniques

for, 914–918
rethrowing, 918
specification, 911–913
throw list, 911–913
throw statement used for,

898–900, 909–911
throwing exceptions,

909–911, 914–916
trivial, 909
try block used for,

898–899, 901
try-throw-catch mecha-

nism in, 898, 901–903
uncaught, 916

Executable statements. See
Statements

Executing programs, 8
exit function, 315, 318
Exit–on–flag loop termination,

159
Exponent (e) notation, 61
Expressions, 69–74. See also

Arithmetic operators;
Boolean expressions

External file name, 310
Extraction operator (>>), 309,

316–318, 464, 650–658

F
fabs function, 187
factorial (n!) function,

230–231
fail function, 314
Files, 6, 306–323, 332–337,

353–358, 588–597,
705–715
abstract data types (ADT),

588–597, 705–715
appending, 320–322
application, 714
character I/O and, 353–358
close function used for,

310–311, 318
computer memory and, 6
end of, 332–335, 353–354

eof function used for,
353–354

error messages, 316
exit function used for, 315,

318
external name, 310
extraction operator (>>) for,

309, 316–318
fail function used for, 314
implementation, 592–597,

708–715
include directives used for,

309, 318, 329
input/output (I/O),

306–323, 332–337
insertion operator (<<) for,

316–318, 329
interface, 592–593,

705–707, 713
member functions, 312–314
memory storage and, 6
names and, 308–310, 318
namespaces and, 335–336
open function used for,

309–310, 318
opening successfully,

309–310, 315
permanent storage, as,

307–308
reading, 308
separate compilation of,

705–715
streams and, 306–338
text editing, 355–357
writing, 308–310

First–in/first–out (FIFO) data
structure, 771

Fixed–point notation, 326
Flags, 159, 325–327
Flash drives, 6
float data type, 63
Floating–point notation, 61–63
Flow of control, 74–92, 111–164

Boolean expressions for,
77–79, 112–120

branching mechanisms,
75–82, 112–139

	 Index	 1043

C++ programming and,
74–92

comparison operators for,
77–82

compound statements, 82
enumerated types, 119–120
increment and decre-

ment operators, 87–91,
141–144

loop mechanisms, 84–91,
98, 112–120, 139–155

for statements, 144–150, 154,
380
arrays using, 380
empty (null) statements, 150
multistatement body,

148–149
numeric calculations using,

143–146
semicolons (;) and, 146,

149–150
variables and, 145–146

Formal parameters. See
Parameters

Forward iterators, 969
Freestore, 516–517
friend functions, 620–642

accessor functions and, 626
const parameter modifier,

638–642
constant parameters,

638–639
digit_to_int implementa-

tion, 635–636
equal, 620–626
leading zeros in number

constants, 636
Money class, example for,

628–635
nonmember functions, as,

624–628
private members, access to,

624
syntax, 627

Function body, 196
Function declaration, 193,

195–196, 199–201

Function definition, 193–194,
196–197, 201–203, 791,
798, 937–938

Function headers, 196, 200
Functions,181–250, 251–303,

312–314, 323–338,
338–349, 389–398, 414,
457–460, 467–468,
567–568, 620–642, 791–807,
850, 853–856, 864–876,
909–911, 1019–1026. See also
Calls (invocations)
arguments and, 183–184,

197–198, 265–268,
389–394, 414

arithmetic, 1019
array size and, 414
arrays as arguments,

391–394, 414
arrays in, 389–398
C++ library, 1019–1025
C string, 457–460, 467–468
call-by-reference, 259–266
call–by–value parameters,

197–198, 268–271
calls (invocations),

183–188, 196–198,
208–211, 259–260, 265–268

case study: Production
Graph, 398–409

character, 348–349, 1022
const parameter modifier,

394–397, 638–642
debugging, 281–287,

287–291
declaration, 193, 195–196,

199–201, 275–281
default arguments, 348–349
definition, 193–194,

196–197, 201–203,
791, 798

digit_to_int implementa-
tion, 635–636

driver programs for, 282–284
equal, 620–626
factorial (n!), 230–231
flags and, 325–327

formatting output using,
323–338

friend, 620–642
graph, 407
indexed variables as

arguments, 389–391
inheritance and, 850,

853–856
inline, 1026
input/output (I/O),

323–349, 338–349,
1020–1021

local variables and,
218–229, 270–271

manipulators, 329
member, 312–314, 338–349
member functions accessor,

551–552
mutator, 567–568
names, 221–224, 232–238
nonmember, 624–628
not inherited, 850, 859–860
overloading names, 232–238
overriding, 869
parameters, 197–201,

207–208, 224–226,
259–266, 391–397

polymorphism and,
864–876

predefined, 183–192,
457–460, 467–468

procedural abstraction and,
204–217, 273–281

programmer–defined,
193–203

random number generator,
188–189, 1024

recursive, 791–807
redefining functions,

853–856
return statements,

196–197, 202, 255–259
returning an array, 397–398
scale, 402–407
signature, 857
stream I/O, 323–338
string, 1023

1044	 Index

Functions (continued)
stub, 284–286
subtasks, 251–303, 399–400
tasks, recursion for, 791–803
testing, 214–217, 281–287
throwing exceptions in,

909–911
top–down design for,

182–183, 398–409
trigonometric, 1025
type casting, 190–192
value returned, 181–250,

804–807
virtual, 864–876
void, 252–259

G
Generic algorithms, 991–1004

big-O notation, 994–995
container access running

times, 995–996
container modifying,

1001–1002
nonmodifying sequence,

997–1001
running times, 991–996
set, 1003–1004
sorting, 1004
templates for, 991–1004

get function, 338–341
getline function, 465–466,

475–476, 478–479
Global named constants,

221–224
Global scope, 226–227
Global variables, 223–224, 518
graph function, 407
Greater than comparison

operator (>), 78
Greater than or equal to com-

parison operator (>=), 78, 80

H
Handling exceptions, 894
Hard disks, 6
Hardware

computer systems and, 2–7, 32

input/output devices, 3
main memory, 3–5
processor (CPU), 3, 6–7
secondary memory, 6

Header files (< >), predefined
functions, 184–186

Hierarchy of structures, 549
High–level languages, 8–9

I
Identifiers, variables, 42–44
if-else statements, 75–82,

120–128
Boolean expressions for,

77–79
braces { } used with, 82,

121–123
branching mechanisms,

75–82, 120–128
comparison operators for,

77–82
compound statements and,

82
dangling else problem,

121–123
indenting, 120–121,

123–125
multiway branches, 123–128
nested, 120–123

#ifndef directive, 716–718
ifstream, 308–309, 318
Implementation files, ADT,

592–597, 708–715,
718–719

Implementation phase, 15
#include directive, 21, 25–26,

52–53, 184–186, 309, 318,
716–718
C++ programming and, 21,

25–26
directive notation (#) for, 25
file I/O, 309, 318, 329
header files and, 184–186
#ifndef directive and,

716–718
manipulator functions

and, 329

output and, 52–53
predefined functions and,

186–187
preprocessors for, 186
separate compilation and,

716–718
Increment operators (++),

87–91, 141–144, 960–961,
967–969, 971

Indentation, C++ programming
and, 93

Indenting branching
statements, 120–121,
123–125

Index (subscript) of arrays, 379,
383–384

Indexed variables, 379–386,
389–391, 426, 431
arguments to functions, as,

389–391
arrays and, 379–386
commas (,) between, 431
declaration of, 379–384
functions and, 389–391
illegal range of, 383–384
initializing, 386
multidimensional arrays,

426, 431
square brackets [] used for,

378–379, 431
Infinite loop statements, 87–91,

152
Infinite recursion, 799
Information hiding, 205,

597. See also Procedural
abstraction

Inheritance, 17, 598–603,
833–892
ancestor class, 844
assignment (=) operators

used for, 860–861
base class, 834, 836–837,

848–850, 858
child class, 600, 834, 844
class hierarchy, 599–600
colon (:) used for, 600–601
constructors used in, 845–848

	 Index	 1045

copy constructors used in,
860–861

derived classes and,
598–603, 834–836,
837–845, 854–856,
860–861

descendants, 844
destructors and, 860–861
function signature, 857
functions not inherited, 850,

859–860
member functions, 845,

850–852, 853–856
parent class, 600–601, 834,

844
polymorphism and, 862–876
private members and,

848–850
protected qualifier,

850–852
redefining functions,

853–856
Initialization, 48–49, 145–146,

386, 454–455, 551,
576–583
arrays, 386, 454–455
C strings, 454–455
constructors for, 576–583
declaration and, 48–49
objects, 576–583
structures, 551
variables, 48–49, 145–146,

386, 454–455
Inline functions, 1026
Input, 3, 21–23, 50, 56–58,

157–160, 306–312, 343–349
character data, 343–349
cin statements for, 21–23,

56–57
computer hardware

devices, 3
echoing, 58
extraction operator (>>)

for, 309
get function, 338–341
loops, design for ending,

157–160

member functions for,
343–348

new_line(), 343–345,
347–348

new–line character (\n) and,
345–346

put function, 341–342
putback function, 342–343
reading files, 308–309
streams, 50, 306–312

Input iterators, 972
Input/output (I/O), 50–59,

305–376, 464–466,
475–477, 1020–1021
arguments (parameters) and,

332, 348–349
C++ programming and,

50–59
C strings, 464–466
character, 338–360
cin (input) statements, 56–57
cout (output) statements,

50–52
decimal points for format-

ting numbers, 55–56
designing, 58
double statements, 55–56
end of files (eof), 332–335,

353–354
escape sequences, 53–55
files, 306–323, 332–337
flags, 325–327
formatting, 323–338
functions, 323–349,

353–354, 1020–1021
getline function, 475–476
#include directive, 52–53
manipulators, 329
namespaces, 52–53,

335–336
new_line function,

343–344, 346–348
new–line instruction (\n),

54–55, 58, 340–341,
345–346

predefined character func-
tions, 356–360

streams, 50, 305–376
string class for, 475–477
using directive, 52,

335–336
Insertion operator (<<), 310,

316–318, 329, 464,
650–658

in_stream, 307, 308–309,
312–314, 318

int, 21, 44, 60–61, 63, 70–72,
116–118, 378–382,
489–491
arithmetic operators and,

70–72
array declaration using,

378–382
Boolean expressions and,

116–118
enumerated types, 119–120
numeric data type, 44,

60–61, 63
unsigned type, 490–491
value conversion, 116–118
variable declaration using,

21, 44, 378–382,
489–491

vector declaration using,
489–491

Integers, 21, 60–62, 190–192
data values, 60–62
type casting by division,

190–192
variables, 21

Interface files, ADT, 592–593,
705–707, 713, 723, 724

ios::fixed flag, 325–327
ios::left flag, 327
ios::right flag, 327
ios::showpoint flag,

325–327
ios::showpos flag, 327
iostream library, 25
isalpha function, 359
isdigit function, 359
islower function, 359
isspace function, 358–359
isupper function, 359

1046	 Index

Iterators, 84–87, 157, 159,
755, 802–803, 817–818,
959–973
auto, variable declaration

using, 964
bidirectional, 966–969
compiler problems, 964–965
constant, 970–971
decrement operators (--)

for, 967–969
dereferencing (*) operator

for, 964–965
forward, 969
increment operators (++)

for, 960–961, 967–969,
971

input, 972
loop mechanisms and,

84–87, 157, 159
mutable, 970
operators for, 960–961
output, 973
pointers as, 755
random access, 966–969
recursion compared to,

802–803
recursive program version,

817–818
reverse, 971–972
templates for, 959–973
types of, 966–971
using directives for,

959–960
vectors and, 961–965

L
Languages, 8–11, 18–19

assembly, 8
C++ programming, 18–19
compilers for translation

of, 9–11
computer programs and, 8–9
high–level, 8–9
linker programs for, 9–11
low–level, 8
machine, 8–9
program translation of, 8–11

Last-in/first-out (LIFO) data
structure, 766, 801–802

Late (dynamic) binding, 863–869
Leaf nodes, 762
length function, 480–481
Less than comparison operator

(<), 78
Less than or equal to compari-

son operator (<=), 78
Lexicographic order, 482
Line breaks, C++ programming,

24, 26, 202
Linear running time, 995
Linked lists, 739–787, 974. See

also Containers
arguments, as, 747
assignment (=) operators

used with, 757–758
classes and, 762–765
data structures, as, 739–742
doubly, 760–761, 974
dynamic data structures in,

740, 757–758
head of, 746–750
inserting nodes in, 747–749,

755–757
losing nodes, 750–751
middle, 755–757
Node class, 762–765
nodes and, 740–742,

747–750, 755–757
pointers and, 739–787
queues and, 771–776
removing nodes from,

755–757
searching, 751–754
singly, 974
stacks, 765–766

Linker programs, 9–11
List headed–by–size loop

termination, 157
Local variables, 135–137,

218–229, 270–271
block scope, 135–137,

226–227
call–by–value parameters as,

224–226, 270–271

functions and, 218–229,
270–271

global constants and,
221–223

global scope, 226–227
global variables and,

223–224
inadvertent, 270–271
namespaces and, 227–229
scope of, 220–221, 226–227

Logic errors, 30–31
long data type, 62–63
Loop mechanisms, 84–91,

98, 112–120, 139–155,
208–211
ask–before–iterating tech-

nique for, 157, 159
body, 84–86
Boolean expressions for,

84–87, 112–120
braces { } for execution of,

84–86
break statement for, 153–154
count–controlled, 158
debugging, 162–164
decrement operators (--),

87–91, 143–144
design choices, 150
do-while statements,

87–91, 139–140, 154
ending input loops,

157–160
exit-on-flag termination, 159
flags, 159
flow of control using, 84–91,

98, 139–155
for statements, 144–150, 154
increment operators (++),

87–91, 141–144
infinite, 87–91, 152
iteration, 84–87, 157, 159
list headed–by–size termina-

tion, 157
nested, 154, 160–161,

208–211
procedural abstraction and,

208–211

	 Index	 1047

products obtained using,
156–157

semicolons (;) and, 149–150
sentinel value, 158
sums obtained using,

155–156
uninitialized variables and, 152
while statements, 84–91,

139–144, 153–154
zero times body execution,

87, 141
Low-level language, 8

M
Machine language, 8–9
main() function, 25
Main memory, 3–5
Mainframe computer systems, 2
Manipulator functions, 329
map class, 983–990
Member functions, 312–314,

338–354, 465–466,
480–483, 554–558,
570–574, 576–588,
818–821, 845, 848–856
at, 480–481
accessor functions and,

567–568
BankAccount class examples

of, 570–574
blank spaces and, 338–339
C strings, 465–466
character I/O and, 338–354
classes and, 312–314,

554–558, 570–574,
576–588

constructors, 576–588
definition of, 554–558
dot (.) operator used for,

313, 557–558
eof, 353–354
exit, 315
fail, 314
get, 338–341
getline, 465–466
inheritance and, 845,

850–852

length, 480–481
mutator functions and,

567–568
new_line(), 343–345,

347–348
new–line character (\n) and,

338–360, 345–346
objects and, 312–314
private, 559–568, 848–850
protected, 850–852
public, 559–568
put, 341–342
putback function, 342–343
recursion and, 818–821
redefinition of, 853–856
scope resolution (::) opera-

tor used for, 557–558
stream I/O using, 312–314
string class use of,

480–483
Member names, structures, 543,

545–546
Member values, structures, 543,

546
Member variables, structures,

543, 545–547, 550
Memory, 3–6, 40–42, 262–264,

382–383, 393–394,
516–518
addresses, 4–5
array declaration and,

382–383
array parameters, 393–394
bits (binary digits), 4
bytes, 4–5
call-by-reference parameters

and, 262–264
computer hardware compo-

nents, 3–6
delete operator for,

517–518
dynamic variables, 516–518
files, 6
freestore, 516–517
locations, 4–5, 41–42,

262–264
main, 3–5

management, 516–518
pointers for, 516–518
random access (RAM), 6
secondary (auxiliary), 3, 6–7
sequential access of, 6
storage as, 6
variables and, 40–42

Menus, 133–134
program choices using,

133–134
switch statements for,

133–134
Messages, errors, 30–31
Monitor, computer output

device, 3
Multidimensional arrays,

425–431, 530–532
commas (,) between in-

dexes, 431
declarations for, 426–427
delete [] operator and,

530–531
dynamic, 530–532
indexed variables and, 426,

431
parameters, 426–427
size of, 426–427
square brackets [] used for,

427, 431
two–dimensional example

of, 427, 531–532
Multiplication operator (*), 70
Mutable iterators, 970
Mutator functions, 567–568

N
Names, 42–45, 49, 95–97,

207–208, 221–224,
232–238, 308–310, 318,
518–520
constants, 95–97, 221–224
data types, 44–45
external file, 310
files, 308–310, 318
formal parameters, 207–208
functions and, 221–224,

232–238

1048	 Index

Names (continued)
global constants, 221–224
identifiers, 42–44
overloading functions,

232–238
pointer types, 518–520
procedural abstractions,

207–208
streams, 308–310, 318
typedef function, 518–520
variables, 42–45, 49, 308

Namespaces, 52–53, 186,
227–229, 335–336, 719–732
classes and, 719–732
creating, 721–723
file I/O and, 335–336
global, 732
local variables and, 227–229
names for, 724–726, 731
output and, 52–53
qualifying names, 724–726
stream I/O and, 335–336
unnamed, 726–732
using directives for, 52–53,

186, 228–229, 335–336,
719–721, 724–726

Nesting, 120–123, 137, 154,
160–161, 208–211, 916
blocks, 137, 916
braces { } used for,

121–123, 137–138
break statement in, 154
dangling else problem,

121–122
function calls and, 208
if-else statements, 120–123
indenting statements,

120–121
loops, 154, 160–161,

208–211
multiway branches,

120–123, 137
procedural abstraction and,

208–211
scope of the block for, 137
statements, 120–123
try-catch blocks, 916

Network computer systems, 2
new operator, 513–515,

524–527
dynamic arrays and,

524–527
pointers using, 513–515

new_line() function,
343–345, 347–348

New–line instruction (\n), 23,
53, 54–55, 58, 338–360,
345–346
C++ programming and, 23
endl used in place of, 54–55
input and, 345–346
member functions and,

338–360
output and, 54–55

Node class, 762–765
Nodes, 740–742, 747–750,

755–765
arrow (->) operator used

with, 742, 744
binary trees and, 761–762
doubly linked lists, 760–761
head (front) of lists, insert-

ing at, 747–749
inserting to lists, 747–749,

755–757
leaf, 762
linked lists and, 740–742,

747–750, 755–757
lost, 750–751
middle of lists, inserting and

removing, 755–757
NULL constant used in,

742–744
pointer variables and,

741–742
removing from lists,

755–757
root, 762
searching linked lists using,

751–754
structures, 740–742
trees and, 761–762

Nonmember functions,
624–628

Nonmodifying sequence algo-
rithms, 997–1001

Not equal to comparison opera-
tor (!=), 78–79

Not operator (!), 79, 113, 118
Null (/0) character, 453–454, 456
NULL constant, 742–744
Null statements, 150
nullptr, in C++ 11 program-

ming, 745
Number formatting, decimal

points for, 55–56
Number–to–C string conver-

sions, 466–470
Numeric calculations, 143–146,

155–157. See also Arithmetic
operators
for loop statements for,

143–146
loop design for, 155–157
products, 156–157
sums, 155–156

Numeric data values, 44, 60–64

O
Object code, 9–11, 26–27
Object-oriented programming

(OOP), 16–17
classes, 17
encapsulation, 17
inheritance, 17
polymorphism, 17
program design using, 16–17

Objects, 312–315, 554, 566,
569, 576–588
assignment operator (=)

used with, 569
classes and, 312–315, 554,

566
constructors for, 576–588
file I/O and, 312–315
initialization of, 576–583
member functions, 312,

576–588
public and private

specification, 566
streams and, 312–315

	 Index	 1049

Off–by–one error, 162
ofstream, 308–309, 318
Op operator, 74
open function, 309–310, 318
Operating systems, computer

software for, 7
Operators, 69–74, 77–82,

87–91, 112–120, 309,
316–318, 464, 643–658,
1016–1017, 1032–1033
arithmetic, 69–74, 112–116
Boolean expressions, 77–79,

112–120
comparison, 77–82
decrement (--), 87–91
extraction (>>), 309,

316–318, 464, 650–658
increment (++), 87–91
insertion (<<), 310,

316–318, 329, 464, 650–658
overloading, 643–658,

1032–1033
precedence, 114–115,

1016–1017
unary, 87, 649–650

Or operator (||), 78, 80,
112–116

Output, 3, 21–23, 50–56, 58,
306–312, 323–338
computer hardware devices, 3
cout statements, 21–23,

50–52
decimal points for format-

ting numbers, 55–56
double statements, 55–56
escape sequences, 53–55
flags, 325–327
formatting functions,

323–338
insertion operator (<<) for,

310
manipulators, 329
new–line instruction (\n)

for, 54–55, 58
streams, 50, 306–312,

323–338
writing files, 308–310

Output iterators, 973
out_stream, 307, 308–310,

312–314, 318, 325–326
Overloading, 232–238, 578,

643–658, 821, 1027–1028,
1032–1033
array index, 1027–1028
constructors, 578
extraction operator (>>),

650–658
function names, 232–238
insertion operator (<<),

650–658
operators, 643–658,

1032–1033
recursion compared to, 821
type conversion and, 238,

647–649
unary operators, 649–650

Overriding functions, 869

P
Parameters, 197–201,

207–208, 224–226,
259–266, 346–349,
391–397, 414, 426–427,
460, 519–520, 638–642
arguments and, 197–198,

200–201, 265–268,
348–349, 460

array, 391–396
arrays and, 391–397, 414,

426–427, 460
C string, 460
call–by–reference, 259–266,

519–520
call–by–value, 197–198,

224–226
character I/O, 346–349
const modifier, 394–397,

638–642
constant, 638–639
constant array, 395
formal, 197–201, 207–208,

224–226, 414
friend functions and,

638–642

function arguments and, 414
function calls using,

197–198, 259–260
function declarations using,

199–201
function subtasks using,

259–266
local variables and,

224–226, 270–271
memory locations, 262–264,

393–394
mixed lists, 268–271
multidimensional arrays,

426–427
names, 207–208, 262
pointers, 519–520
procedural abstraction and,

207–208
programmer–defined func-

tions, 197–201
size of arrays and, 394, 414
stream versatility, 346–347

Parent class, 600–601, 834, 844
Parentheses (), 71, 78–79,

84–86, 130
Partially filled arrays, 411–413
Personal computer (PC), 2
Pointer variables, 521–523, 527
Pointers, 507–540, 674–675,

739–787, 1029–1031
addresses, 509–511
ampersand (&) symbol and,

511
arithmetic performed on,

528–529
arrow (->) operator used

with, 742, 744
assignment operator (=) and,

511–512, 514, 757–758
asterisk (*) used for,

509–512
automatic variables, 518
call–by–reference parameters

for, 519–520
call–by–value parameters,

674–675
dangling, 522–523

1050	 Index

Pointers (continued)
declaration of, 509–510
delete operator, 517–518,

524–527, 530–531
dereferencing (*) operator

for, 510–511
destructors and, 674–675
dynamic arrays and,

521–527, 530–532, 674–675
dynamic variables and, 513,

516–518, 740, 757–758
freestore, 516–517
iterators, used as, 755
linked lists and, 739–787
memory management for,

516–518
names, 518–520
new operator, 513–515
nodes, 740–742, 747–750,

755–757
NULL constant assigned to,

742–744
queues and, 771–776
stacks and, 765–766
static variables, 518
structures containing,

741–742
this, 1029–1031
trees and, 761–762
typedef function, 518–520,

530
variables and, 508–520,

521–523, 527, 741–742
Polymorphism, 17, 862–876

destructors made virtual for,
875–876

errors, 874–875
late (dynamic) binding,

863–869
overriding functions, 869
virtual functions and,

864–876
pop function, 770
Postconditions, 275–281
pow function, 187–188
Precedence rules, 114–115
Preconditions, 275–281

Predefined functions, 183–192,
356, 358–360, 457–460,
467–468
abs, 186–187
absolute values, 186–187
arguments, 183–184,

459–460
C string, 457–460, 467–468
calls (invocations), 183–188
character I/O data, 356,

358–360
fabs, 187
header files (< >) and,

184–186
#include directives,

184–186
isspace, 358–359
parentheses () and, 184,

191
pow, 187–188
random number generation

using, 188–189
sqrt, 183–185, 187
srand, 187, 189
strcmp, 457–460
string–to–number conver-

sions, 467–468
strncpy, 457–460
toupper and tolower,

358–360
type casting using, 190–193
using directive, 186
value returned, 183,

358–360
priority_queue class,

979–983
private members, 559–568,

593, 597, 624, 848–850
abstract data types (ADT)

and, 593
accessor functions and,

567–568
classes using, 559–568
friend function access to, 624
inheritance and, 848–850
mutator functions and,

567–568

public members and,
559–568

Problem–solving phase, 15,
211–212, 277–278,
398–399

Procedural abstraction,
204–217, 273–281
algorithm design for,

212–213, 278
black box analogy, 204–207
case study: Buying Pizza,

211–217
case study: Supermarket Pric-

ing, 276–281
coding, 213–214, 278–280
functions calling functions,

273–275
functions returning values,

204–217
information hiding, 205–206
nested loops and, 208–211
parameter names and,

207–208
postconditions, 275–281
preconditions, 275–281
problem analysis, 211–212,

277–278
program testing, 214–217,

281
pseudocode for, 213, 217
subfunctions using, 273–281

Processor (CPU), computer
component, 3

Programmer role, 19
Programmer–defined functions,

193–203
arguments and, 197–198,

200–201
body, 196
bool values, returning, 199
branching statements and,

203
call–by–value parameters,

197–198
calls, 196–198, 203
declaration, 193, 195–196,

199–201

	 Index	 1051

definitions, 193–194,
196–197, 201–203

headers, 196, 200
parameters, 197–201
return statements,

196–197, 202
spacing and line breaks in,

202
syntax of, 201–202
value returned, 196, 199

Programming, 12–17, 588–597.
See also C++ programming;
C++11 programming
abstract data types (ADT),

588–597
algorithms, 12–16
implementation phase, 15
object–oriented (OOP),

16–17
problem–solving phase, 15
program design for, 15–17
software life cycle, 17

Programs, 2, 7–11, 13–16, 27–31
algorithms for, 13–16
compiler, 9–11, 27–30
computer software as, 2, 7–8
debugging, 29–31
design of, for programming,

15–17
executing, 8
high-level languages for, 8–9
implementation design

phase, 15
language translation and,

8–11
linker, 9–11
logic errors, 30–31
object code
problem–solving design

phase, 15
run-time errors, 30
running, 8–11
source code, 9
syntax error, 30
testing, 27–31

protected members, 850–852
Pseudocode, 213, 217

public members, 559–568
accessor functions and,

567–568
classes using, 559–568
mutator functions and,

567–568
put function, 341–342
putback function, 342–343

Q
Quadratic running time, 995
queue class, 979–983
Queues, 771–776

R
Random access iterators,

966–969
Random access memory

(RAM), 6
Random number generation,

188–189, 1024
Ranged for, using with contain-

ers, 990
Reading files, 308–309
Recursion, 789–831

base (stopping) cases, 798
case study: Binary Search,

810–818
case study: Vertical Numbers,

791–797
checking program for,

816–817
design techniques, 809–810
efficiency of, 817
ending, 797–798
function definition, 791
functions, 791–807
infinite, 799
iteration compared to,

802–803
iterative version of, 817–818
last–in/first–out (LIFO) data

structure, 801–802
member functions as,

818–821
overloading compared to, 821
returning values, 804–807

stacks for, 800–802
tasks, functions for, 791–803
tracing recursive calls,

794–797
values, functions for,

804–807
void functions and, 810

Remainder operator (%), 70–71
reserve function, 494
resize function, 494
Rethrowing exceptions, 918
return statements, 21,

196–197, 202, 255–259
C++ programming and, 21
functions and, 196–197
parentheses () for, 197
programmer–defined func-

tions, 196–197
void functions using, 255–259

Returning values, see Value
returned

Reverse iterators, 971–972
Robust input, C strings, 468,

470–471
Root node, 762
Running programs, 8–11,

26–28
Running times, 991–996
Run–time errors, 30

S
scale function, 402–407
Scientific notation, 61–62
Scope, 137, 220–221, 226–227

block, 137, 226–227
global, 226–227
local, 220–221, 226–227
variables, 220–221, 226–227

Scope resolution operator (::),
557–558

Searching arrays, 414–416
Searching linked lists, 751–754
Secondary (auxiliary) memory,

3, 6–7
Selection sort, 417–418
Semicolons (;), 24, 146,

149–150, 547

1052	 Index

Sentinel value, loop design
and, 158

Sequential access, memory
and, 6

Sequential containers, 974–979
set algorithms, 1003
set class, 983–990
setf function, 325–327
setprecision manipulator,

329
setw manipulator, 329
short data type, 63
Short–circuit evaluation, 115
Single quotes (' ') for constant

characters, 65
Single–precision numbers, 61
Size (number of elements),

379–382, 394, 411–414,
426–427, 493–494,
668–671
array parameters, 394
arrays, 379–382, 394,

411–414, 426–427
capacity compared to, 492
const modifier for, 376–382
constructors and, 668–671
declared, 379
dynamic arrays, 668–671
function arguments and, 414
multidimensional arrays,

426–427
partially filled arrays,

411–413
resize function, 494
vectors, 493–494

Software, 2, 7–8, 17, 715
abstract data types (ADT),

715
computer operating systems,

7–8
life cycle, 17
programs, 2
reusable components, 715

Sorting algorithms, 1004
Sorting arrays, 417–423
Source code, 9
Spacing, 24, 26, 202, 338–339

C++ programming, 24
character I/O and, 338–339
function definition and, 202

sqrt function, 183–185, 187
Square brackets [], 378–379,

392–393, 427, 431, 492
srand function, 187, 189
Stack class, 766–770, 979–983
Stacks, 765–766, 800–802,

801–802
empty, 770
implementation of, 768–770
last-in/first-out (LIFO) data

structure, 766
linked lists as, 765–766
overflow, 802
pointers and, 765–766
pop function, 770
recursion and, 800–802

Standard Template Library
(STL), 963–1013. See also
Templates

Statements, 21–26, 33
C++ programming instruc-

tions, 21–26, 33
cin (input), 21–23
cout (output), 21–23
direction arrows (<< >>),

21
directives #, 25
executable, 21–26
#include directive, 21, 25,

26
new line (\n), 23
return, 25–26
semicolon (;), 24

Static variables, 518
static_cast<double>,

190–192
std namespace, 335–336
Stepwise refinement, 182–183
Storage, memory as, 6
strcat function, 459–460
strcmp function, 457–460
strcpy function, 457–461
Streams, 50, 305–376

appending to a file, 320–322

arguments to functions, as,
332

character I/O and, 338–360
cin as, 307
classes and, 312–315
cout as, 307
declaring, 308–310
default arguments, 348–349
fail function, 314
file names and, 308–310, 318
files and, 306–338
flags and, 325–327
formatting functions, 323–328
ifstream, 308–309, 318
input/output (I/O), 50
in_stream, 307, 308–309,

312–314, 318
manipulator functions for,

329
member functions and,

312–314, 338–349
namespaces and, 335–336
objects and, 312–315
ofstream, 308–309, 318
output, formatting using,

323–338
out_stream, 307, 308–310,

312–314, 318, 325–326
parameters, 346–349
using directives and, 335–336
variables as, 308

string class, 66–68, 472–488
<string> library, 472, 474
characters, 66–68
comparison operators and,

482, 487
concatenation (+), 66–67, 472
constants converted to, 473
data types and, 66–68
default constructor for,

473–474
double quotes (" ") for char-

acters, 64–65
getline function, 475–476,

478–479
input/output (I/O) using,

475–477

	 Index	 1053

lexicographic ordering of, 482
member functions, 480–483
object–to–C string conver-

sion, 487–488
palindrome testing program

example, 484–487
variable declaration, 66–68
whitespace characters and, 68

String functions, 1023
String values, 456–458,

668–671
C strings, 456–458
dynamic arrays, 668–671
implementation, 671–673
size of, 668

String variables, 322–323
stringvar class, 668–671
strlen function, 459
strncat function, 459
strncmp function, 459
strncpy function, 457, 459
Structures, 542–550, 575,

740–742
braces { } for, 543, 547
classes compared to,

542–550, 575
diverse data of, 542–547
dot operator (.) for, 545, 550
functional arguments, as,

548–549
hierarchy of, 549
initializing, 551
linked lists and, 740–742
member names, 543,

545–546
member values, 543, 546
member variables, 543,

545–547, 550
nodes as, 740–742
pointer variables for, 741–742
semicolons (;) for, 547
value, 543

Stubs, function testing using,
284–286

Subexpressions, 115
Subtasks, 251–303

assert macro, 290–291

call-by-reference parameters,
259–266

debugging functions, 282–287
functions for, 251–303
procedural abstraction,

273–281
testing functions, 282–287
void functions, 252–259

Subtraction operator (-), 70
switch statements, 128–135

break statements, 131–133
menus, 133–134
multiway branching,

128–135
Syntax, 30, 45, 939–941

class templates for, 939–941
errors, 30
variable declaration and, 45

T
Tasks, recursive functions for,

791–803
Templates, 925–956, 963–1013

algorithm abstraction,
926–938

class syntax, 939–941
containers, 973–990
data abstractions, 939–948
function definition, 937–938
generic algorithms, 991–1004
iterators, 959–973
Standard Template Library

(STL), 963–1013
type definitions, 942

Terminal, computer output
device, 3

Testing programs, 27–31,
214–217, 281–287, 407
boundary values, 281
compiling and running pro-

grams, 27–29
debugging and, 29–31
drivers, 282–284
error messages, 30–31
functions, 214–217, 281
input, 281
logic errors, 30–31

procedural abstraction and,
214–217, 281

program testing, 214–217, 281
run-time errors, 30
scale function, 407
stubs, 284–286
syntax errors, 30
warning messages, 30

Text files, editing, 355–357
this pointer, 1029–1031
Throw list, 911–913
throw statement, 898–900,

909–911
Throwing exceptions, 894,

909–911, 914–916
Top-down design, 182–183,

398–409
toupper and tolower func-

tions, 358–360
Tracing recursive calls, 794–797
Tracing variables, 162–163, 288
Trees, data structures as,

761–762
Trigonometric functions, 1025
Trivial exceptions, 909
true/false values, 66,

116. See also Boolean
expressions

Truth tables, 112–114
try-catch blocks, 916
try-throw-catch mechanism,

898, 901–903
Two–dimensional arrays, 427,

531–532
Type casting, 190–192
Type name, variables, 44–45
typedef function, 518–520, 530

U
Unary operators, 87, 649–650
Uninitialized variables, 47–49,

152
unsigned int type, 490–491
User role, 19
using directive, 52, 186,

228–229, 335–336, 719–721,
724–726, 959–960

1054	 Index

V
Value returned, 183, 196–197,

199, 202, 358–360,
804–807, 809–810
bool statements, 199
character data, 358–360
predefined functions, 183
programmer–defined func-

tions, 196–197
recursion, 804–807
return statements,

196–197, 202
toupper and tolower, func-

tions for, 358–360
Values, recursive functions for,

804–807
Variables, 21–23, 40–50,

60–74, 135–137, 143–144,
147–149, 152, 162–163,
218–229, 288, 308,
378–386, 389–391, 426,
431, 453–460, 489–492,
508–520, 521–523, 527,
664–667, 668–671
arithmetic operators for, 69–72
arrays and, 378–386,

389–391, 453–460,
521–523, 527, 664–667,
668–671

assignment statements,
45–49, 69, 511–512

asterisk (*) used for, 509–512
automatic, 518
blocks and, 135–137
C strings, 453–460
cin (input) statements, 21–23
class members, 664–667
cout (output) statements,

21–23
data types, 44–45, 60–74
declaration of, 21–23,

44–45, 48–49, 64,
66–68, 147, 378–382,
453–454

dereferencing (*) operator
for, 510–511

dynamic, 513, 516–518

dynamic arrays and,
521–523, 527, 668–671

equal sign (=) for, 22
for statements for, 147–149
function and, 218–229
global, 223–224, 226–227,

518
identifiers, 42–44
increment/decrement opera-

tors for, 143–144
indexed, 379–386, 389–391,

426, 431, 489
initializing, 48–49,

145–146, 386, 454–455
integers as, 21, 44–45
local, 135–137, 218–229
loop mechanisms and,

135–137, 143–144,
147–149, 152, 162–163

memory locations, 41–42,
382–383

naming, 42–45, 49
new operator for, 513–515
null (/0) character and,

453–454, 456
pointers, 508–520, 521–523,

527
scope, 220–221, 226–227
square brackets [] used for,

378–380, 492
static, 518
streams as, 308
string, 66–68, 668–671
syntax for, 45
tracing, 162–163, 288
type name, 44–45
uninitialized, 47–49, 152
values, 22, 45–48, 162–163,

489–492
vectors, 489–492

Vectors, 489–494, 961–965
assignment operator (=) for,

493
capacity() function,

493–494
capacity of, 493–494
constructor, 492

declaring variables, 489–490
efficiency of, 493–494
indexed variables, 489
iterators for, 961–965
reserve function, 494
size of, 493
square brackets [] used for,

492
unsigned int type, 490–491
variable values, 489–492

Virtual functions, polymor-
phism and, 864–876

void functions, 252–259, 810
C++ definition, 252–254
calls, 253–254
recursion and, 810
return statements in,

255–259
syntax, 253

W
Warning messages, 30
while loop statements, 84–91,

139–144, 153–154
braces { } for execution of,

84–86
break statement for, 153–154
increment and decre-

ment operators, 87–91,
141–144

infinite, 87–91
nested, 154
syntax of, 86, 140
zero times body execution,

87, 141
Whitespace characters, 68, 358
width function, 328
Workstation, 2
Writing abstract data types

(ADT), 591–592
Writing files, 308–310

Z
Zero times loop body

execution, 87, 141
Zeros leading in number

constants, 636

1055

Credits

Cover, © 145 / Corbis
Figure 1.1a, © Alamy
Figure 1.2b, © Alamy
Figure 1.3c, © Alamy
Chapter 1, pg. 2 “The whole of the development and operation of analysis are now
capable of being executed by machinery. . . . As soon as an Analytical Engine exists, it
will necessarily guide the future course of science.” Charles Babbage(1792–1871)
Chapter 1, pg. 12 “The Analytical Engine has no pretensions whatever to originate
anything. It can do whatever we know how to order it to perform. It can follow analysis;
but it has no power of anticipating any analytical relations or truths. Its province is
to assist us in making available what we are already acquainted with.” Ada Augusta,
Countess of Lovelace (1815–1852)
Chapter 1, pg. 18 “Language is the only instrument of science . . .” Samuel Johnson
(1709–1784)
Chapter 1, pg. 29 “And if you take one from three hundred and sixty-five, what
remains?” “Three hundred and sixty-four, of course.” Humpty Dumpty looked doubtful.
“I’d rather see that done on paper,” he said.” © Lewis Carroll, Through the Looking-Glass
Chapter 2, pg. 40 “Don’t imagine you know what a computer terminal is. A computer
terminal is not some clunky old television with a typewriter in front of it. It is an
interface where the mind and the body can connect with the universe and move bits
of it about.” © Douglas Adams, Mostly Harmless (the fifth volume in The Hitchhiker’s
Trilogy)
Chapter 2, pg. 40 “Once a person has understood the way variables are used in pro-
gramming, he has understood the quintessence of programming.” © E. W. Dijkstra,
Notes on Structured Programming
Chapter 2, pg. 50 “Garbage in means garbage out.” Programmers’ Saying
Chapter 2, pg. 60 “They’ll never be happy together. He’s not her type.” Overheard at a
cocktail party
Chapter 2, pg. 74 “If you think we’re wax-works,” he said, “you ought to pay, you
know. Wax-works weren’t made to be looked at for nothing. Nohow! “Contrariwise,”
added the one marked “DEE,” “if you think we’re alive, you ought to speak.” © Lewis
Carroll, Through the Looking-Glass
Chapter 2, pg. 93 “In matters of grave importance, style, not sincerity, is the vital
thing.” © Oscar Wilde, The Importance of Being Ernest
Chapter 3, pg. 112 “When you come to a fork in the road, take it.” Attributed to
Yogi Berra
Chapter 3, pg. 112 “Contrariwise,” continued Tweedledee. “If it was so, it might be;
and if it were so, it would be; but as it isn’t, it ain’t. That’s logic.” © Lewis Carroll,
Through the Looking-Glass

1056	 CREDITs

Chapter 3, pg. 120 “Would you tell me, please, which way I ought to go from here?”
“That depends a good deal on where you want to get to,” said the Cat.” © Lewis Carroll,
Alice in Wonderland
Chapter 3, pg. 139 “It is not true that life is one damn thing after another— It’s one
damn thing over and over.” © Edna St. Vincent Millay, Letter to Arthur Darison Ficke,
October 24, 1930
Chapter 3, pg. 155 “Round and round she goes, and where she stops nobody knows.”
Traditional Carnival Barker’s Call
Chapter 4, pg. 182 “There was a most ingenious Architect who had contrived a new
method for building Houses, by beginning at the Roof, and working downward to the
Foundation.” Jonathan Swift, Gulliver’s Travels
Chapter 4, pg. 193 “A custom-tailored suit always fits better than one off the rack.”
My Uncle, The Tailor
Chapter 4, pg. 204 “The cause is hidden, but the result is well known.” Ovid,
Metamorphoses IV
Chapter 4, pg. 218 “He was a local boy, not known outside his home town.”
Common saying
Chapter 4, pg. 232 “...— and that shows that there are three hundred and sixty-four
days when you might get un-birthday presents —” “Certainly,” said Alice. “And only
one for birthday presents, you know. There’s glory for you!” “I don’t know what you
mean by ‘glory,’ “ Alice said. Humpty Dumpty smiled contemptuously, “Of course you
don’t — till I tell you. I mean ‘there’s a nice knock-down argument for you!’ “ “But
‘glory’ doesn’t mean ‘a nice knock-down argument,’ “ Alice objected. “When I use a
word,” Humpty Dumpty said, in rather a scornful tone, “it means just what I choose
it to mean — neither more nor less.” “The question is,” said Alice, “whether you can
make words mean so many different things.” “The question is,” said Humpty Dumpty,
“which is to be master — that’s all.” © Lewis Carroll, Through the Looking-Glass.
Chapter 5, pg. 252 “Everything is possible.” Common Maxim
Chapter 5, pg. 273 “My memory is so bad, that many times I forget my own name!”
© Miguel de Cervantes Saavedra, Don Quixote
Chapter 5, pg. 281 “I beheld the wretch—the miserable monster whom I had
created.” Mary Wollstonecraft Shelley, Frankenstein
Chapter 6, pg. 306 “Fish say, they have their stream and pond; But is there anything
beyond? © Rupert Brooke, “Heaven” (1913) “As a leaf is carried by a stream, whether
the stream ends in a lake or in the sea, so too is the output of your program carried by
a stream not knowing if the stream goes to the screen or to a file.” © Washroom wall
of a computer science department (1995)
Chapter 6, pg. 306 “Good Heavens! For more than forty years I have been speaking
prose without knowing it.” © Molière, Le Bourgeois Gentilhomme
Chapter 6, pg. 323 “You shall see them on a beautiful quarto page, where a neat rivulet
of text shall meander through a meadow of margin.” Richard Brinsley Sheridan, The
School for Scandal
Chapter 6, pg. 332 “That’s all there is, there isn’t any more.” © Ethel Barrymore
(1879–1959)
Chapter 6, pg. 338 “Polonius: What do you read, my lord? Hamlet: Words, words,
words.” William Shakespeare, Hamlet
Chapter 7, pg. 378 “It is a capital mistake to theorize before one has data.” Sir Arthur
Conan Doyle, Scandal in Bohemia (Sherlock Holmes)

	 CREDITs	 1057

Chapter 7, pg. 411”Never trust to general impressions, my boy, but concentrate your-
self upon details.” Sir Arthur Conan Doyle, A Case of Identity (Sherlock Holmes)
Chapter 7, pg. 424 “Two indexes are better than one.” Found on the wall of a
Computer Science department restroom
Chapter 8, pg. 452 “Polonius: What do you read my lord? Hamlet: Words, words,
words.” William Shakespeare, Hamlet
Chapter 8, pg. 453 “In everything one must consider the end.” Jean de la Fontaine,
Fables, Book III (1668)
Chapter 8, pg. 472 “I try to catch every sentence, every word you and I say, and
quickly lock all these sentences and words away in my literary storehouse because
they might come in handy.” Anton Chekhov, The Seagull
Chapter 8, pg. 489 “Well, I’ll eat it,” said Alice, “and if it makes me grow larger, I can
reach the key; and if it makes me grow smaller, I can creep under the door; so either
way I’ll get into the garden....” © Lewis Carroll, Alice’s Adventures in Wonderland
Chapter 9, pg. 508 “Memory is necessary for all the operations of reason.” © Blaise
Pascal, Pensées.
Chapter 9, pg. 508 “Do not mistake the pointing finger for the moon.” Zen saying
Chapter 10, pg. 542 “The time has come,” the Walrus said, “To talk of many things:
Of shoes—and ships—and sealing wax—Of cabbages—and kings—” © Lewis Carroll,
Through the Looking-Glass
Chapter 10, pg. 554 “I don’t care to belong to any club that will accept me as a mem-
ber.” Groucho Marx, The Groucho Letters
Chapter 10, pg. 588 “We all know — the Times knows — but we pretend we don’t.”
Virginia Woolf, Monday or Tuesday
Chapter 11, pg. 620 “Give us the tools, and we’ll finish the job.” © Winston Churchill,
Radio Broadcast, February 9, 1941
Chapter 11, pg. 643 “He’s a smooth operator.” Line from a song by Sade (written by
Sade Adu and Ray St. John)
Chapter 11, pg. 667 “With all appliances and means to boot.” William Shakespeare,
King Henry IV, Part III
Chapter 12, pg. 704 “From mine own library with volumes that I prize above my
dukedom.” William Shakespeare, The Tempest
Chapter 12, pg. 704 “Your “if “ is the only peacemaker; much virtue in “if.” William
Shakespeare, As You Like It
Chapter 12, pg. 719 “What’s in a name? That which we call a rose By any other name
would smell as sweet.” William Shakespeare, Romeo and Juliet
Chapter 13, pg. 740 “If somebody there chanced to be Who loved me in a manner
true My heart would point him out to me And I would point him out to you.” Gilbert
and Sullivan, Ruddigore
Chapter 13, pg. 765 “But many who are first now will be last, and many who are last
now will be first.” Matthew 19:30
Chapter 14, pg. 790 “After a lecture on cosmology and the structure of the solar
system, William James was accosted by a little old lady. “Your theory that the sun is
the center of the solar system, and the earth is a ball which rotates around it has a
very convincing ring to it, Mr. James, but it’s wrong. I’ve got a better theory,” said the
little old lady. “And what is that, madam?” inquired James politely. “That we live on
a crust of earth which is on the back of a giant turtle.” Not wishing to demolish this
absurd little theory by bringing to bear the masses of scientific evidence he had at his
command, James decided to gently dissuade his opponent by making her see some of

1058	 CREDITs

the inadequacies of her position. “If your theory is correct, madam,” he asked, “what
does this turtle stand on?” “You’re a very clever man, Mr. James, and that’s a very good
question,” replied the little old lady, “but I have an answer to it. And it is this: the
first turtle stands on the back of a second, far larger, turtle, who stands directly under
him.” “But what does this second turtle stand on?” persisted James patiently. To this
the little old lady crowed triumphantly. “It’s no use, Mr. James—it’s turtles all the way
down.” © J. R. Ross, Constraints on Variables in Syntax
Chapter 14, pg. 791 “I remembered too that night which is at the middle of the Thou-
sand and One Nights when Scheherazade (through a magical oversight of the copyist)
begins to relate word for word the story of the Thousand and One Nights, establishing
the risk of coming once again to the night when she must repeat it, and thus to infin-
ity.” © Jorge Luis Borges, The Garden of Forking Paths
Chapter 14, pg. 804 “To iterate is human, to recurse divine.” Anonymous
Chapter 14, pg. 809 “There are two kinds of people in the world: those who divide
the world into two kinds of people and those who do not.” Anonymous
Chapter 15, pg. 834 “With all appliances and means to boot.” William Shakespeare,
King Henry IV, Part III
Chapter 15, pg. 834 “If there is anything that we wish to change in the child, we
should first examine it and see whether it is not something that could better be
changed in ourselves.” © Carl Gustav Jung, The Integration of the Personality
Chapter 15, pg. 859 “The devil is in the details.” Common saying
Chapter 15, pg. 862 “All experience is an arch, to build upon.” Henry Adams, The
Education of Henry Adams
Chapter 16, pg. 894 “It’s the exception that proves the rule.” Common maxim
(possibly a corruption of something like: It’s the exception that tests the rule.)
Chapter 16, pg. 895 “Well, the program works for most cases. I didn’t know it had to
work for that case.” Computer Science Student, Appealing a Grade
Chapter 16, pg. 914 “Only use this in exceptional circumstances.” © Warren Peace,
The Lieutenant’s Tools
Chapter 17, pg. 926 “All men are mortal. Aristotle is a man. Therefore, Aristotle is
mortal. All X’s are Y. Z is an X. Therefore, Z is Y. All cats are mischievous. Garfield is a
cat. Therefore, Garfield is mischievous.” A Short Lesson on Syllogisms
Chapter 17, pg. 939 “Equal wealth and equal opportunities of culture . . . have
simply made us all members of one class.” © Edward Bellamy, Looking Backward:
2000–1887
Chapter 18, pg. 958 “Libraries are not made; they grow.” © Augustine Birrell
Chapter 18, pg. 959 “The White Rabbit put on his spectacles. “Where shall I begin,
please your Majesty?” he asked. “Begin at the beginning,” the King said, very gravely,
“And go on till you come to the end: then stop.” © Lewis Carroll, Alice in Wonderland.
Chapter 18, pg. 973 “Put all your eggs in one basket and” —watch that basket
Mark Twain, Pudd’n head Wilson
Chapter 18, pg. 991 “Cures consumption, anemia, sexual dysfunction, and all other
diseases.” Typical claim by a traveling salesman of “snake oil”

	

Location of VideoNotes in the Text

Chapter 1 Compiling and Running a C++ Program, p. 26
Solution to Practice Program 1.6, p. 36
Solution to Programming Project 1.3, p. 37

Chapter 2 C++11 Fixed Width Integer Types, p. 64
Precedence and Arithmetic Operators, p. 71
Common Bugs with = and ==, p. 81
Solution to Practice Program 2.3, p. 104
Solution to Programming Project 2.12, p. 108

Chapter 3 switch Statement Example, p. 130
Nested Loop Example, p. 160
Solution to Programming Project 3.9, p. 177
Solution to Programming Project 3.11, p. 178

Chapter 4 Random Number Generation, p. 188
Programmer-Defined Function Example, p. 201
Walkthrough of Functions and Local Variables, p. 223
Solution to Practice Program 4.7, p. 246
Solution to Programming Project 4.8, p. 250

Chapter 5 Call by Reference and Call by Value, p. 269
Debugging, p. 287
Solution to Practice Program 5.9, p. 297
Solution to Programming Project 5.6, p. 300

Chapter 6 Objects and File I/O Streams, p. 314
Default Arguments, p. 348
Solution to Programming Project 6.11, p. 374

Chapter 7 Array Walkthrough, p. 383
Range-Based For Loop, p. 386
Passing Arrays to Functions, p. 391
Selection Sort Walkthrough, p. 417
Bubble Sort Walkthrough, p. 421
Solution to Programming Project 7.3, p. 440

Chapter 8 Dangers of strcpy, p. 461
Example using cin and getline with the string class, p. 479
Solution to Programming Project 8.1, p. 498
Solution to Programming Project 8.14, p. 504

Chapter 9 Dynamic Arrays and Pointer Arithmetic, p. 529
Solution to Programming Project 9.6, p. 536

(Continued on Inside Back Cover)

	

Location of VideoNotes in the Text

Chapter 10 Class Scope, Public and Private Members, p. 565
Default Initialization of Member Variables, p. 587
Separate Interface and Implementation, p. 592
Solution to Practice Program 10.1, p. 611

Chapter 11 const Confusion, p. 639
Arrays of Classes using Dynamic Arrays, p. 671
Overloading = and == for a Class, p. 680
Solution to Programming Project 11.12, p. 701

Chapter 12 Avoiding Multiple Definitions, p. 715
Solution to Practice Program 12.3, p. 736

Chapter 13 Walkthrough of Linked Lists of Classes, p. 762
Solution to Programming Project 13.6, p. 783
Solution to Programming Project 13.9, p. 785

Chapter 14 Recursion and the Stack, p. 801
Solution to Practice Program 14.4, p. 827
Solution to Practice Program 14.4 , p. 828

Chapter 15 Inheritance Example, p. 858
Solution to Practice Program 15.3, p. 882
Solution to Programming Project 15.1, p. 884
Solution to Programming Project 15.10, p. 889

Chapter 16 The STL Exception Class, p. 917
Solution to Practice Program 16.1, p. 920
Solution to Programming Project 16.3, p. 922

Chapter 17 Issues Compiling Programs with Templates, p. 931
Solution to Programming Project 17.7, p. 955

Chapter 18 C++11 and Containers, p. 990
Solution to Practice Program 18.2, p. 1007
Solution to Programming Project 18.6, p. 1010

(Continued from Inside Front Cover)

	Front Cover
	Title Page
	Copyright Page
	Preface
	Brief Contents
	CONTENTS (with direct page links)
	1. Introduction to Computers and C++ Programming
	1.1 COMPUTER SYSTEMS
	Hardware
	Software
	High-Level Languages
	Compilers
	History Note

	1.2 PROGRAMMING AND PROBLEM-SOLVING
	Algorithms
	Program Design
	Object-Oriented Programming
	The Software Life Cycle

	1.3 INTRODUCTION TO C++
	Origins of the C++ Language
	A Sample C++ Program
	Pitfall: Using the Wrong Slash in \n
	Programming Tip: Input and Output Syntax
	Layout of a Simple C++ Program
	Pitfall: Putting a Space Before the include File Name
	Compiling and Running a C++ Program
	Pitfall: Compiling a C++11 program
	Programming Tip: Getting Your Program to Run

	1.4 TESTING AND DEBUGGING
	Kinds of Program Errors
	Pitfall: Assuming Your Program Is Correct

	Chapter Summary
	Answers to Self-Test Exercises
	Practice Programs
	Programming Projects

	2. C++ Basics
	2.1 VARIABLES AND ASSIgNMENTS
	Variables
	Names: Identifiers
	Variable Declarations
	Assignment Statements
	Pitfall: Uninitialized Variables
	Programming Tip: Use Meaningful Names

	2.2 INPUT AND OUTPUT
	Output Using cout
	Include Directives and Namespaces
	Escape Sequences
	Programming Tip: End Each Program with a \n or endl
	Formatting for Numbers with a Decimal Point
	Input Using cin
	Designing Input and Output
	Programming Tip: Line Breaks in I/O

	2.3 DATA TYPES AND EXPRESSIONS
	The Types int and double
	Other Number Types
	C++11 Types
	The Type char
	The Type bool
	Introduction to the Class string
	Type Compatibilities
	Arithmetic Operators and Expressions
	Pitfall: Whole Numbers in Division
	More Assignment Statements

	2.4 SIMPLE FLOW OF CONTROL
	A Simple Branching Mechanism
	Pitfall: Strings of Inequalities
	Pitfall: Using = in place of ==
	Compound Statements
	Simple Loop Mechanisms
	Increment and Decrement Operators
	Programming Example: Charge Card Balance
	Pitfall: Infinite Loops

	2.5 PROGRAM STYLE
	Indenting
	Comments
	Naming Constants

	Chapter Summary
	Answers to Self-Test Exercises
	PractIce Programs
	Programming Projects

	3. More Flow of Control
	3.1 USING BOOLEAN EXPRESSIONS
	Evaluating Boolean Expressions
	Pitfall: Boolean Expressions Convert to int Values
	Enumeration Types (Optional)

	3.2 MULTIWAY BRANCHES
	Nested Statements
	Programming Tip: Use Braces in Nested Statements
	Multiway if-else Statements
	Programming Example: State Income Tax
	The switch Statement
	Pitfall: Forgetting a break in a switch Statement
	Using switch Statements for Menus
	Blocks
	Pitfall: Inadvertent Local Variables

	3.3 MORE ABOUT C++ LOOP STATEMENTS
	The while Statements Reviewed
	Increment and Decrement Operators Revisited
	The for Statement
	Pitfall: Extra Semicolon in a for Statement
	What Kind of Loop to Use
	Pitfall: Uninitialized Variables and Infinite Loops
	The break Statement
	Pitfall: The break Statement in Nested Loops

	3.4 DESIGNING LOOPS
	Loops for Sums and Products
	Ending a Loop
	Nested Loops
	Debugging Loops

	Chapter Summary
	Answers to Self-Test Exercises
	Practice Programs
	Programming Projects

	4. Procedural Abstraction and Functions That Return a Value
	4.1 TOP-DOWN DESIGN
	4.2 PREDEFINED FUNCTIONS
	Using Predefined Functions
	Random Number Generation
	Type Casting
	Older Form of Type Casting
	Pitfall: Integer Division Drops the Fractional Part

	4.3 PROGRAMMER-DEFINED FUNCTIONS
	Function Definitions
	Functions That Return a Boolean Value
	Alternate Form for Function Declarations
	Pitfall: Arguments in the Wrong Order
	Function Definition–Syntax Summary
	More About Placement of Function Definitions
	Programming Tip: Use Function Calls in Branching Statements

	4.4 PROCEDURAL ABSTRACTION
	The Black-Box Analogy
	Programming Tip: Choosing Formal Parameter Names
	Programming Tip: Nested Loops
	Case Study: Buying Pizza
	Programming Tip: Use Pseudocode

	4.5 SCOPE AND LOCAL VARIABLES
	The Small Program Analogy
	Programming Example: Experimental Pea Patch
	Global Constants and Global Variables
	Call-by-Value Formal Parameters Are Local Variables
	Block Scope
	Namespaces Revisited
	Programming Example: The Factorial Function

	4.6 OVERLOADING FUNCTION NAMES
	Introduction to Overloading
	Programming Example: Revised Pizza-Buying Program
	Automatic Type Conversion

	Chapter Summary
	Answers to Self-Test Exercises
	Practice Programs
	Programming Projects

	5. Functions for All Subtasks
	5.1 void FUNCTIONS
	Definitions of void Functions
	Programming Example: Converting Temperatures
	return Statements in void Functions

	5.2 CALL-BY-REFERENCE PARAMETERS
	A First View of Call-by-Reference
	Call-by-Reference in Detail
	Programming Example: The swap_values Function
	Mixed Parameter Lists
	Programming Tip: What Kind of Parameter to Use
	Pitfall: Inadvertent Local Variables

	5.3 USING PROCEDURAL ABSTRACTION
	Functions Calling Functions
	Preconditions and Postconditions
	Case Study: Supermarket Pricing

	5.4 TESTING AND DEBUGGING FUNCTIONS
	Stubs and Drivers

	5.5 GENERAL DEBUGGING TECHNIQUES
	Keep an Open Mind
	Check Common Errors
	Localize the Error
	The assert Macro

	Chapter Summary
	Answers to Self-Test Exercises
	Practice Programs
	Programming Projects

	6. I/O Streams as an Introduction to Objects and Classes
	6.1 STREAMS AND BASIC FILE I/O
	Why Use Files for I/O?
	File I/O
	Introduction to Classes and Objects
	Programming Tip: Check Whether a File Was Opened Successfully
	Techniques for File I/O
	Appending to a File (Optional)
	File Names as Input (Optional)

	6.2 TOOLS FOR STREAM I/O
	Formatting Output with Stream Functions
	Manipulators
	Streams as Arguments to Functions
	Programming Tip: Checking for the End of a File
	A Note on Namespaces
	Programming Example: Cleaning Up a File Format

	6.3 CHARACTER I/O
	The Member Functions get and put
	The putback Member Function (Optional)
	Programming Example: Checking Input
	Pitfall: Unexpected '\n' in Input
	Programming Example: Another new_line Function
	Default Arguments for Functions (Optional)
	The eof Member Function
	Programming Example: Editing a Text File
	Predefined Character Functions
	Pitfall: toupper and tolower Return Values

	Chapter Summary
	Answers to Self-Test Exercises
	Practice Programs
	Programming Projects

	7. Arrays
	7.1 INTRODuCTION TO ARRAYS
	Declaring and Referencing Arrays
	Programming Tip: Use for Loops with Arrays
	Pitfall: Array Indexes Always Start with Zero
	Programming Tip: Use a Defined Constant for Size of an Array
	Arrays in Memory
	Pitfall: Array Index Out of Range
	Initializing Arrays
	Programming Tip: C++11 Range-Based for Statement

	7.2 ARRAYS IN FUNCTIONS
	Indexed Variables as Function Arguments
	Entire Arrays as Function Arguments
	The const Parameter Modifier
	Pitfall: Inconsistent Use of const Parameters
	Functions That Return an Array
	Case Study: Production Graph

	7.3 PROGRAMMING WITH ARRAYS
	Partially Filled Arrays
	Programming Tip: Do Not Skimp on Formal Parameters
	Programming Example: Searching an Array
	Programming Example: Sorting an Array
	Programming Example: Bubble Sort

	7.4 MULTIDIMENSIONAL ARRAYS
	Multidimensional Array Basics
	Multidimensional Array Parameters
	Programming Example: Two-Dimensional Grading Program
	Pitfall: Using Commas Between Array Indexes

	Chapter Summary
	Answers to Self-Test Exercises
	Practice Programs
	Programming Projects

	8. Strings and Vectors
	8.1 AN ARRAY TYPE FOR STRINGS
	C-String Values and C-String Variables
	Pitfall: Using = and == with C Strings
	Other Functions in <cstring>
	Pitfall: Copying past the end of a C-string using strcpy
	C-String Input and Output
	C-String-to-Number Conversions and Robust Input

	8.2 THE STANDARD string CLASS
	Introduction to the Standard Class string
	I/O with the Class string
	Programming Tip: More Versions of getline
	Pitfall: Mixing cin >> variable; and getline
	String Processing with the Class string
	Programming Example: Palindrome Testing
	Converting Between string Objects and C Strings
	Converting Between Strings and Numbers

	8.3 VECTORS
	Vector Basics
	Pitfall: Using Square Brackets Beyond the Vector Size
	Programming Tip: Vector Assignment Is Well Behaved
	Efficiency Issues

	Chapter Summary
	Answers to Self-Test Exercises
	Practice Programs
	Programming Projects

	9. Pointers and Dynamic Arrays
	9.1 POINTERS
	Pointer Variables
	Basic Memory Management
	Pitfall: Dangling Pointers
	Static Variables and Automatic Variables
	Programming Tip: Define Pointer Types

	9.2 DYNAMIC ARRAYS
	Array Variables and Pointer Variables
	Creating and Using Dynamic Arrays
	Pointer Arithmetic (Optional)
	Multidimensional Dynamic Arrays (Optional)

	Chapter Summary
	Answers to Self-Test Exercises
	Practice Programs
	Programming Projects

	10. Defining Classes
	10.1 STRUCTURES
	Structures for Diverse Data
	Pitfall: Forgetting a Semicolon in a Structure Definition
	Structures as Function Arguments
	Programming Tip: Use Hierarchical Structures
	Initializing Structures

	10.2 CLASSES
	Defining Classes and Member Functions
	Public and Private Members
	Programming Tip: Make All Member Variables Private
	Programming Tip: Define Accessor and Mutator Functions
	Programming Tip: Use the Assignment Operator with Objects
	Programming Example: BankAccount Class—Version 1
	Summary of Some Properties of Classes
	Constructors for Initialization
	Programming Tip: Always Include a Default Constructor
	Pitfall: Constructors with No Arguments
	Member Initializers and Constructor Delegation in C++11

	10.3 ABSTRACT DATA TYPES
	Classes to Produce Abstract Data Types
	Programming Example: Alternative Implementation of a Class

	10.4 INTRODUCTION TO INHERITANCE
	Derived Classes
	Defining Derived Classes

	Chapter Summary
	Answers to Self-Test Exercises
	Practice Programs
	Programming Projects

	11. Friends, Overloaded Operators, and Arrays in Classes
	11.1 FRIEND FUNCTIONS
	Programming Example: An Equality Function
	Friend Functions
	Programming Tip: Define Both Accessor Functions and Friend Functions
	Programming Tip: Use Both Member and Nonmember Functions
	Programming Example: Money Class (Version 1)
	Implementation of digit_to_int (Optional)
	Pitfall: Leading Zeros in Number Constants
	The const Parameter Modifier
	Pitfall: Inconsistent Use of const

	11.2 OVERLOADING OPERATORS
	Overloading Operators
	Constructors for Automatic Type Conversion
	Overloading Unary Operators
	Overloading >> and <<

	11.3 ARRAYS AND CLASSES
	Arrays of Classes
	Arrays as Class Members
	Programming Example: A Class for a Partially Filled Array

	11.4 CLASSES AND DYNAMIC ARRAYS
	Programming Example: A String Variable Class
	Destructors
	Pitfall: Pointers as Call-by-Value Parameters
	Copy Constructors
	Overloading the Assignment Operator

	Chapter Summary
	Answers to Self-Test Exercises
	Practice Programs
	Programming Projects

	12. Separate Compilation and Namespaces
	12.1 SEPARATE COMPILATION
	ADTs Reviewed
	Case Study: DigitalTime—A Class Compiled Separately
	Using #ifndef
	Programming Tip: Defining Other Libraries

	12.2 NAMESPACES
	Namespaces and using Directives
	Creating a Namespace
	Qualifying Names
	A Subtle Point About Namespaces (Optional)
	Unnamed Namespaces
	Programming Tip: Choosing a Name for a Namespace
	Pitfall: Confusing the Global Namespace and the Unnamed Namespace

	Chapter Summary
	Answers to Self-Test Exercises
	Practice Programs
	Programming Projects

	13. Pointers and Linked Lists
	13.1 NODES AND LINKED LISTS
	Nodes
	nullptr
	Linked Lists
	Inserting a Node at the Head of a List
	Pitfall: Losing Nodes
	Searching a Linked List
	Pointers as Iterators
	Inserting and Removing Nodes Inside a List
	Pitfall: Using the Assignment Operator with Dynamic Data Structures
	Variations on Linked Lists
	Linked Lists of Classes

	13.2 STACKS AND QUEUES
	Stacks
	Programming Example: A Stack Class
	Queues
	Programming Example: A Queue Class

	Chapter Summary
	Answers to Self-Test Exercises
	Practice Programs
	Programming Projects

	14. Recursion
	14.1 RECURSIVE FUNCTIONS FOR TASKS
	Case Study: Vertical Numbers
	A Closer Look at Recursion
	Pitfall: Infinite Recursion
	Stacks for Recursion
	Pitfall: Stack Overflow
	Recursion Versus Iteration

	14.2 RECURSIVE FUNCTIONS FOR VALUES
	General Form for a Recursive Function That Returns a Value
	Programming Example: Another Powers Function

	14.3 THINKING RECURSIVELY
	Recursive Design Techniques
	Case Study: Binary Search—An Example of Recursive Thinking
	Programming Example: A Recursive Member Function

	Chapter Summary
	Answers to Self-Test Exercises
	Practice Programs
	Programming Projects

	15. Inheritance
	15.1 INHERITANCE BASICS
	Derived Classes
	Constructors in Derived Classes
	Pitfall: Use of Private Member Variables from the Base Class
	Pitfall: Private Member Functions Are Effectively Not Inherited
	The protected Qualifier
	Redefinition of Member Functions
	Redefining Versus Overloading
	Access to a Redefined Base Function

	15.2 INHERITANCE DETAILS
	Functions That Are Not Inherited
	Assignment Operators and Copy Constructors in Derived Classes
	Destructors in Derived Classes

	15.3 POLYMORPHISM
	Late Binding
	Virtual Functions in C++
	Virtual Functions and Extended Type Compatibility
	Pitfall: The Slicing Problem
	Pitfall: Not Using Virtual Member Functions
	Pitfall: Attempting to Compile Class Definitions Without Definitions for Every Virtual Member Function
	Programming Tip: Make Destructors Virtual

	Chapter Summary
	Answers to Self-Test Exercises
	Practice Programs
	Programming Projects

	16. Exception Handling
	16.1 EXCEPTION-HANDLING BASICS
	A Toy Example of Exception Handling
	Defining Your Own Exception Classes
	Multiple Throws and Catches
	Pitfall: Catch the More Specific Exception First
	Programming Tip: Exception Classes Can Be Trivial
	Throwing an Exception in a Function
	Exception Specification
	Pitfall: Exception Specification in Derived Classes

	16.2 PROGRAMMING TECHNIQUES FOR EXCEPTION HANDLING
	When to Throw an Exception
	Pitfall: Uncaught Exceptions
	Pitfall: Nested try-catch Blocks
	Pitfall: Overuse of Exceptions
	Exception Class Hierarchies
	Testing for Available Memory
	Rethrowing an Exception

	Chapter Summary
	Answers to Self-Test Exercises
	Practice Programs
	Programming Projects

	17. Templates
	17.1 TEMPLATES FOR ALGORITHM ABSTRACTION
	Templates for Functions
	Pitfall: Compiler Complications
	Programming Example: A Generic Sorting Function
	Programming Tip: How to Define Templates
	Pitfall: Using a Template with an Inappropriate Type

	17.2 TEMPLATES FOR DATA ABSTRACTION
	Syntax for Class Templates
	Programming Example: An Array Class

	Chapter Summary
	Answers to Self-Test Exercises
	Practice Programs
	Programming Projects

	18. Standard Template Library
	18.1 ITERATORS
	using Declarations
	Iterator Basics
	Programming Tip: Use auto to Simplify Variable Declarations
	Pitfall: Compiler Problems
	Kinds of Iterators
	Constant and Mutable Iterators
	Reverse Iterators
	Other Kinds of Iterators

	18.2 CONTAINERS
	Sequential Containers
	Pitfall: Iterators and Removing Elements
	Programming Tip: Type Definitions in Containers
	Container Adapters stack and queue
	Associative Containers set and map
	Programming Tip: Use Initialization, Ranged For, and auto with Containers
	Efficiency

	18.3 GENERIC ALGORITHMS
	Running Times and Big-O Notation
	Container Access Running Times
	Nonmodifying Sequence Algorithms
	Container Modifying Algorithms
	Set Algorithms
	Sorting Algorithms

	Chapter Summary
	Answers to Self-Test Exercises
	Practice Programs
	Programming Projects

	APPENDICES
	1: C++ Keywords
	2: Precedence of Operators
	3: The ASCII Character Set
	4: Some Library Functions
	5: Inline Functions
	6: Overloading the Array Index Square Brackets
	7: The this Pointer
	8: Overloading Operators as Member Operators

	INDEX (with direct page links)
	SYMBOLS
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

	Credits
	Location of Videonotes in the Text

